Properties

Label 2450.2.a.i
Level 24502450
Weight 22
Character orbit 2450.a
Self dual yes
Analytic conductor 19.56319.563
Analytic rank 11
Dimension 11
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2450,2,Mod(1,2450)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2450.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2450, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: N N == 2450=25272 2450 = 2 \cdot 5^{2} \cdot 7^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 2450.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [1,-1,0,1,0,0,0,-1,-3,0,-2,0,0,0,0,1,7] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 19.563348495219.5633484952
Analytic rank: 11
Dimension: 11
Coefficient field: Q\mathbb{Q}
Coefficient ring: Z\mathbb{Z}
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 350)
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
f(q)f(q) == qq2+q4q83q92q11+q16+7q17+3q18+2q223q23+6q297q31q327q343q36+4q377q41+8q432q44++6q99+O(q100) q - q^{2} + q^{4} - q^{8} - 3 q^{9} - 2 q^{11} + q^{16} + 7 q^{17} + 3 q^{18} + 2 q^{22} - 3 q^{23} + 6 q^{29} - 7 q^{31} - q^{32} - 7 q^{34} - 3 q^{36} + 4 q^{37} - 7 q^{41} + 8 q^{43} - 2 q^{44}+ \cdots + 6 q^{99}+O(q^{100}) Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
0
−1.00000 0 1.00000 0 0 0 −1.00000 −3.00000 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
22 +1 +1
55 +1 +1
77 +1 +1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2450.2.a.i 1
5.b even 2 1 2450.2.a.y 1
5.c odd 4 2 2450.2.c.i 2
7.b odd 2 1 2450.2.a.h 1
7.c even 3 2 350.2.e.i yes 2
35.c odd 2 1 2450.2.a.z 1
35.f even 4 2 2450.2.c.j 2
35.j even 6 2 350.2.e.d 2
35.l odd 12 4 350.2.j.c 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
350.2.e.d 2 35.j even 6 2
350.2.e.i yes 2 7.c even 3 2
350.2.j.c 4 35.l odd 12 4
2450.2.a.h 1 7.b odd 2 1
2450.2.a.i 1 1.a even 1 1 trivial
2450.2.a.y 1 5.b even 2 1
2450.2.a.z 1 35.c odd 2 1
2450.2.c.i 2 5.c odd 4 2
2450.2.c.j 2 35.f even 4 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(Γ0(2450))S_{2}^{\mathrm{new}}(\Gamma_0(2450)):

T3 T_{3} Copy content Toggle raw display
T11+2 T_{11} + 2 Copy content Toggle raw display
T13 T_{13} Copy content Toggle raw display
T177 T_{17} - 7 Copy content Toggle raw display
T19 T_{19} Copy content Toggle raw display
T23+3 T_{23} + 3 Copy content Toggle raw display
T374 T_{37} - 4 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T+1 T + 1 Copy content Toggle raw display
33 T T Copy content Toggle raw display
55 T T Copy content Toggle raw display
77 T T Copy content Toggle raw display
1111 T+2 T + 2 Copy content Toggle raw display
1313 T T Copy content Toggle raw display
1717 T7 T - 7 Copy content Toggle raw display
1919 T T Copy content Toggle raw display
2323 T+3 T + 3 Copy content Toggle raw display
2929 T6 T - 6 Copy content Toggle raw display
3131 T+7 T + 7 Copy content Toggle raw display
3737 T4 T - 4 Copy content Toggle raw display
4141 T+7 T + 7 Copy content Toggle raw display
4343 T8 T - 8 Copy content Toggle raw display
4747 T7 T - 7 Copy content Toggle raw display
5353 T+4 T + 4 Copy content Toggle raw display
5959 T+14 T + 14 Copy content Toggle raw display
6161 T+14 T + 14 Copy content Toggle raw display
6767 T+12 T + 12 Copy content Toggle raw display
7171 T+1 T + 1 Copy content Toggle raw display
7373 T+14 T + 14 Copy content Toggle raw display
7979 T+11 T + 11 Copy content Toggle raw display
8383 T+14 T + 14 Copy content Toggle raw display
8989 T7 T - 7 Copy content Toggle raw display
9797 T7 T - 7 Copy content Toggle raw display
show more
show less