Properties

Label 2450.2.c.k.99.1
Level $2450$
Weight $2$
Character 2450.99
Analytic conductor $19.563$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 2450 = 2 \cdot 5^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2450.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(19.5633484952\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
Defining polynomial: \(x^{2} + 1\)
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 70)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 99.1
Root \(-1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 2450.99
Dual form 2450.2.c.k.99.2

$q$-expansion

\(f(q)\) \(=\) \(q-1.00000i q^{2} -1.00000 q^{4} +1.00000i q^{8} +3.00000 q^{9} +O(q^{10})\) \(q-1.00000i q^{2} -1.00000 q^{4} +1.00000i q^{8} +3.00000 q^{9} +4.00000 q^{11} +6.00000i q^{13} +1.00000 q^{16} +2.00000i q^{17} -3.00000i q^{18} -4.00000i q^{22} +6.00000 q^{26} -6.00000 q^{29} -8.00000 q^{31} -1.00000i q^{32} +2.00000 q^{34} -3.00000 q^{36} +10.0000i q^{37} -2.00000 q^{41} +4.00000i q^{43} -4.00000 q^{44} +8.00000i q^{47} -6.00000i q^{52} -2.00000i q^{53} +6.00000i q^{58} -8.00000 q^{59} +14.0000 q^{61} +8.00000i q^{62} -1.00000 q^{64} +12.0000i q^{67} -2.00000i q^{68} -16.0000 q^{71} +3.00000i q^{72} -2.00000i q^{73} +10.0000 q^{74} +8.00000 q^{79} +9.00000 q^{81} +2.00000i q^{82} -8.00000i q^{83} +4.00000 q^{86} +4.00000i q^{88} +10.0000 q^{89} +8.00000 q^{94} +2.00000i q^{97} +12.0000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q - 2q^{4} + 6q^{9} + O(q^{10}) \) \( 2q - 2q^{4} + 6q^{9} + 8q^{11} + 2q^{16} + 12q^{26} - 12q^{29} - 16q^{31} + 4q^{34} - 6q^{36} - 4q^{41} - 8q^{44} - 16q^{59} + 28q^{61} - 2q^{64} - 32q^{71} + 20q^{74} + 16q^{79} + 18q^{81} + 8q^{86} + 20q^{89} + 16q^{94} + 24q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2450\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(1177\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) − 1.00000i − 0.707107i
\(3\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(4\) −1.00000 −0.500000
\(5\) 0 0
\(6\) 0 0
\(7\) 0 0
\(8\) 1.00000i 0.353553i
\(9\) 3.00000 1.00000
\(10\) 0 0
\(11\) 4.00000 1.20605 0.603023 0.797724i \(-0.293963\pi\)
0.603023 + 0.797724i \(0.293963\pi\)
\(12\) 0 0
\(13\) 6.00000i 1.66410i 0.554700 + 0.832050i \(0.312833\pi\)
−0.554700 + 0.832050i \(0.687167\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) 2.00000i 0.485071i 0.970143 + 0.242536i \(0.0779791\pi\)
−0.970143 + 0.242536i \(0.922021\pi\)
\(18\) − 3.00000i − 0.707107i
\(19\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) − 4.00000i − 0.852803i
\(23\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 6.00000 1.17670
\(27\) 0 0
\(28\) 0 0
\(29\) −6.00000 −1.11417 −0.557086 0.830455i \(-0.688081\pi\)
−0.557086 + 0.830455i \(0.688081\pi\)
\(30\) 0 0
\(31\) −8.00000 −1.43684 −0.718421 0.695608i \(-0.755135\pi\)
−0.718421 + 0.695608i \(0.755135\pi\)
\(32\) − 1.00000i − 0.176777i
\(33\) 0 0
\(34\) 2.00000 0.342997
\(35\) 0 0
\(36\) −3.00000 −0.500000
\(37\) 10.0000i 1.64399i 0.569495 + 0.821995i \(0.307139\pi\)
−0.569495 + 0.821995i \(0.692861\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −2.00000 −0.312348 −0.156174 0.987730i \(-0.549916\pi\)
−0.156174 + 0.987730i \(0.549916\pi\)
\(42\) 0 0
\(43\) 4.00000i 0.609994i 0.952353 + 0.304997i \(0.0986555\pi\)
−0.952353 + 0.304997i \(0.901344\pi\)
\(44\) −4.00000 −0.603023
\(45\) 0 0
\(46\) 0 0
\(47\) 8.00000i 1.16692i 0.812142 + 0.583460i \(0.198301\pi\)
−0.812142 + 0.583460i \(0.801699\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) 0 0
\(52\) − 6.00000i − 0.832050i
\(53\) − 2.00000i − 0.274721i −0.990521 0.137361i \(-0.956138\pi\)
0.990521 0.137361i \(-0.0438619\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 6.00000i 0.787839i
\(59\) −8.00000 −1.04151 −0.520756 0.853706i \(-0.674350\pi\)
−0.520756 + 0.853706i \(0.674350\pi\)
\(60\) 0 0
\(61\) 14.0000 1.79252 0.896258 0.443533i \(-0.146275\pi\)
0.896258 + 0.443533i \(0.146275\pi\)
\(62\) 8.00000i 1.01600i
\(63\) 0 0
\(64\) −1.00000 −0.125000
\(65\) 0 0
\(66\) 0 0
\(67\) 12.0000i 1.46603i 0.680211 + 0.733017i \(0.261888\pi\)
−0.680211 + 0.733017i \(0.738112\pi\)
\(68\) − 2.00000i − 0.242536i
\(69\) 0 0
\(70\) 0 0
\(71\) −16.0000 −1.89885 −0.949425 0.313993i \(-0.898333\pi\)
−0.949425 + 0.313993i \(0.898333\pi\)
\(72\) 3.00000i 0.353553i
\(73\) − 2.00000i − 0.234082i −0.993127 0.117041i \(-0.962659\pi\)
0.993127 0.117041i \(-0.0373409\pi\)
\(74\) 10.0000 1.16248
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 8.00000 0.900070 0.450035 0.893011i \(-0.351411\pi\)
0.450035 + 0.893011i \(0.351411\pi\)
\(80\) 0 0
\(81\) 9.00000 1.00000
\(82\) 2.00000i 0.220863i
\(83\) − 8.00000i − 0.878114i −0.898459 0.439057i \(-0.855313\pi\)
0.898459 0.439057i \(-0.144687\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 4.00000 0.431331
\(87\) 0 0
\(88\) 4.00000i 0.426401i
\(89\) 10.0000 1.06000 0.529999 0.847998i \(-0.322192\pi\)
0.529999 + 0.847998i \(0.322192\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 8.00000 0.825137
\(95\) 0 0
\(96\) 0 0
\(97\) 2.00000i 0.203069i 0.994832 + 0.101535i \(0.0323753\pi\)
−0.994832 + 0.101535i \(0.967625\pi\)
\(98\) 0 0
\(99\) 12.0000 1.20605
\(100\) 0 0
\(101\) 6.00000 0.597022 0.298511 0.954406i \(-0.403510\pi\)
0.298511 + 0.954406i \(0.403510\pi\)
\(102\) 0 0
\(103\) − 16.0000i − 1.57653i −0.615338 0.788263i \(-0.710980\pi\)
0.615338 0.788263i \(-0.289020\pi\)
\(104\) −6.00000 −0.588348
\(105\) 0 0
\(106\) −2.00000 −0.194257
\(107\) − 12.0000i − 1.16008i −0.814587 0.580042i \(-0.803036\pi\)
0.814587 0.580042i \(-0.196964\pi\)
\(108\) 0 0
\(109\) −6.00000 −0.574696 −0.287348 0.957826i \(-0.592774\pi\)
−0.287348 + 0.957826i \(0.592774\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 2.00000i 0.188144i 0.995565 + 0.0940721i \(0.0299884\pi\)
−0.995565 + 0.0940721i \(0.970012\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 6.00000 0.557086
\(117\) 18.0000i 1.66410i
\(118\) 8.00000i 0.736460i
\(119\) 0 0
\(120\) 0 0
\(121\) 5.00000 0.454545
\(122\) − 14.0000i − 1.26750i
\(123\) 0 0
\(124\) 8.00000 0.718421
\(125\) 0 0
\(126\) 0 0
\(127\) 8.00000i 0.709885i 0.934888 + 0.354943i \(0.115500\pi\)
−0.934888 + 0.354943i \(0.884500\pi\)
\(128\) 1.00000i 0.0883883i
\(129\) 0 0
\(130\) 0 0
\(131\) 16.0000 1.39793 0.698963 0.715158i \(-0.253645\pi\)
0.698963 + 0.715158i \(0.253645\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 12.0000 1.03664
\(135\) 0 0
\(136\) −2.00000 −0.171499
\(137\) 6.00000i 0.512615i 0.966595 + 0.256307i \(0.0825059\pi\)
−0.966595 + 0.256307i \(0.917494\pi\)
\(138\) 0 0
\(139\) 16.0000 1.35710 0.678551 0.734553i \(-0.262608\pi\)
0.678551 + 0.734553i \(0.262608\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 16.0000i 1.34269i
\(143\) 24.0000i 2.00698i
\(144\) 3.00000 0.250000
\(145\) 0 0
\(146\) −2.00000 −0.165521
\(147\) 0 0
\(148\) − 10.0000i − 0.821995i
\(149\) −6.00000 −0.491539 −0.245770 0.969328i \(-0.579041\pi\)
−0.245770 + 0.969328i \(0.579041\pi\)
\(150\) 0 0
\(151\) 8.00000 0.651031 0.325515 0.945537i \(-0.394462\pi\)
0.325515 + 0.945537i \(0.394462\pi\)
\(152\) 0 0
\(153\) 6.00000i 0.485071i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 10.0000i 0.798087i 0.916932 + 0.399043i \(0.130658\pi\)
−0.916932 + 0.399043i \(0.869342\pi\)
\(158\) − 8.00000i − 0.636446i
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) − 9.00000i − 0.707107i
\(163\) − 4.00000i − 0.313304i −0.987654 0.156652i \(-0.949930\pi\)
0.987654 0.156652i \(-0.0500701\pi\)
\(164\) 2.00000 0.156174
\(165\) 0 0
\(166\) −8.00000 −0.620920
\(167\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(168\) 0 0
\(169\) −23.0000 −1.76923
\(170\) 0 0
\(171\) 0 0
\(172\) − 4.00000i − 0.304997i
\(173\) 22.0000i 1.67263i 0.548250 + 0.836315i \(0.315294\pi\)
−0.548250 + 0.836315i \(0.684706\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 4.00000 0.301511
\(177\) 0 0
\(178\) − 10.0000i − 0.749532i
\(179\) 12.0000 0.896922 0.448461 0.893802i \(-0.351972\pi\)
0.448461 + 0.893802i \(0.351972\pi\)
\(180\) 0 0
\(181\) 14.0000 1.04061 0.520306 0.853980i \(-0.325818\pi\)
0.520306 + 0.853980i \(0.325818\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 8.00000i 0.585018i
\(188\) − 8.00000i − 0.583460i
\(189\) 0 0
\(190\) 0 0
\(191\) 24.0000 1.73658 0.868290 0.496058i \(-0.165220\pi\)
0.868290 + 0.496058i \(0.165220\pi\)
\(192\) 0 0
\(193\) 2.00000i 0.143963i 0.997406 + 0.0719816i \(0.0229323\pi\)
−0.997406 + 0.0719816i \(0.977068\pi\)
\(194\) 2.00000 0.143592
\(195\) 0 0
\(196\) 0 0
\(197\) − 14.0000i − 0.997459i −0.866758 0.498729i \(-0.833800\pi\)
0.866758 0.498729i \(-0.166200\pi\)
\(198\) − 12.0000i − 0.852803i
\(199\) −16.0000 −1.13421 −0.567105 0.823646i \(-0.691937\pi\)
−0.567105 + 0.823646i \(0.691937\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) − 6.00000i − 0.422159i
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) −16.0000 −1.11477
\(207\) 0 0
\(208\) 6.00000i 0.416025i
\(209\) 0 0
\(210\) 0 0
\(211\) 4.00000 0.275371 0.137686 0.990476i \(-0.456034\pi\)
0.137686 + 0.990476i \(0.456034\pi\)
\(212\) 2.00000i 0.137361i
\(213\) 0 0
\(214\) −12.0000 −0.820303
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) 6.00000i 0.406371i
\(219\) 0 0
\(220\) 0 0
\(221\) −12.0000 −0.807207
\(222\) 0 0
\(223\) − 16.0000i − 1.07144i −0.844396 0.535720i \(-0.820040\pi\)
0.844396 0.535720i \(-0.179960\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 2.00000 0.133038
\(227\) 8.00000i 0.530979i 0.964114 + 0.265489i \(0.0855335\pi\)
−0.964114 + 0.265489i \(0.914466\pi\)
\(228\) 0 0
\(229\) −14.0000 −0.925146 −0.462573 0.886581i \(-0.653074\pi\)
−0.462573 + 0.886581i \(0.653074\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) − 6.00000i − 0.393919i
\(233\) − 6.00000i − 0.393073i −0.980497 0.196537i \(-0.937031\pi\)
0.980497 0.196537i \(-0.0629694\pi\)
\(234\) 18.0000 1.17670
\(235\) 0 0
\(236\) 8.00000 0.520756
\(237\) 0 0
\(238\) 0 0
\(239\) −16.0000 −1.03495 −0.517477 0.855697i \(-0.673129\pi\)
−0.517477 + 0.855697i \(0.673129\pi\)
\(240\) 0 0
\(241\) −10.0000 −0.644157 −0.322078 0.946713i \(-0.604381\pi\)
−0.322078 + 0.946713i \(0.604381\pi\)
\(242\) − 5.00000i − 0.321412i
\(243\) 0 0
\(244\) −14.0000 −0.896258
\(245\) 0 0
\(246\) 0 0
\(247\) 0 0
\(248\) − 8.00000i − 0.508001i
\(249\) 0 0
\(250\) 0 0
\(251\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 8.00000 0.501965
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) − 22.0000i − 1.37232i −0.727450 0.686161i \(-0.759294\pi\)
0.727450 0.686161i \(-0.240706\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) −18.0000 −1.11417
\(262\) − 16.0000i − 0.988483i
\(263\) 8.00000i 0.493301i 0.969104 + 0.246651i \(0.0793300\pi\)
−0.969104 + 0.246651i \(0.920670\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) − 12.0000i − 0.733017i
\(269\) −6.00000 −0.365826 −0.182913 0.983129i \(-0.558553\pi\)
−0.182913 + 0.983129i \(0.558553\pi\)
\(270\) 0 0
\(271\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(272\) 2.00000i 0.121268i
\(273\) 0 0
\(274\) 6.00000 0.362473
\(275\) 0 0
\(276\) 0 0
\(277\) 18.0000i 1.08152i 0.841178 + 0.540758i \(0.181862\pi\)
−0.841178 + 0.540758i \(0.818138\pi\)
\(278\) − 16.0000i − 0.959616i
\(279\) −24.0000 −1.43684
\(280\) 0 0
\(281\) 26.0000 1.55103 0.775515 0.631329i \(-0.217490\pi\)
0.775515 + 0.631329i \(0.217490\pi\)
\(282\) 0 0
\(283\) − 32.0000i − 1.90220i −0.308879 0.951101i \(-0.599954\pi\)
0.308879 0.951101i \(-0.400046\pi\)
\(284\) 16.0000 0.949425
\(285\) 0 0
\(286\) 24.0000 1.41915
\(287\) 0 0
\(288\) − 3.00000i − 0.176777i
\(289\) 13.0000 0.764706
\(290\) 0 0
\(291\) 0 0
\(292\) 2.00000i 0.117041i
\(293\) − 10.0000i − 0.584206i −0.956387 0.292103i \(-0.905645\pi\)
0.956387 0.292103i \(-0.0943550\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) −10.0000 −0.581238
\(297\) 0 0
\(298\) 6.00000i 0.347571i
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) − 8.00000i − 0.460348i
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 6.00000 0.342997
\(307\) − 8.00000i − 0.456584i −0.973593 0.228292i \(-0.926686\pi\)
0.973593 0.228292i \(-0.0733141\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 24.0000 1.36092 0.680458 0.732787i \(-0.261781\pi\)
0.680458 + 0.732787i \(0.261781\pi\)
\(312\) 0 0
\(313\) 22.0000i 1.24351i 0.783210 + 0.621757i \(0.213581\pi\)
−0.783210 + 0.621757i \(0.786419\pi\)
\(314\) 10.0000 0.564333
\(315\) 0 0
\(316\) −8.00000 −0.450035
\(317\) − 22.0000i − 1.23564i −0.786318 0.617822i \(-0.788015\pi\)
0.786318 0.617822i \(-0.211985\pi\)
\(318\) 0 0
\(319\) −24.0000 −1.34374
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) −9.00000 −0.500000
\(325\) 0 0
\(326\) −4.00000 −0.221540
\(327\) 0 0
\(328\) − 2.00000i − 0.110432i
\(329\) 0 0
\(330\) 0 0
\(331\) 4.00000 0.219860 0.109930 0.993939i \(-0.464937\pi\)
0.109930 + 0.993939i \(0.464937\pi\)
\(332\) 8.00000i 0.439057i
\(333\) 30.0000i 1.64399i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 14.0000i 0.762629i 0.924445 + 0.381314i \(0.124528\pi\)
−0.924445 + 0.381314i \(0.875472\pi\)
\(338\) 23.0000i 1.25104i
\(339\) 0 0
\(340\) 0 0
\(341\) −32.0000 −1.73290
\(342\) 0 0
\(343\) 0 0
\(344\) −4.00000 −0.215666
\(345\) 0 0
\(346\) 22.0000 1.18273
\(347\) − 4.00000i − 0.214731i −0.994220 0.107366i \(-0.965758\pi\)
0.994220 0.107366i \(-0.0342415\pi\)
\(348\) 0 0
\(349\) 10.0000 0.535288 0.267644 0.963518i \(-0.413755\pi\)
0.267644 + 0.963518i \(0.413755\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) − 4.00000i − 0.213201i
\(353\) 6.00000i 0.319348i 0.987170 + 0.159674i \(0.0510443\pi\)
−0.987170 + 0.159674i \(0.948956\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) −10.0000 −0.529999
\(357\) 0 0
\(358\) − 12.0000i − 0.634220i
\(359\) −8.00000 −0.422224 −0.211112 0.977462i \(-0.567708\pi\)
−0.211112 + 0.977462i \(0.567708\pi\)
\(360\) 0 0
\(361\) −19.0000 −1.00000
\(362\) − 14.0000i − 0.735824i
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 16.0000i 0.835193i 0.908633 + 0.417597i \(0.137127\pi\)
−0.908633 + 0.417597i \(0.862873\pi\)
\(368\) 0 0
\(369\) −6.00000 −0.312348
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 14.0000i 0.724893i 0.932005 + 0.362446i \(0.118058\pi\)
−0.932005 + 0.362446i \(0.881942\pi\)
\(374\) 8.00000 0.413670
\(375\) 0 0
\(376\) −8.00000 −0.412568
\(377\) − 36.0000i − 1.85409i
\(378\) 0 0
\(379\) 12.0000 0.616399 0.308199 0.951322i \(-0.400274\pi\)
0.308199 + 0.951322i \(0.400274\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) − 24.0000i − 1.22795i
\(383\) − 24.0000i − 1.22634i −0.789950 0.613171i \(-0.789894\pi\)
0.789950 0.613171i \(-0.210106\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 2.00000 0.101797
\(387\) 12.0000i 0.609994i
\(388\) − 2.00000i − 0.101535i
\(389\) −14.0000 −0.709828 −0.354914 0.934899i \(-0.615490\pi\)
−0.354914 + 0.934899i \(0.615490\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 0 0
\(394\) −14.0000 −0.705310
\(395\) 0 0
\(396\) −12.0000 −0.603023
\(397\) 10.0000i 0.501886i 0.968002 + 0.250943i \(0.0807406\pi\)
−0.968002 + 0.250943i \(0.919259\pi\)
\(398\) 16.0000i 0.802008i
\(399\) 0 0
\(400\) 0 0
\(401\) −14.0000 −0.699127 −0.349563 0.936913i \(-0.613670\pi\)
−0.349563 + 0.936913i \(0.613670\pi\)
\(402\) 0 0
\(403\) − 48.0000i − 2.39105i
\(404\) −6.00000 −0.298511
\(405\) 0 0
\(406\) 0 0
\(407\) 40.0000i 1.98273i
\(408\) 0 0
\(409\) −30.0000 −1.48340 −0.741702 0.670729i \(-0.765981\pi\)
−0.741702 + 0.670729i \(0.765981\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 16.0000i 0.788263i
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 6.00000 0.294174
\(417\) 0 0
\(418\) 0 0
\(419\) 24.0000 1.17248 0.586238 0.810139i \(-0.300608\pi\)
0.586238 + 0.810139i \(0.300608\pi\)
\(420\) 0 0
\(421\) −10.0000 −0.487370 −0.243685 0.969854i \(-0.578356\pi\)
−0.243685 + 0.969854i \(0.578356\pi\)
\(422\) − 4.00000i − 0.194717i
\(423\) 24.0000i 1.16692i
\(424\) 2.00000 0.0971286
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) 12.0000i 0.580042i
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(432\) 0 0
\(433\) − 2.00000i − 0.0961139i −0.998845 0.0480569i \(-0.984697\pi\)
0.998845 0.0480569i \(-0.0153029\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 6.00000 0.287348
\(437\) 0 0
\(438\) 0 0
\(439\) −8.00000 −0.381819 −0.190910 0.981608i \(-0.561144\pi\)
−0.190910 + 0.981608i \(0.561144\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 12.0000i 0.570782i
\(443\) − 20.0000i − 0.950229i −0.879924 0.475114i \(-0.842407\pi\)
0.879924 0.475114i \(-0.157593\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) −16.0000 −0.757622
\(447\) 0 0
\(448\) 0 0
\(449\) 30.0000 1.41579 0.707894 0.706319i \(-0.249646\pi\)
0.707894 + 0.706319i \(0.249646\pi\)
\(450\) 0 0
\(451\) −8.00000 −0.376705
\(452\) − 2.00000i − 0.0940721i
\(453\) 0 0
\(454\) 8.00000 0.375459
\(455\) 0 0
\(456\) 0 0
\(457\) − 10.0000i − 0.467780i −0.972263 0.233890i \(-0.924854\pi\)
0.972263 0.233890i \(-0.0751456\pi\)
\(458\) 14.0000i 0.654177i
\(459\) 0 0
\(460\) 0 0
\(461\) −10.0000 −0.465746 −0.232873 0.972507i \(-0.574813\pi\)
−0.232873 + 0.972507i \(0.574813\pi\)
\(462\) 0 0
\(463\) − 16.0000i − 0.743583i −0.928316 0.371792i \(-0.878744\pi\)
0.928316 0.371792i \(-0.121256\pi\)
\(464\) −6.00000 −0.278543
\(465\) 0 0
\(466\) −6.00000 −0.277945
\(467\) − 40.0000i − 1.85098i −0.378773 0.925490i \(-0.623654\pi\)
0.378773 0.925490i \(-0.376346\pi\)
\(468\) − 18.0000i − 0.832050i
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) − 8.00000i − 0.368230i
\(473\) 16.0000i 0.735681i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) − 6.00000i − 0.274721i
\(478\) 16.0000i 0.731823i
\(479\) 24.0000 1.09659 0.548294 0.836286i \(-0.315277\pi\)
0.548294 + 0.836286i \(0.315277\pi\)
\(480\) 0 0
\(481\) −60.0000 −2.73576
\(482\) 10.0000i 0.455488i
\(483\) 0 0
\(484\) −5.00000 −0.227273
\(485\) 0 0
\(486\) 0 0
\(487\) − 32.0000i − 1.45006i −0.688718 0.725029i \(-0.741826\pi\)
0.688718 0.725029i \(-0.258174\pi\)
\(488\) 14.0000i 0.633750i
\(489\) 0 0
\(490\) 0 0
\(491\) 12.0000 0.541552 0.270776 0.962642i \(-0.412720\pi\)
0.270776 + 0.962642i \(0.412720\pi\)
\(492\) 0 0
\(493\) − 12.0000i − 0.540453i
\(494\) 0 0
\(495\) 0 0
\(496\) −8.00000 −0.359211
\(497\) 0 0
\(498\) 0 0
\(499\) 12.0000 0.537194 0.268597 0.963253i \(-0.413440\pi\)
0.268597 + 0.963253i \(0.413440\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 24.0000i 1.07011i 0.844818 + 0.535054i \(0.179709\pi\)
−0.844818 + 0.535054i \(0.820291\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0 0
\(508\) − 8.00000i − 0.354943i
\(509\) 10.0000 0.443242 0.221621 0.975133i \(-0.428865\pi\)
0.221621 + 0.975133i \(0.428865\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) − 1.00000i − 0.0441942i
\(513\) 0 0
\(514\) −22.0000 −0.970378
\(515\) 0 0
\(516\) 0 0
\(517\) 32.0000i 1.40736i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −2.00000 −0.0876216 −0.0438108 0.999040i \(-0.513950\pi\)
−0.0438108 + 0.999040i \(0.513950\pi\)
\(522\) 18.0000i 0.787839i
\(523\) − 16.0000i − 0.699631i −0.936819 0.349816i \(-0.886244\pi\)
0.936819 0.349816i \(-0.113756\pi\)
\(524\) −16.0000 −0.698963
\(525\) 0 0
\(526\) 8.00000 0.348817
\(527\) − 16.0000i − 0.696971i
\(528\) 0 0
\(529\) 23.0000 1.00000
\(530\) 0 0
\(531\) −24.0000 −1.04151
\(532\) 0 0
\(533\) − 12.0000i − 0.519778i
\(534\) 0 0
\(535\) 0 0
\(536\) −12.0000 −0.518321
\(537\) 0 0
\(538\) 6.00000i 0.258678i
\(539\) 0 0
\(540\) 0 0
\(541\) −18.0000 −0.773880 −0.386940 0.922105i \(-0.626468\pi\)
−0.386940 + 0.922105i \(0.626468\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 2.00000 0.0857493
\(545\) 0 0
\(546\) 0 0
\(547\) − 12.0000i − 0.513083i −0.966533 0.256541i \(-0.917417\pi\)
0.966533 0.256541i \(-0.0825830\pi\)
\(548\) − 6.00000i − 0.256307i
\(549\) 42.0000 1.79252
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 18.0000 0.764747
\(555\) 0 0
\(556\) −16.0000 −0.678551
\(557\) − 22.0000i − 0.932170i −0.884740 0.466085i \(-0.845664\pi\)
0.884740 0.466085i \(-0.154336\pi\)
\(558\) 24.0000i 1.01600i
\(559\) −24.0000 −1.01509
\(560\) 0 0
\(561\) 0 0
\(562\) − 26.0000i − 1.09674i
\(563\) 16.0000i 0.674320i 0.941447 + 0.337160i \(0.109466\pi\)
−0.941447 + 0.337160i \(0.890534\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) −32.0000 −1.34506
\(567\) 0 0
\(568\) − 16.0000i − 0.671345i
\(569\) 6.00000 0.251533 0.125767 0.992060i \(-0.459861\pi\)
0.125767 + 0.992060i \(0.459861\pi\)
\(570\) 0 0
\(571\) −12.0000 −0.502184 −0.251092 0.967963i \(-0.580790\pi\)
−0.251092 + 0.967963i \(0.580790\pi\)
\(572\) − 24.0000i − 1.00349i
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) −3.00000 −0.125000
\(577\) 10.0000i 0.416305i 0.978096 + 0.208153i \(0.0667451\pi\)
−0.978096 + 0.208153i \(0.933255\pi\)
\(578\) − 13.0000i − 0.540729i
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) − 8.00000i − 0.331326i
\(584\) 2.00000 0.0827606
\(585\) 0 0
\(586\) −10.0000 −0.413096
\(587\) 8.00000i 0.330195i 0.986277 + 0.165098i \(0.0527939\pi\)
−0.986277 + 0.165098i \(0.947206\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 10.0000i 0.410997i
\(593\) 6.00000i 0.246390i 0.992382 + 0.123195i \(0.0393141\pi\)
−0.992382 + 0.123195i \(0.960686\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 6.00000 0.245770
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(600\) 0 0
\(601\) −42.0000 −1.71322 −0.856608 0.515968i \(-0.827432\pi\)
−0.856608 + 0.515968i \(0.827432\pi\)
\(602\) 0 0
\(603\) 36.0000i 1.46603i
\(604\) −8.00000 −0.325515
\(605\) 0 0
\(606\) 0 0
\(607\) − 32.0000i − 1.29884i −0.760430 0.649420i \(-0.775012\pi\)
0.760430 0.649420i \(-0.224988\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −48.0000 −1.94187
\(612\) − 6.00000i − 0.242536i
\(613\) 6.00000i 0.242338i 0.992632 + 0.121169i \(0.0386643\pi\)
−0.992632 + 0.121169i \(0.961336\pi\)
\(614\) −8.00000 −0.322854
\(615\) 0 0
\(616\) 0 0
\(617\) 22.0000i 0.885687i 0.896599 + 0.442843i \(0.146030\pi\)
−0.896599 + 0.442843i \(0.853970\pi\)
\(618\) 0 0
\(619\) 8.00000 0.321547 0.160774 0.986991i \(-0.448601\pi\)
0.160774 + 0.986991i \(0.448601\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) − 24.0000i − 0.962312i
\(623\) 0 0
\(624\) 0 0
\(625\) 0 0
\(626\) 22.0000 0.879297
\(627\) 0 0
\(628\) − 10.0000i − 0.399043i
\(629\) −20.0000 −0.797452
\(630\) 0 0
\(631\) −16.0000 −0.636950 −0.318475 0.947931i \(-0.603171\pi\)
−0.318475 + 0.947931i \(0.603171\pi\)
\(632\) 8.00000i 0.318223i
\(633\) 0 0
\(634\) −22.0000 −0.873732
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) 24.0000i 0.950169i
\(639\) −48.0000 −1.89885
\(640\) 0 0
\(641\) 2.00000 0.0789953 0.0394976 0.999220i \(-0.487424\pi\)
0.0394976 + 0.999220i \(0.487424\pi\)
\(642\) 0 0
\(643\) 32.0000i 1.26196i 0.775800 + 0.630978i \(0.217346\pi\)
−0.775800 + 0.630978i \(0.782654\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 16.0000i 0.629025i 0.949253 + 0.314512i \(0.101841\pi\)
−0.949253 + 0.314512i \(0.898159\pi\)
\(648\) 9.00000i 0.353553i
\(649\) −32.0000 −1.25611
\(650\) 0 0
\(651\) 0 0
\(652\) 4.00000i 0.156652i
\(653\) 14.0000i 0.547862i 0.961749 + 0.273931i \(0.0883240\pi\)
−0.961749 + 0.273931i \(0.911676\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) −2.00000 −0.0780869
\(657\) − 6.00000i − 0.234082i
\(658\) 0 0
\(659\) −28.0000 −1.09073 −0.545363 0.838200i \(-0.683608\pi\)
−0.545363 + 0.838200i \(0.683608\pi\)
\(660\) 0 0
\(661\) 38.0000 1.47803 0.739014 0.673690i \(-0.235292\pi\)
0.739014 + 0.673690i \(0.235292\pi\)
\(662\) − 4.00000i − 0.155464i
\(663\) 0 0
\(664\) 8.00000 0.310460
\(665\) 0 0
\(666\) 30.0000 1.16248
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 56.0000 2.16186
\(672\) 0 0
\(673\) − 14.0000i − 0.539660i −0.962908 0.269830i \(-0.913032\pi\)
0.962908 0.269830i \(-0.0869676\pi\)
\(674\) 14.0000 0.539260
\(675\) 0 0
\(676\) 23.0000 0.884615
\(677\) 18.0000i 0.691796i 0.938272 + 0.345898i \(0.112426\pi\)
−0.938272 + 0.345898i \(0.887574\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 32.0000i 1.22534i
\(683\) − 4.00000i − 0.153056i −0.997067 0.0765279i \(-0.975617\pi\)
0.997067 0.0765279i \(-0.0243834\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 4.00000i 0.152499i
\(689\) 12.0000 0.457164
\(690\) 0 0
\(691\) 32.0000 1.21734 0.608669 0.793424i \(-0.291704\pi\)
0.608669 + 0.793424i \(0.291704\pi\)
\(692\) − 22.0000i − 0.836315i
\(693\) 0 0
\(694\) −4.00000 −0.151838
\(695\) 0 0
\(696\) 0 0
\(697\) − 4.00000i − 0.151511i
\(698\) − 10.0000i − 0.378506i
\(699\) 0 0
\(700\) 0 0
\(701\) 22.0000 0.830929 0.415464 0.909610i \(-0.363619\pi\)
0.415464 + 0.909610i \(0.363619\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) −4.00000 −0.150756
\(705\) 0 0
\(706\) 6.00000 0.225813
\(707\) 0 0
\(708\) 0 0
\(709\) 2.00000 0.0751116 0.0375558 0.999295i \(-0.488043\pi\)
0.0375558 + 0.999295i \(0.488043\pi\)
\(710\) 0 0
\(711\) 24.0000 0.900070
\(712\) 10.0000i 0.374766i
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) −12.0000 −0.448461
\(717\) 0 0
\(718\) 8.00000i 0.298557i
\(719\) 24.0000 0.895049 0.447524 0.894272i \(-0.352306\pi\)
0.447524 + 0.894272i \(0.352306\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 19.0000i 0.707107i
\(723\) 0 0
\(724\) −14.0000 −0.520306
\(725\) 0 0
\(726\) 0 0
\(727\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(728\) 0 0
\(729\) 27.0000 1.00000
\(730\) 0 0
\(731\) −8.00000 −0.295891
\(732\) 0 0
\(733\) 14.0000i 0.517102i 0.965998 + 0.258551i \(0.0832450\pi\)
−0.965998 + 0.258551i \(0.916755\pi\)
\(734\) 16.0000 0.590571
\(735\) 0 0
\(736\) 0 0
\(737\) 48.0000i 1.76810i
\(738\) 6.00000i 0.220863i
\(739\) −28.0000 −1.03000 −0.514998 0.857191i \(-0.672207\pi\)
−0.514998 + 0.857191i \(0.672207\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 48.0000i 1.76095i 0.474093 + 0.880475i \(0.342776\pi\)
−0.474093 + 0.880475i \(0.657224\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 14.0000 0.512576
\(747\) − 24.0000i − 0.878114i
\(748\) − 8.00000i − 0.292509i
\(749\) 0 0
\(750\) 0 0
\(751\) −16.0000 −0.583848 −0.291924 0.956441i \(-0.594295\pi\)
−0.291924 + 0.956441i \(0.594295\pi\)
\(752\) 8.00000i 0.291730i
\(753\) 0 0
\(754\) −36.0000 −1.31104
\(755\) 0 0
\(756\) 0 0
\(757\) − 22.0000i − 0.799604i −0.916602 0.399802i \(-0.869079\pi\)
0.916602 0.399802i \(-0.130921\pi\)
\(758\) − 12.0000i − 0.435860i
\(759\) 0 0
\(760\) 0 0
\(761\) −18.0000 −0.652499 −0.326250 0.945284i \(-0.605785\pi\)
−0.326250 + 0.945284i \(0.605785\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) −24.0000 −0.868290
\(765\) 0 0
\(766\) −24.0000 −0.867155
\(767\) − 48.0000i − 1.73318i
\(768\) 0 0
\(769\) 10.0000 0.360609 0.180305 0.983611i \(-0.442292\pi\)
0.180305 + 0.983611i \(0.442292\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) − 2.00000i − 0.0719816i
\(773\) − 42.0000i − 1.51064i −0.655359 0.755318i \(-0.727483\pi\)
0.655359 0.755318i \(-0.272517\pi\)
\(774\) 12.0000 0.431331
\(775\) 0 0
\(776\) −2.00000 −0.0717958
\(777\) 0 0
\(778\) 14.0000i 0.501924i
\(779\) 0 0
\(780\) 0 0
\(781\) −64.0000 −2.29010
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) − 8.00000i − 0.285169i −0.989783 0.142585i \(-0.954459\pi\)
0.989783 0.142585i \(-0.0455413\pi\)
\(788\) 14.0000i 0.498729i
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 12.0000i 0.426401i
\(793\) 84.0000i 2.98293i
\(794\) 10.0000 0.354887
\(795\) 0 0
\(796\) 16.0000 0.567105
\(797\) − 6.00000i − 0.212531i −0.994338 0.106265i \(-0.966111\pi\)
0.994338 0.106265i \(-0.0338893\pi\)
\(798\) 0 0
\(799\) −16.0000 −0.566039
\(800\) 0 0
\(801\) 30.0000 1.06000
\(802\) 14.0000i 0.494357i
\(803\) − 8.00000i − 0.282314i
\(804\) 0 0
\(805\) 0 0
\(806\) −48.0000 −1.69073
\(807\) 0 0
\(808\) 6.00000i 0.211079i
\(809\) 6.00000 0.210949 0.105474 0.994422i \(-0.466364\pi\)
0.105474 + 0.994422i \(0.466364\pi\)
\(810\) 0 0
\(811\) −8.00000 −0.280918 −0.140459 0.990086i \(-0.544858\pi\)
−0.140459 + 0.990086i \(0.544858\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 40.0000 1.40200
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 30.0000i 1.04893i
\(819\) 0 0
\(820\) 0 0
\(821\) 6.00000 0.209401 0.104701 0.994504i \(-0.466612\pi\)
0.104701 + 0.994504i \(0.466612\pi\)
\(822\) 0 0
\(823\) − 8.00000i − 0.278862i −0.990232 0.139431i \(-0.955473\pi\)
0.990232 0.139431i \(-0.0445274\pi\)
\(824\) 16.0000 0.557386
\(825\) 0 0
\(826\) 0 0
\(827\) − 44.0000i − 1.53003i −0.644013 0.765015i \(-0.722732\pi\)
0.644013 0.765015i \(-0.277268\pi\)
\(828\) 0 0
\(829\) −46.0000 −1.59765 −0.798823 0.601566i \(-0.794544\pi\)
−0.798823 + 0.601566i \(0.794544\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) − 6.00000i − 0.208013i
\(833\) 0 0
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) − 24.0000i − 0.829066i
\(839\) −16.0000 −0.552381 −0.276191 0.961103i \(-0.589072\pi\)
−0.276191 + 0.961103i \(0.589072\pi\)
\(840\) 0 0
\(841\) 7.00000 0.241379
\(842\) 10.0000i 0.344623i
\(843\) 0 0
\(844\) −4.00000 −0.137686
\(845\) 0 0
\(846\) 24.0000 0.825137
\(847\) 0 0
\(848\) − 2.00000i − 0.0686803i
\(849\) 0 0
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) 46.0000i 1.57501i 0.616308 + 0.787505i \(0.288628\pi\)
−0.616308 + 0.787505i \(0.711372\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 12.0000 0.410152
\(857\) − 54.0000i − 1.84460i −0.386469 0.922302i \(-0.626305\pi\)
0.386469 0.922302i \(-0.373695\pi\)
\(858\) 0 0
\(859\) −48.0000 −1.63774 −0.818869 0.573980i \(-0.805399\pi\)
−0.818869 + 0.573980i \(0.805399\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) − 32.0000i − 1.08929i −0.838666 0.544646i \(-0.816664\pi\)
0.838666 0.544646i \(-0.183336\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) −2.00000 −0.0679628
\(867\) 0 0
\(868\) 0 0
\(869\) 32.0000 1.08553
\(870\) 0 0
\(871\) −72.0000 −2.43963
\(872\) − 6.00000i − 0.203186i
\(873\) 6.00000i 0.203069i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) − 14.0000i − 0.472746i −0.971662 0.236373i \(-0.924041\pi\)
0.971662 0.236373i \(-0.0759588\pi\)
\(878\) 8.00000i 0.269987i
\(879\) 0 0
\(880\) 0 0
\(881\) −2.00000 −0.0673817 −0.0336909 0.999432i \(-0.510726\pi\)
−0.0336909 + 0.999432i \(0.510726\pi\)
\(882\) 0 0
\(883\) − 12.0000i − 0.403832i −0.979403 0.201916i \(-0.935283\pi\)
0.979403 0.201916i \(-0.0647168\pi\)
\(884\) 12.0000 0.403604
\(885\) 0 0
\(886\) −20.0000 −0.671913
\(887\) − 16.0000i − 0.537227i −0.963248 0.268614i \(-0.913434\pi\)
0.963248 0.268614i \(-0.0865655\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 36.0000 1.20605
\(892\) 16.0000i 0.535720i
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) − 30.0000i − 1.00111i
\(899\) 48.0000 1.60089
\(900\) 0 0
\(901\) 4.00000 0.133259
\(902\) 8.00000i 0.266371i
\(903\) 0 0
\(904\) −2.00000 −0.0665190
\(905\) 0 0
\(906\) 0 0
\(907\) 52.0000i 1.72663i 0.504664 + 0.863316i \(0.331616\pi\)
−0.504664 + 0.863316i \(0.668384\pi\)
\(908\) − 8.00000i − 0.265489i
\(909\) 18.0000 0.597022
\(910\) 0 0
\(911\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(912\) 0 0
\(913\) − 32.0000i − 1.05905i
\(914\) −10.0000 −0.330771
\(915\) 0 0
\(916\) 14.0000 0.462573
\(917\) 0 0
\(918\) 0 0
\(919\) 16.0000 0.527791 0.263896 0.964551i \(-0.414993\pi\)
0.263896 + 0.964551i \(0.414993\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 10.0000i 0.329332i
\(923\) − 96.0000i − 3.15988i
\(924\) 0 0
\(925\) 0 0
\(926\) −16.0000 −0.525793
\(927\) − 48.0000i − 1.57653i
\(928\) 6.00000i 0.196960i
\(929\) 58.0000 1.90292 0.951459 0.307775i \(-0.0995844\pi\)
0.951459 + 0.307775i \(0.0995844\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 6.00000i 0.196537i
\(933\) 0 0
\(934\) −40.0000 −1.30884
\(935\) 0 0
\(936\) −18.0000 −0.588348
\(937\) 50.0000i 1.63343i 0.577042 + 0.816714i \(0.304207\pi\)
−0.577042 + 0.816714i \(0.695793\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −2.00000 −0.0651981 −0.0325991 0.999469i \(-0.510378\pi\)
−0.0325991 + 0.999469i \(0.510378\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) −8.00000 −0.260378
\(945\) 0 0
\(946\) 16.0000 0.520205
\(947\) − 44.0000i − 1.42981i −0.699223 0.714904i \(-0.746470\pi\)
0.699223 0.714904i \(-0.253530\pi\)
\(948\) 0 0
\(949\) 12.0000 0.389536
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) − 54.0000i − 1.74923i −0.484817 0.874616i \(-0.661114\pi\)
0.484817 0.874616i \(-0.338886\pi\)
\(954\) −6.00000 −0.194257
\(955\) 0 0
\(956\) 16.0000 0.517477
\(957\) 0 0
\(958\) − 24.0000i − 0.775405i
\(959\) 0 0
\(960\) 0 0
\(961\) 33.0000 1.06452
\(962\) 60.0000i 1.93448i
\(963\) − 36.0000i − 1.16008i
\(964\) 10.0000 0.322078
\(965\) 0 0
\(966\) 0 0
\(967\) − 16.0000i − 0.514525i −0.966342 0.257263i \(-0.917179\pi\)
0.966342 0.257263i \(-0.0828206\pi\)
\(968\) 5.00000i 0.160706i
\(969\) 0 0
\(970\) 0 0
\(971\) 24.0000 0.770197 0.385098 0.922876i \(-0.374168\pi\)
0.385098 + 0.922876i \(0.374168\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) −32.0000 −1.02535
\(975\) 0 0
\(976\) 14.0000 0.448129
\(977\) 30.0000i 0.959785i 0.877327 + 0.479893i \(0.159324\pi\)
−0.877327 + 0.479893i \(0.840676\pi\)
\(978\) 0 0
\(979\) 40.0000 1.27841
\(980\) 0 0
\(981\) −18.0000 −0.574696
\(982\) − 12.0000i − 0.382935i
\(983\) 16.0000i 0.510321i 0.966899 + 0.255160i \(0.0821283\pi\)
−0.966899 + 0.255160i \(0.917872\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) −12.0000 −0.382158
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 40.0000 1.27064 0.635321 0.772248i \(-0.280868\pi\)
0.635321 + 0.772248i \(0.280868\pi\)
\(992\) 8.00000i 0.254000i
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) − 22.0000i − 0.696747i −0.937356 0.348373i \(-0.886734\pi\)
0.937356 0.348373i \(-0.113266\pi\)
\(998\) − 12.0000i − 0.379853i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2450.2.c.k.99.1 2
5.2 odd 4 490.2.a.h.1.1 1
5.3 odd 4 2450.2.a.l.1.1 1
5.4 even 2 inner 2450.2.c.k.99.2 2
7.6 odd 2 350.2.c.b.99.1 2
15.2 even 4 4410.2.a.b.1.1 1
20.7 even 4 3920.2.a.t.1.1 1
21.20 even 2 3150.2.g.c.2899.2 2
28.27 even 2 2800.2.g.n.449.1 2
35.2 odd 12 490.2.e.c.361.1 2
35.12 even 12 490.2.e.d.361.1 2
35.13 even 4 350.2.a.b.1.1 1
35.17 even 12 490.2.e.d.471.1 2
35.27 even 4 70.2.a.a.1.1 1
35.32 odd 12 490.2.e.c.471.1 2
35.34 odd 2 350.2.c.b.99.2 2
105.62 odd 4 630.2.a.d.1.1 1
105.83 odd 4 3150.2.a.bj.1.1 1
105.104 even 2 3150.2.g.c.2899.1 2
140.27 odd 4 560.2.a.d.1.1 1
140.83 odd 4 2800.2.a.m.1.1 1
140.139 even 2 2800.2.g.n.449.2 2
280.27 odd 4 2240.2.a.q.1.1 1
280.237 even 4 2240.2.a.n.1.1 1
385.307 odd 4 8470.2.a.j.1.1 1
420.167 even 4 5040.2.a.bm.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
70.2.a.a.1.1 1 35.27 even 4
350.2.a.b.1.1 1 35.13 even 4
350.2.c.b.99.1 2 7.6 odd 2
350.2.c.b.99.2 2 35.34 odd 2
490.2.a.h.1.1 1 5.2 odd 4
490.2.e.c.361.1 2 35.2 odd 12
490.2.e.c.471.1 2 35.32 odd 12
490.2.e.d.361.1 2 35.12 even 12
490.2.e.d.471.1 2 35.17 even 12
560.2.a.d.1.1 1 140.27 odd 4
630.2.a.d.1.1 1 105.62 odd 4
2240.2.a.n.1.1 1 280.237 even 4
2240.2.a.q.1.1 1 280.27 odd 4
2450.2.a.l.1.1 1 5.3 odd 4
2450.2.c.k.99.1 2 1.1 even 1 trivial
2450.2.c.k.99.2 2 5.4 even 2 inner
2800.2.a.m.1.1 1 140.83 odd 4
2800.2.g.n.449.1 2 28.27 even 2
2800.2.g.n.449.2 2 140.139 even 2
3150.2.a.bj.1.1 1 105.83 odd 4
3150.2.g.c.2899.1 2 105.104 even 2
3150.2.g.c.2899.2 2 21.20 even 2
3920.2.a.t.1.1 1 20.7 even 4
4410.2.a.b.1.1 1 15.2 even 4
5040.2.a.bm.1.1 1 420.167 even 4
8470.2.a.j.1.1 1 385.307 odd 4