Properties

Label 2450.2.c.k
Level $2450$
Weight $2$
Character orbit 2450.c
Analytic conductor $19.563$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2450,2,Mod(99,2450)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2450.99"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2450, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 2450 = 2 \cdot 5^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2450.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,0,-2,0,0,0,0,6,0,8,0,0,0,0,2,0,0,0,0,0,0,0,0,0,12,0,0,-12, 0,-16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(31)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(19.5633484952\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-1}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 70)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(i = \sqrt{-1}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + i q^{2} - q^{4} - i q^{8} + 3 q^{9} + 4 q^{11} - 6 i q^{13} + q^{16} - 2 i q^{17} + 3 i q^{18} + 4 i q^{22} + 6 q^{26} - 6 q^{29} - 8 q^{31} + i q^{32} + 2 q^{34} - 3 q^{36} - 10 i q^{37} - 2 q^{41} + \cdots + 12 q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{4} + 6 q^{9} + 8 q^{11} + 2 q^{16} + 12 q^{26} - 12 q^{29} - 16 q^{31} + 4 q^{34} - 6 q^{36} - 4 q^{41} - 8 q^{44} - 16 q^{59} + 28 q^{61} - 2 q^{64} - 32 q^{71} + 20 q^{74} + 16 q^{79} + 18 q^{81}+ \cdots + 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2450\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(1177\)
\(\chi(n)\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
99.1
1.00000i
1.00000i
1.00000i 0 −1.00000 0 0 0 1.00000i 3.00000 0
99.2 1.00000i 0 −1.00000 0 0 0 1.00000i 3.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2450.2.c.k 2
5.b even 2 1 inner 2450.2.c.k 2
5.c odd 4 1 490.2.a.h 1
5.c odd 4 1 2450.2.a.l 1
7.b odd 2 1 350.2.c.b 2
15.e even 4 1 4410.2.a.b 1
20.e even 4 1 3920.2.a.t 1
21.c even 2 1 3150.2.g.c 2
28.d even 2 1 2800.2.g.n 2
35.c odd 2 1 350.2.c.b 2
35.f even 4 1 70.2.a.a 1
35.f even 4 1 350.2.a.b 1
35.k even 12 2 490.2.e.d 2
35.l odd 12 2 490.2.e.c 2
105.g even 2 1 3150.2.g.c 2
105.k odd 4 1 630.2.a.d 1
105.k odd 4 1 3150.2.a.bj 1
140.c even 2 1 2800.2.g.n 2
140.j odd 4 1 560.2.a.d 1
140.j odd 4 1 2800.2.a.m 1
280.s even 4 1 2240.2.a.n 1
280.y odd 4 1 2240.2.a.q 1
385.l odd 4 1 8470.2.a.j 1
420.w even 4 1 5040.2.a.bm 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
70.2.a.a 1 35.f even 4 1
350.2.a.b 1 35.f even 4 1
350.2.c.b 2 7.b odd 2 1
350.2.c.b 2 35.c odd 2 1
490.2.a.h 1 5.c odd 4 1
490.2.e.c 2 35.l odd 12 2
490.2.e.d 2 35.k even 12 2
560.2.a.d 1 140.j odd 4 1
630.2.a.d 1 105.k odd 4 1
2240.2.a.n 1 280.s even 4 1
2240.2.a.q 1 280.y odd 4 1
2450.2.a.l 1 5.c odd 4 1
2450.2.c.k 2 1.a even 1 1 trivial
2450.2.c.k 2 5.b even 2 1 inner
2800.2.a.m 1 140.j odd 4 1
2800.2.g.n 2 28.d even 2 1
2800.2.g.n 2 140.c even 2 1
3150.2.a.bj 1 105.k odd 4 1
3150.2.g.c 2 21.c even 2 1
3150.2.g.c 2 105.g even 2 1
3920.2.a.t 1 20.e even 4 1
4410.2.a.b 1 15.e even 4 1
5040.2.a.bm 1 420.w even 4 1
8470.2.a.j 1 385.l odd 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(2450, [\chi])\):

\( T_{3} \) Copy content Toggle raw display
\( T_{11} - 4 \) Copy content Toggle raw display
\( T_{13}^{2} + 36 \) Copy content Toggle raw display
\( T_{19} \) Copy content Toggle raw display
\( T_{31} + 8 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} + 1 \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} \) Copy content Toggle raw display
$7$ \( T^{2} \) Copy content Toggle raw display
$11$ \( (T - 4)^{2} \) Copy content Toggle raw display
$13$ \( T^{2} + 36 \) Copy content Toggle raw display
$17$ \( T^{2} + 4 \) Copy content Toggle raw display
$19$ \( T^{2} \) Copy content Toggle raw display
$23$ \( T^{2} \) Copy content Toggle raw display
$29$ \( (T + 6)^{2} \) Copy content Toggle raw display
$31$ \( (T + 8)^{2} \) Copy content Toggle raw display
$37$ \( T^{2} + 100 \) Copy content Toggle raw display
$41$ \( (T + 2)^{2} \) Copy content Toggle raw display
$43$ \( T^{2} + 16 \) Copy content Toggle raw display
$47$ \( T^{2} + 64 \) Copy content Toggle raw display
$53$ \( T^{2} + 4 \) Copy content Toggle raw display
$59$ \( (T + 8)^{2} \) Copy content Toggle raw display
$61$ \( (T - 14)^{2} \) Copy content Toggle raw display
$67$ \( T^{2} + 144 \) Copy content Toggle raw display
$71$ \( (T + 16)^{2} \) Copy content Toggle raw display
$73$ \( T^{2} + 4 \) Copy content Toggle raw display
$79$ \( (T - 8)^{2} \) Copy content Toggle raw display
$83$ \( T^{2} + 64 \) Copy content Toggle raw display
$89$ \( (T - 10)^{2} \) Copy content Toggle raw display
$97$ \( T^{2} + 4 \) Copy content Toggle raw display
show more
show less