Properties

Label 2450.2.c.h
Level $2450$
Weight $2$
Character orbit 2450.c
Analytic conductor $19.563$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 2450 = 2 \cdot 5^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2450.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(19.5633484952\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-1}) \)
Defining polynomial: \(x^{2} + 1\)
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 350)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of \(i = \sqrt{-1}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + i q^{2} + i q^{3} - q^{4} - q^{6} -i q^{8} + 2 q^{9} +O(q^{10})\) \( q + i q^{2} + i q^{3} - q^{4} - q^{6} -i q^{8} + 2 q^{9} + 3 q^{11} -i q^{12} + 2 i q^{13} + q^{16} -3 i q^{17} + 2 i q^{18} -7 q^{19} + 3 i q^{22} + q^{24} -2 q^{26} + 5 i q^{27} + 6 q^{29} + 4 q^{31} + i q^{32} + 3 i q^{33} + 3 q^{34} -2 q^{36} + 8 i q^{37} -7 i q^{38} -2 q^{39} + 9 q^{41} -8 i q^{43} -3 q^{44} + 6 i q^{47} + i q^{48} + 3 q^{51} -2 i q^{52} + 12 i q^{53} -5 q^{54} -7 i q^{57} + 6 i q^{58} + 12 q^{59} + 10 q^{61} + 4 i q^{62} - q^{64} -3 q^{66} -7 i q^{67} + 3 i q^{68} + 6 q^{71} -2 i q^{72} + 5 i q^{73} -8 q^{74} + 7 q^{76} -2 i q^{78} -14 q^{79} + q^{81} + 9 i q^{82} -9 i q^{83} + 8 q^{86} + 6 i q^{87} -3 i q^{88} -15 q^{89} + 4 i q^{93} -6 q^{94} - q^{96} + 10 i q^{97} + 6 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q - 2q^{4} - 2q^{6} + 4q^{9} + O(q^{10}) \) \( 2q - 2q^{4} - 2q^{6} + 4q^{9} + 6q^{11} + 2q^{16} - 14q^{19} + 2q^{24} - 4q^{26} + 12q^{29} + 8q^{31} + 6q^{34} - 4q^{36} - 4q^{39} + 18q^{41} - 6q^{44} + 6q^{51} - 10q^{54} + 24q^{59} + 20q^{61} - 2q^{64} - 6q^{66} + 12q^{71} - 16q^{74} + 14q^{76} - 28q^{79} + 2q^{81} + 16q^{86} - 30q^{89} - 12q^{94} - 2q^{96} + 12q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2450\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(1177\)
\(\chi(n)\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
99.1
1.00000i
1.00000i
1.00000i 1.00000i −1.00000 0 −1.00000 0 1.00000i 2.00000 0
99.2 1.00000i 1.00000i −1.00000 0 −1.00000 0 1.00000i 2.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2450.2.c.h 2
5.b even 2 1 inner 2450.2.c.h 2
5.c odd 4 1 2450.2.a.m 1
5.c odd 4 1 2450.2.a.x 1
7.b odd 2 1 350.2.c.c 2
21.c even 2 1 3150.2.g.f 2
28.d even 2 1 2800.2.g.i 2
35.c odd 2 1 350.2.c.c 2
35.f even 4 1 350.2.a.a 1
35.f even 4 1 350.2.a.e yes 1
105.g even 2 1 3150.2.g.f 2
105.k odd 4 1 3150.2.a.m 1
105.k odd 4 1 3150.2.a.x 1
140.c even 2 1 2800.2.g.i 2
140.j odd 4 1 2800.2.a.h 1
140.j odd 4 1 2800.2.a.x 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
350.2.a.a 1 35.f even 4 1
350.2.a.e yes 1 35.f even 4 1
350.2.c.c 2 7.b odd 2 1
350.2.c.c 2 35.c odd 2 1
2450.2.a.m 1 5.c odd 4 1
2450.2.a.x 1 5.c odd 4 1
2450.2.c.h 2 1.a even 1 1 trivial
2450.2.c.h 2 5.b even 2 1 inner
2800.2.a.h 1 140.j odd 4 1
2800.2.a.x 1 140.j odd 4 1
2800.2.g.i 2 28.d even 2 1
2800.2.g.i 2 140.c even 2 1
3150.2.a.m 1 105.k odd 4 1
3150.2.a.x 1 105.k odd 4 1
3150.2.g.f 2 21.c even 2 1
3150.2.g.f 2 105.g even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(2450, [\chi])\):

\( T_{3}^{2} + 1 \)
\( T_{11} - 3 \)
\( T_{13}^{2} + 4 \)
\( T_{19} + 7 \)
\( T_{31} - 4 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( 1 + T^{2} \)
$3$ \( 1 + T^{2} \)
$5$ \( T^{2} \)
$7$ \( T^{2} \)
$11$ \( ( -3 + T )^{2} \)
$13$ \( 4 + T^{2} \)
$17$ \( 9 + T^{2} \)
$19$ \( ( 7 + T )^{2} \)
$23$ \( T^{2} \)
$29$ \( ( -6 + T )^{2} \)
$31$ \( ( -4 + T )^{2} \)
$37$ \( 64 + T^{2} \)
$41$ \( ( -9 + T )^{2} \)
$43$ \( 64 + T^{2} \)
$47$ \( 36 + T^{2} \)
$53$ \( 144 + T^{2} \)
$59$ \( ( -12 + T )^{2} \)
$61$ \( ( -10 + T )^{2} \)
$67$ \( 49 + T^{2} \)
$71$ \( ( -6 + T )^{2} \)
$73$ \( 25 + T^{2} \)
$79$ \( ( 14 + T )^{2} \)
$83$ \( 81 + T^{2} \)
$89$ \( ( 15 + T )^{2} \)
$97$ \( 100 + T^{2} \)
show more
show less