Properties

Label 2450.2.bd
Level $2450$
Weight $2$
Character orbit 2450.bd
Rep. character $\chi_{2450}(71,\cdot)$
Character field $\Q(\zeta_{35})$
Dimension $3360$
Sturm bound $840$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2450 = 2 \cdot 5^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2450.bd (of order \(35\) and degree \(24\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 1225 \)
Character field: \(\Q(\zeta_{35})\)
Sturm bound: \(840\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2450, [\chi])\).

Total New Old
Modular forms 10176 3360 6816
Cusp forms 9984 3360 6624
Eisenstein series 192 0 192

Trace form

\( 3360 q + 140 q^{4} + 4 q^{5} + 4 q^{6} + 8 q^{7} + 140 q^{9} + 4 q^{10} + 30 q^{11} + 2 q^{15} + 140 q^{16} + 54 q^{17} - 24 q^{19} - 10 q^{20} + 12 q^{21} - 20 q^{22} - 12 q^{23} - 16 q^{24} + 8 q^{25}+ \cdots + 40 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(2450, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(2450, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2450, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(1225, [\chi])\)\(^{\oplus 2}\)