Properties

Label 2450.2.a.f.1.1
Level $2450$
Weight $2$
Character 2450.1
Self dual yes
Analytic conductor $19.563$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2450,2,Mod(1,2450)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2450, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2450.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2450 = 2 \cdot 5^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2450.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(19.5633484952\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 70)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 2450.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} -2.00000 q^{3} +1.00000 q^{4} +2.00000 q^{6} -1.00000 q^{8} +1.00000 q^{9} +O(q^{10})\) \(q-1.00000 q^{2} -2.00000 q^{3} +1.00000 q^{4} +2.00000 q^{6} -1.00000 q^{8} +1.00000 q^{9} +3.00000 q^{11} -2.00000 q^{12} +5.00000 q^{13} +1.00000 q^{16} +6.00000 q^{17} -1.00000 q^{18} +1.00000 q^{19} -3.00000 q^{22} -3.00000 q^{23} +2.00000 q^{24} -5.00000 q^{26} +4.00000 q^{27} -6.00000 q^{29} +4.00000 q^{31} -1.00000 q^{32} -6.00000 q^{33} -6.00000 q^{34} +1.00000 q^{36} -11.0000 q^{37} -1.00000 q^{38} -10.0000 q^{39} -3.00000 q^{41} +10.0000 q^{43} +3.00000 q^{44} +3.00000 q^{46} +3.00000 q^{47} -2.00000 q^{48} -12.0000 q^{51} +5.00000 q^{52} -3.00000 q^{53} -4.00000 q^{54} -2.00000 q^{57} +6.00000 q^{58} +4.00000 q^{61} -4.00000 q^{62} +1.00000 q^{64} +6.00000 q^{66} +4.00000 q^{67} +6.00000 q^{68} +6.00000 q^{69} +12.0000 q^{71} -1.00000 q^{72} -4.00000 q^{73} +11.0000 q^{74} +1.00000 q^{76} +10.0000 q^{78} -10.0000 q^{79} -11.0000 q^{81} +3.00000 q^{82} -12.0000 q^{83} -10.0000 q^{86} +12.0000 q^{87} -3.00000 q^{88} -6.00000 q^{89} -3.00000 q^{92} -8.00000 q^{93} -3.00000 q^{94} +2.00000 q^{96} +14.0000 q^{97} +3.00000 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) −2.00000 −1.15470 −0.577350 0.816497i \(-0.695913\pi\)
−0.577350 + 0.816497i \(0.695913\pi\)
\(4\) 1.00000 0.500000
\(5\) 0 0
\(6\) 2.00000 0.816497
\(7\) 0 0
\(8\) −1.00000 −0.353553
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) 3.00000 0.904534 0.452267 0.891883i \(-0.350615\pi\)
0.452267 + 0.891883i \(0.350615\pi\)
\(12\) −2.00000 −0.577350
\(13\) 5.00000 1.38675 0.693375 0.720577i \(-0.256123\pi\)
0.693375 + 0.720577i \(0.256123\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) 6.00000 1.45521 0.727607 0.685994i \(-0.240633\pi\)
0.727607 + 0.685994i \(0.240633\pi\)
\(18\) −1.00000 −0.235702
\(19\) 1.00000 0.229416 0.114708 0.993399i \(-0.463407\pi\)
0.114708 + 0.993399i \(0.463407\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) −3.00000 −0.639602
\(23\) −3.00000 −0.625543 −0.312772 0.949828i \(-0.601257\pi\)
−0.312772 + 0.949828i \(0.601257\pi\)
\(24\) 2.00000 0.408248
\(25\) 0 0
\(26\) −5.00000 −0.980581
\(27\) 4.00000 0.769800
\(28\) 0 0
\(29\) −6.00000 −1.11417 −0.557086 0.830455i \(-0.688081\pi\)
−0.557086 + 0.830455i \(0.688081\pi\)
\(30\) 0 0
\(31\) 4.00000 0.718421 0.359211 0.933257i \(-0.383046\pi\)
0.359211 + 0.933257i \(0.383046\pi\)
\(32\) −1.00000 −0.176777
\(33\) −6.00000 −1.04447
\(34\) −6.00000 −1.02899
\(35\) 0 0
\(36\) 1.00000 0.166667
\(37\) −11.0000 −1.80839 −0.904194 0.427121i \(-0.859528\pi\)
−0.904194 + 0.427121i \(0.859528\pi\)
\(38\) −1.00000 −0.162221
\(39\) −10.0000 −1.60128
\(40\) 0 0
\(41\) −3.00000 −0.468521 −0.234261 0.972174i \(-0.575267\pi\)
−0.234261 + 0.972174i \(0.575267\pi\)
\(42\) 0 0
\(43\) 10.0000 1.52499 0.762493 0.646997i \(-0.223975\pi\)
0.762493 + 0.646997i \(0.223975\pi\)
\(44\) 3.00000 0.452267
\(45\) 0 0
\(46\) 3.00000 0.442326
\(47\) 3.00000 0.437595 0.218797 0.975770i \(-0.429787\pi\)
0.218797 + 0.975770i \(0.429787\pi\)
\(48\) −2.00000 −0.288675
\(49\) 0 0
\(50\) 0 0
\(51\) −12.0000 −1.68034
\(52\) 5.00000 0.693375
\(53\) −3.00000 −0.412082 −0.206041 0.978543i \(-0.566058\pi\)
−0.206041 + 0.978543i \(0.566058\pi\)
\(54\) −4.00000 −0.544331
\(55\) 0 0
\(56\) 0 0
\(57\) −2.00000 −0.264906
\(58\) 6.00000 0.787839
\(59\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(60\) 0 0
\(61\) 4.00000 0.512148 0.256074 0.966657i \(-0.417571\pi\)
0.256074 + 0.966657i \(0.417571\pi\)
\(62\) −4.00000 −0.508001
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) 0 0
\(66\) 6.00000 0.738549
\(67\) 4.00000 0.488678 0.244339 0.969690i \(-0.421429\pi\)
0.244339 + 0.969690i \(0.421429\pi\)
\(68\) 6.00000 0.727607
\(69\) 6.00000 0.722315
\(70\) 0 0
\(71\) 12.0000 1.42414 0.712069 0.702109i \(-0.247758\pi\)
0.712069 + 0.702109i \(0.247758\pi\)
\(72\) −1.00000 −0.117851
\(73\) −4.00000 −0.468165 −0.234082 0.972217i \(-0.575209\pi\)
−0.234082 + 0.972217i \(0.575209\pi\)
\(74\) 11.0000 1.27872
\(75\) 0 0
\(76\) 1.00000 0.114708
\(77\) 0 0
\(78\) 10.0000 1.13228
\(79\) −10.0000 −1.12509 −0.562544 0.826767i \(-0.690177\pi\)
−0.562544 + 0.826767i \(0.690177\pi\)
\(80\) 0 0
\(81\) −11.0000 −1.22222
\(82\) 3.00000 0.331295
\(83\) −12.0000 −1.31717 −0.658586 0.752506i \(-0.728845\pi\)
−0.658586 + 0.752506i \(0.728845\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −10.0000 −1.07833
\(87\) 12.0000 1.28654
\(88\) −3.00000 −0.319801
\(89\) −6.00000 −0.635999 −0.317999 0.948091i \(-0.603011\pi\)
−0.317999 + 0.948091i \(0.603011\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) −3.00000 −0.312772
\(93\) −8.00000 −0.829561
\(94\) −3.00000 −0.309426
\(95\) 0 0
\(96\) 2.00000 0.204124
\(97\) 14.0000 1.42148 0.710742 0.703452i \(-0.248359\pi\)
0.710742 + 0.703452i \(0.248359\pi\)
\(98\) 0 0
\(99\) 3.00000 0.301511
\(100\) 0 0
\(101\) 12.0000 1.19404 0.597022 0.802225i \(-0.296350\pi\)
0.597022 + 0.802225i \(0.296350\pi\)
\(102\) 12.0000 1.18818
\(103\) −4.00000 −0.394132 −0.197066 0.980390i \(-0.563141\pi\)
−0.197066 + 0.980390i \(0.563141\pi\)
\(104\) −5.00000 −0.490290
\(105\) 0 0
\(106\) 3.00000 0.291386
\(107\) 12.0000 1.16008 0.580042 0.814587i \(-0.303036\pi\)
0.580042 + 0.814587i \(0.303036\pi\)
\(108\) 4.00000 0.384900
\(109\) −4.00000 −0.383131 −0.191565 0.981480i \(-0.561356\pi\)
−0.191565 + 0.981480i \(0.561356\pi\)
\(110\) 0 0
\(111\) 22.0000 2.08815
\(112\) 0 0
\(113\) −12.0000 −1.12887 −0.564433 0.825479i \(-0.690905\pi\)
−0.564433 + 0.825479i \(0.690905\pi\)
\(114\) 2.00000 0.187317
\(115\) 0 0
\(116\) −6.00000 −0.557086
\(117\) 5.00000 0.462250
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −2.00000 −0.181818
\(122\) −4.00000 −0.362143
\(123\) 6.00000 0.541002
\(124\) 4.00000 0.359211
\(125\) 0 0
\(126\) 0 0
\(127\) 19.0000 1.68598 0.842989 0.537931i \(-0.180794\pi\)
0.842989 + 0.537931i \(0.180794\pi\)
\(128\) −1.00000 −0.0883883
\(129\) −20.0000 −1.76090
\(130\) 0 0
\(131\) −3.00000 −0.262111 −0.131056 0.991375i \(-0.541837\pi\)
−0.131056 + 0.991375i \(0.541837\pi\)
\(132\) −6.00000 −0.522233
\(133\) 0 0
\(134\) −4.00000 −0.345547
\(135\) 0 0
\(136\) −6.00000 −0.514496
\(137\) −12.0000 −1.02523 −0.512615 0.858619i \(-0.671323\pi\)
−0.512615 + 0.858619i \(0.671323\pi\)
\(138\) −6.00000 −0.510754
\(139\) 4.00000 0.339276 0.169638 0.985506i \(-0.445740\pi\)
0.169638 + 0.985506i \(0.445740\pi\)
\(140\) 0 0
\(141\) −6.00000 −0.505291
\(142\) −12.0000 −1.00702
\(143\) 15.0000 1.25436
\(144\) 1.00000 0.0833333
\(145\) 0 0
\(146\) 4.00000 0.331042
\(147\) 0 0
\(148\) −11.0000 −0.904194
\(149\) 18.0000 1.47462 0.737309 0.675556i \(-0.236096\pi\)
0.737309 + 0.675556i \(0.236096\pi\)
\(150\) 0 0
\(151\) 14.0000 1.13930 0.569652 0.821886i \(-0.307078\pi\)
0.569652 + 0.821886i \(0.307078\pi\)
\(152\) −1.00000 −0.0811107
\(153\) 6.00000 0.485071
\(154\) 0 0
\(155\) 0 0
\(156\) −10.0000 −0.800641
\(157\) 5.00000 0.399043 0.199522 0.979893i \(-0.436061\pi\)
0.199522 + 0.979893i \(0.436061\pi\)
\(158\) 10.0000 0.795557
\(159\) 6.00000 0.475831
\(160\) 0 0
\(161\) 0 0
\(162\) 11.0000 0.864242
\(163\) 4.00000 0.313304 0.156652 0.987654i \(-0.449930\pi\)
0.156652 + 0.987654i \(0.449930\pi\)
\(164\) −3.00000 −0.234261
\(165\) 0 0
\(166\) 12.0000 0.931381
\(167\) 9.00000 0.696441 0.348220 0.937413i \(-0.386786\pi\)
0.348220 + 0.937413i \(0.386786\pi\)
\(168\) 0 0
\(169\) 12.0000 0.923077
\(170\) 0 0
\(171\) 1.00000 0.0764719
\(172\) 10.0000 0.762493
\(173\) 3.00000 0.228086 0.114043 0.993476i \(-0.463620\pi\)
0.114043 + 0.993476i \(0.463620\pi\)
\(174\) −12.0000 −0.909718
\(175\) 0 0
\(176\) 3.00000 0.226134
\(177\) 0 0
\(178\) 6.00000 0.449719
\(179\) −3.00000 −0.224231 −0.112115 0.993695i \(-0.535763\pi\)
−0.112115 + 0.993695i \(0.535763\pi\)
\(180\) 0 0
\(181\) −2.00000 −0.148659 −0.0743294 0.997234i \(-0.523682\pi\)
−0.0743294 + 0.997234i \(0.523682\pi\)
\(182\) 0 0
\(183\) −8.00000 −0.591377
\(184\) 3.00000 0.221163
\(185\) 0 0
\(186\) 8.00000 0.586588
\(187\) 18.0000 1.31629
\(188\) 3.00000 0.218797
\(189\) 0 0
\(190\) 0 0
\(191\) 12.0000 0.868290 0.434145 0.900843i \(-0.357051\pi\)
0.434145 + 0.900843i \(0.357051\pi\)
\(192\) −2.00000 −0.144338
\(193\) 4.00000 0.287926 0.143963 0.989583i \(-0.454015\pi\)
0.143963 + 0.989583i \(0.454015\pi\)
\(194\) −14.0000 −1.00514
\(195\) 0 0
\(196\) 0 0
\(197\) 3.00000 0.213741 0.106871 0.994273i \(-0.465917\pi\)
0.106871 + 0.994273i \(0.465917\pi\)
\(198\) −3.00000 −0.213201
\(199\) 4.00000 0.283552 0.141776 0.989899i \(-0.454719\pi\)
0.141776 + 0.989899i \(0.454719\pi\)
\(200\) 0 0
\(201\) −8.00000 −0.564276
\(202\) −12.0000 −0.844317
\(203\) 0 0
\(204\) −12.0000 −0.840168
\(205\) 0 0
\(206\) 4.00000 0.278693
\(207\) −3.00000 −0.208514
\(208\) 5.00000 0.346688
\(209\) 3.00000 0.207514
\(210\) 0 0
\(211\) −1.00000 −0.0688428 −0.0344214 0.999407i \(-0.510959\pi\)
−0.0344214 + 0.999407i \(0.510959\pi\)
\(212\) −3.00000 −0.206041
\(213\) −24.0000 −1.64445
\(214\) −12.0000 −0.820303
\(215\) 0 0
\(216\) −4.00000 −0.272166
\(217\) 0 0
\(218\) 4.00000 0.270914
\(219\) 8.00000 0.540590
\(220\) 0 0
\(221\) 30.0000 2.01802
\(222\) −22.0000 −1.47654
\(223\) 8.00000 0.535720 0.267860 0.963458i \(-0.413684\pi\)
0.267860 + 0.963458i \(0.413684\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 12.0000 0.798228
\(227\) −24.0000 −1.59294 −0.796468 0.604681i \(-0.793301\pi\)
−0.796468 + 0.604681i \(0.793301\pi\)
\(228\) −2.00000 −0.132453
\(229\) 28.0000 1.85029 0.925146 0.379611i \(-0.123942\pi\)
0.925146 + 0.379611i \(0.123942\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 6.00000 0.393919
\(233\) 6.00000 0.393073 0.196537 0.980497i \(-0.437031\pi\)
0.196537 + 0.980497i \(0.437031\pi\)
\(234\) −5.00000 −0.326860
\(235\) 0 0
\(236\) 0 0
\(237\) 20.0000 1.29914
\(238\) 0 0
\(239\) 6.00000 0.388108 0.194054 0.980991i \(-0.437836\pi\)
0.194054 + 0.980991i \(0.437836\pi\)
\(240\) 0 0
\(241\) 25.0000 1.61039 0.805196 0.593009i \(-0.202060\pi\)
0.805196 + 0.593009i \(0.202060\pi\)
\(242\) 2.00000 0.128565
\(243\) 10.0000 0.641500
\(244\) 4.00000 0.256074
\(245\) 0 0
\(246\) −6.00000 −0.382546
\(247\) 5.00000 0.318142
\(248\) −4.00000 −0.254000
\(249\) 24.0000 1.52094
\(250\) 0 0
\(251\) 15.0000 0.946792 0.473396 0.880850i \(-0.343028\pi\)
0.473396 + 0.880850i \(0.343028\pi\)
\(252\) 0 0
\(253\) −9.00000 −0.565825
\(254\) −19.0000 −1.19217
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) −12.0000 −0.748539 −0.374270 0.927320i \(-0.622107\pi\)
−0.374270 + 0.927320i \(0.622107\pi\)
\(258\) 20.0000 1.24515
\(259\) 0 0
\(260\) 0 0
\(261\) −6.00000 −0.371391
\(262\) 3.00000 0.185341
\(263\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(264\) 6.00000 0.369274
\(265\) 0 0
\(266\) 0 0
\(267\) 12.0000 0.734388
\(268\) 4.00000 0.244339
\(269\) 12.0000 0.731653 0.365826 0.930683i \(-0.380786\pi\)
0.365826 + 0.930683i \(0.380786\pi\)
\(270\) 0 0
\(271\) 16.0000 0.971931 0.485965 0.873978i \(-0.338468\pi\)
0.485965 + 0.873978i \(0.338468\pi\)
\(272\) 6.00000 0.363803
\(273\) 0 0
\(274\) 12.0000 0.724947
\(275\) 0 0
\(276\) 6.00000 0.361158
\(277\) −2.00000 −0.120168 −0.0600842 0.998193i \(-0.519137\pi\)
−0.0600842 + 0.998193i \(0.519137\pi\)
\(278\) −4.00000 −0.239904
\(279\) 4.00000 0.239474
\(280\) 0 0
\(281\) −3.00000 −0.178965 −0.0894825 0.995988i \(-0.528521\pi\)
−0.0894825 + 0.995988i \(0.528521\pi\)
\(282\) 6.00000 0.357295
\(283\) 26.0000 1.54554 0.772770 0.634686i \(-0.218871\pi\)
0.772770 + 0.634686i \(0.218871\pi\)
\(284\) 12.0000 0.712069
\(285\) 0 0
\(286\) −15.0000 −0.886969
\(287\) 0 0
\(288\) −1.00000 −0.0589256
\(289\) 19.0000 1.11765
\(290\) 0 0
\(291\) −28.0000 −1.64139
\(292\) −4.00000 −0.234082
\(293\) −27.0000 −1.57736 −0.788678 0.614806i \(-0.789234\pi\)
−0.788678 + 0.614806i \(0.789234\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 11.0000 0.639362
\(297\) 12.0000 0.696311
\(298\) −18.0000 −1.04271
\(299\) −15.0000 −0.867472
\(300\) 0 0
\(301\) 0 0
\(302\) −14.0000 −0.805609
\(303\) −24.0000 −1.37876
\(304\) 1.00000 0.0573539
\(305\) 0 0
\(306\) −6.00000 −0.342997
\(307\) 2.00000 0.114146 0.0570730 0.998370i \(-0.481823\pi\)
0.0570730 + 0.998370i \(0.481823\pi\)
\(308\) 0 0
\(309\) 8.00000 0.455104
\(310\) 0 0
\(311\) −12.0000 −0.680458 −0.340229 0.940343i \(-0.610505\pi\)
−0.340229 + 0.940343i \(0.610505\pi\)
\(312\) 10.0000 0.566139
\(313\) 8.00000 0.452187 0.226093 0.974106i \(-0.427405\pi\)
0.226093 + 0.974106i \(0.427405\pi\)
\(314\) −5.00000 −0.282166
\(315\) 0 0
\(316\) −10.0000 −0.562544
\(317\) −18.0000 −1.01098 −0.505490 0.862832i \(-0.668688\pi\)
−0.505490 + 0.862832i \(0.668688\pi\)
\(318\) −6.00000 −0.336463
\(319\) −18.0000 −1.00781
\(320\) 0 0
\(321\) −24.0000 −1.33955
\(322\) 0 0
\(323\) 6.00000 0.333849
\(324\) −11.0000 −0.611111
\(325\) 0 0
\(326\) −4.00000 −0.221540
\(327\) 8.00000 0.442401
\(328\) 3.00000 0.165647
\(329\) 0 0
\(330\) 0 0
\(331\) −7.00000 −0.384755 −0.192377 0.981321i \(-0.561620\pi\)
−0.192377 + 0.981321i \(0.561620\pi\)
\(332\) −12.0000 −0.658586
\(333\) −11.0000 −0.602796
\(334\) −9.00000 −0.492458
\(335\) 0 0
\(336\) 0 0
\(337\) −14.0000 −0.762629 −0.381314 0.924445i \(-0.624528\pi\)
−0.381314 + 0.924445i \(0.624528\pi\)
\(338\) −12.0000 −0.652714
\(339\) 24.0000 1.30350
\(340\) 0 0
\(341\) 12.0000 0.649836
\(342\) −1.00000 −0.0540738
\(343\) 0 0
\(344\) −10.0000 −0.539164
\(345\) 0 0
\(346\) −3.00000 −0.161281
\(347\) −24.0000 −1.28839 −0.644194 0.764862i \(-0.722807\pi\)
−0.644194 + 0.764862i \(0.722807\pi\)
\(348\) 12.0000 0.643268
\(349\) 10.0000 0.535288 0.267644 0.963518i \(-0.413755\pi\)
0.267644 + 0.963518i \(0.413755\pi\)
\(350\) 0 0
\(351\) 20.0000 1.06752
\(352\) −3.00000 −0.159901
\(353\) 12.0000 0.638696 0.319348 0.947638i \(-0.396536\pi\)
0.319348 + 0.947638i \(0.396536\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) −6.00000 −0.317999
\(357\) 0 0
\(358\) 3.00000 0.158555
\(359\) 6.00000 0.316668 0.158334 0.987386i \(-0.449388\pi\)
0.158334 + 0.987386i \(0.449388\pi\)
\(360\) 0 0
\(361\) −18.0000 −0.947368
\(362\) 2.00000 0.105118
\(363\) 4.00000 0.209946
\(364\) 0 0
\(365\) 0 0
\(366\) 8.00000 0.418167
\(367\) −1.00000 −0.0521996 −0.0260998 0.999659i \(-0.508309\pi\)
−0.0260998 + 0.999659i \(0.508309\pi\)
\(368\) −3.00000 −0.156386
\(369\) −3.00000 −0.156174
\(370\) 0 0
\(371\) 0 0
\(372\) −8.00000 −0.414781
\(373\) 34.0000 1.76045 0.880227 0.474554i \(-0.157390\pi\)
0.880227 + 0.474554i \(0.157390\pi\)
\(374\) −18.0000 −0.930758
\(375\) 0 0
\(376\) −3.00000 −0.154713
\(377\) −30.0000 −1.54508
\(378\) 0 0
\(379\) −25.0000 −1.28416 −0.642082 0.766636i \(-0.721929\pi\)
−0.642082 + 0.766636i \(0.721929\pi\)
\(380\) 0 0
\(381\) −38.0000 −1.94680
\(382\) −12.0000 −0.613973
\(383\) 15.0000 0.766464 0.383232 0.923652i \(-0.374811\pi\)
0.383232 + 0.923652i \(0.374811\pi\)
\(384\) 2.00000 0.102062
\(385\) 0 0
\(386\) −4.00000 −0.203595
\(387\) 10.0000 0.508329
\(388\) 14.0000 0.710742
\(389\) −24.0000 −1.21685 −0.608424 0.793612i \(-0.708198\pi\)
−0.608424 + 0.793612i \(0.708198\pi\)
\(390\) 0 0
\(391\) −18.0000 −0.910299
\(392\) 0 0
\(393\) 6.00000 0.302660
\(394\) −3.00000 −0.151138
\(395\) 0 0
\(396\) 3.00000 0.150756
\(397\) 2.00000 0.100377 0.0501886 0.998740i \(-0.484018\pi\)
0.0501886 + 0.998740i \(0.484018\pi\)
\(398\) −4.00000 −0.200502
\(399\) 0 0
\(400\) 0 0
\(401\) 21.0000 1.04869 0.524345 0.851506i \(-0.324310\pi\)
0.524345 + 0.851506i \(0.324310\pi\)
\(402\) 8.00000 0.399004
\(403\) 20.0000 0.996271
\(404\) 12.0000 0.597022
\(405\) 0 0
\(406\) 0 0
\(407\) −33.0000 −1.63575
\(408\) 12.0000 0.594089
\(409\) 22.0000 1.08783 0.543915 0.839140i \(-0.316941\pi\)
0.543915 + 0.839140i \(0.316941\pi\)
\(410\) 0 0
\(411\) 24.0000 1.18383
\(412\) −4.00000 −0.197066
\(413\) 0 0
\(414\) 3.00000 0.147442
\(415\) 0 0
\(416\) −5.00000 −0.245145
\(417\) −8.00000 −0.391762
\(418\) −3.00000 −0.146735
\(419\) −15.0000 −0.732798 −0.366399 0.930458i \(-0.619409\pi\)
−0.366399 + 0.930458i \(0.619409\pi\)
\(420\) 0 0
\(421\) −34.0000 −1.65706 −0.828529 0.559946i \(-0.810822\pi\)
−0.828529 + 0.559946i \(0.810822\pi\)
\(422\) 1.00000 0.0486792
\(423\) 3.00000 0.145865
\(424\) 3.00000 0.145693
\(425\) 0 0
\(426\) 24.0000 1.16280
\(427\) 0 0
\(428\) 12.0000 0.580042
\(429\) −30.0000 −1.44841
\(430\) 0 0
\(431\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(432\) 4.00000 0.192450
\(433\) −16.0000 −0.768911 −0.384455 0.923144i \(-0.625611\pi\)
−0.384455 + 0.923144i \(0.625611\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −4.00000 −0.191565
\(437\) −3.00000 −0.143509
\(438\) −8.00000 −0.382255
\(439\) 10.0000 0.477274 0.238637 0.971109i \(-0.423299\pi\)
0.238637 + 0.971109i \(0.423299\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) −30.0000 −1.42695
\(443\) 24.0000 1.14027 0.570137 0.821549i \(-0.306890\pi\)
0.570137 + 0.821549i \(0.306890\pi\)
\(444\) 22.0000 1.04407
\(445\) 0 0
\(446\) −8.00000 −0.378811
\(447\) −36.0000 −1.70274
\(448\) 0 0
\(449\) −3.00000 −0.141579 −0.0707894 0.997491i \(-0.522552\pi\)
−0.0707894 + 0.997491i \(0.522552\pi\)
\(450\) 0 0
\(451\) −9.00000 −0.423793
\(452\) −12.0000 −0.564433
\(453\) −28.0000 −1.31555
\(454\) 24.0000 1.12638
\(455\) 0 0
\(456\) 2.00000 0.0936586
\(457\) 22.0000 1.02912 0.514558 0.857455i \(-0.327956\pi\)
0.514558 + 0.857455i \(0.327956\pi\)
\(458\) −28.0000 −1.30835
\(459\) 24.0000 1.12022
\(460\) 0 0
\(461\) −6.00000 −0.279448 −0.139724 0.990190i \(-0.544622\pi\)
−0.139724 + 0.990190i \(0.544622\pi\)
\(462\) 0 0
\(463\) 19.0000 0.883005 0.441502 0.897260i \(-0.354446\pi\)
0.441502 + 0.897260i \(0.354446\pi\)
\(464\) −6.00000 −0.278543
\(465\) 0 0
\(466\) −6.00000 −0.277945
\(467\) −18.0000 −0.832941 −0.416470 0.909149i \(-0.636733\pi\)
−0.416470 + 0.909149i \(0.636733\pi\)
\(468\) 5.00000 0.231125
\(469\) 0 0
\(470\) 0 0
\(471\) −10.0000 −0.460776
\(472\) 0 0
\(473\) 30.0000 1.37940
\(474\) −20.0000 −0.918630
\(475\) 0 0
\(476\) 0 0
\(477\) −3.00000 −0.137361
\(478\) −6.00000 −0.274434
\(479\) −24.0000 −1.09659 −0.548294 0.836286i \(-0.684723\pi\)
−0.548294 + 0.836286i \(0.684723\pi\)
\(480\) 0 0
\(481\) −55.0000 −2.50778
\(482\) −25.0000 −1.13872
\(483\) 0 0
\(484\) −2.00000 −0.0909091
\(485\) 0 0
\(486\) −10.0000 −0.453609
\(487\) 16.0000 0.725029 0.362515 0.931978i \(-0.381918\pi\)
0.362515 + 0.931978i \(0.381918\pi\)
\(488\) −4.00000 −0.181071
\(489\) −8.00000 −0.361773
\(490\) 0 0
\(491\) −12.0000 −0.541552 −0.270776 0.962642i \(-0.587280\pi\)
−0.270776 + 0.962642i \(0.587280\pi\)
\(492\) 6.00000 0.270501
\(493\) −36.0000 −1.62136
\(494\) −5.00000 −0.224961
\(495\) 0 0
\(496\) 4.00000 0.179605
\(497\) 0 0
\(498\) −24.0000 −1.07547
\(499\) −28.0000 −1.25345 −0.626726 0.779240i \(-0.715605\pi\)
−0.626726 + 0.779240i \(0.715605\pi\)
\(500\) 0 0
\(501\) −18.0000 −0.804181
\(502\) −15.0000 −0.669483
\(503\) 24.0000 1.07011 0.535054 0.844818i \(-0.320291\pi\)
0.535054 + 0.844818i \(0.320291\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 9.00000 0.400099
\(507\) −24.0000 −1.06588
\(508\) 19.0000 0.842989
\(509\) −6.00000 −0.265945 −0.132973 0.991120i \(-0.542452\pi\)
−0.132973 + 0.991120i \(0.542452\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −1.00000 −0.0441942
\(513\) 4.00000 0.176604
\(514\) 12.0000 0.529297
\(515\) 0 0
\(516\) −20.0000 −0.880451
\(517\) 9.00000 0.395820
\(518\) 0 0
\(519\) −6.00000 −0.263371
\(520\) 0 0
\(521\) −33.0000 −1.44576 −0.722878 0.690976i \(-0.757181\pi\)
−0.722878 + 0.690976i \(0.757181\pi\)
\(522\) 6.00000 0.262613
\(523\) 20.0000 0.874539 0.437269 0.899331i \(-0.355946\pi\)
0.437269 + 0.899331i \(0.355946\pi\)
\(524\) −3.00000 −0.131056
\(525\) 0 0
\(526\) 0 0
\(527\) 24.0000 1.04546
\(528\) −6.00000 −0.261116
\(529\) −14.0000 −0.608696
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −15.0000 −0.649722
\(534\) −12.0000 −0.519291
\(535\) 0 0
\(536\) −4.00000 −0.172774
\(537\) 6.00000 0.258919
\(538\) −12.0000 −0.517357
\(539\) 0 0
\(540\) 0 0
\(541\) 8.00000 0.343947 0.171973 0.985102i \(-0.444986\pi\)
0.171973 + 0.985102i \(0.444986\pi\)
\(542\) −16.0000 −0.687259
\(543\) 4.00000 0.171656
\(544\) −6.00000 −0.257248
\(545\) 0 0
\(546\) 0 0
\(547\) 28.0000 1.19719 0.598597 0.801050i \(-0.295725\pi\)
0.598597 + 0.801050i \(0.295725\pi\)
\(548\) −12.0000 −0.512615
\(549\) 4.00000 0.170716
\(550\) 0 0
\(551\) −6.00000 −0.255609
\(552\) −6.00000 −0.255377
\(553\) 0 0
\(554\) 2.00000 0.0849719
\(555\) 0 0
\(556\) 4.00000 0.169638
\(557\) 27.0000 1.14403 0.572013 0.820244i \(-0.306163\pi\)
0.572013 + 0.820244i \(0.306163\pi\)
\(558\) −4.00000 −0.169334
\(559\) 50.0000 2.11477
\(560\) 0 0
\(561\) −36.0000 −1.51992
\(562\) 3.00000 0.126547
\(563\) −18.0000 −0.758610 −0.379305 0.925272i \(-0.623837\pi\)
−0.379305 + 0.925272i \(0.623837\pi\)
\(564\) −6.00000 −0.252646
\(565\) 0 0
\(566\) −26.0000 −1.09286
\(567\) 0 0
\(568\) −12.0000 −0.503509
\(569\) −3.00000 −0.125767 −0.0628833 0.998021i \(-0.520030\pi\)
−0.0628833 + 0.998021i \(0.520030\pi\)
\(570\) 0 0
\(571\) 20.0000 0.836974 0.418487 0.908223i \(-0.362561\pi\)
0.418487 + 0.908223i \(0.362561\pi\)
\(572\) 15.0000 0.627182
\(573\) −24.0000 −1.00261
\(574\) 0 0
\(575\) 0 0
\(576\) 1.00000 0.0416667
\(577\) 20.0000 0.832611 0.416305 0.909225i \(-0.363325\pi\)
0.416305 + 0.909225i \(0.363325\pi\)
\(578\) −19.0000 −0.790296
\(579\) −8.00000 −0.332469
\(580\) 0 0
\(581\) 0 0
\(582\) 28.0000 1.16064
\(583\) −9.00000 −0.372742
\(584\) 4.00000 0.165521
\(585\) 0 0
\(586\) 27.0000 1.11536
\(587\) 12.0000 0.495293 0.247647 0.968850i \(-0.420343\pi\)
0.247647 + 0.968850i \(0.420343\pi\)
\(588\) 0 0
\(589\) 4.00000 0.164817
\(590\) 0 0
\(591\) −6.00000 −0.246807
\(592\) −11.0000 −0.452097
\(593\) −36.0000 −1.47834 −0.739171 0.673517i \(-0.764783\pi\)
−0.739171 + 0.673517i \(0.764783\pi\)
\(594\) −12.0000 −0.492366
\(595\) 0 0
\(596\) 18.0000 0.737309
\(597\) −8.00000 −0.327418
\(598\) 15.0000 0.613396
\(599\) 42.0000 1.71607 0.858037 0.513588i \(-0.171684\pi\)
0.858037 + 0.513588i \(0.171684\pi\)
\(600\) 0 0
\(601\) −2.00000 −0.0815817 −0.0407909 0.999168i \(-0.512988\pi\)
−0.0407909 + 0.999168i \(0.512988\pi\)
\(602\) 0 0
\(603\) 4.00000 0.162893
\(604\) 14.0000 0.569652
\(605\) 0 0
\(606\) 24.0000 0.974933
\(607\) −19.0000 −0.771186 −0.385593 0.922669i \(-0.626003\pi\)
−0.385593 + 0.922669i \(0.626003\pi\)
\(608\) −1.00000 −0.0405554
\(609\) 0 0
\(610\) 0 0
\(611\) 15.0000 0.606835
\(612\) 6.00000 0.242536
\(613\) −47.0000 −1.89831 −0.949156 0.314806i \(-0.898061\pi\)
−0.949156 + 0.314806i \(0.898061\pi\)
\(614\) −2.00000 −0.0807134
\(615\) 0 0
\(616\) 0 0
\(617\) 6.00000 0.241551 0.120775 0.992680i \(-0.461462\pi\)
0.120775 + 0.992680i \(0.461462\pi\)
\(618\) −8.00000 −0.321807
\(619\) 1.00000 0.0401934 0.0200967 0.999798i \(-0.493603\pi\)
0.0200967 + 0.999798i \(0.493603\pi\)
\(620\) 0 0
\(621\) −12.0000 −0.481543
\(622\) 12.0000 0.481156
\(623\) 0 0
\(624\) −10.0000 −0.400320
\(625\) 0 0
\(626\) −8.00000 −0.319744
\(627\) −6.00000 −0.239617
\(628\) 5.00000 0.199522
\(629\) −66.0000 −2.63159
\(630\) 0 0
\(631\) 32.0000 1.27390 0.636950 0.770905i \(-0.280196\pi\)
0.636950 + 0.770905i \(0.280196\pi\)
\(632\) 10.0000 0.397779
\(633\) 2.00000 0.0794929
\(634\) 18.0000 0.714871
\(635\) 0 0
\(636\) 6.00000 0.237915
\(637\) 0 0
\(638\) 18.0000 0.712627
\(639\) 12.0000 0.474713
\(640\) 0 0
\(641\) −45.0000 −1.77739 −0.888697 0.458496i \(-0.848388\pi\)
−0.888697 + 0.458496i \(0.848388\pi\)
\(642\) 24.0000 0.947204
\(643\) 38.0000 1.49857 0.749287 0.662246i \(-0.230396\pi\)
0.749287 + 0.662246i \(0.230396\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) −6.00000 −0.236067
\(647\) −21.0000 −0.825595 −0.412798 0.910823i \(-0.635448\pi\)
−0.412798 + 0.910823i \(0.635448\pi\)
\(648\) 11.0000 0.432121
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 4.00000 0.156652
\(653\) −21.0000 −0.821794 −0.410897 0.911682i \(-0.634784\pi\)
−0.410897 + 0.911682i \(0.634784\pi\)
\(654\) −8.00000 −0.312825
\(655\) 0 0
\(656\) −3.00000 −0.117130
\(657\) −4.00000 −0.156055
\(658\) 0 0
\(659\) 24.0000 0.934907 0.467454 0.884018i \(-0.345171\pi\)
0.467454 + 0.884018i \(0.345171\pi\)
\(660\) 0 0
\(661\) −44.0000 −1.71140 −0.855701 0.517471i \(-0.826874\pi\)
−0.855701 + 0.517471i \(0.826874\pi\)
\(662\) 7.00000 0.272063
\(663\) −60.0000 −2.33021
\(664\) 12.0000 0.465690
\(665\) 0 0
\(666\) 11.0000 0.426241
\(667\) 18.0000 0.696963
\(668\) 9.00000 0.348220
\(669\) −16.0000 −0.618596
\(670\) 0 0
\(671\) 12.0000 0.463255
\(672\) 0 0
\(673\) 34.0000 1.31060 0.655302 0.755367i \(-0.272541\pi\)
0.655302 + 0.755367i \(0.272541\pi\)
\(674\) 14.0000 0.539260
\(675\) 0 0
\(676\) 12.0000 0.461538
\(677\) −3.00000 −0.115299 −0.0576497 0.998337i \(-0.518361\pi\)
−0.0576497 + 0.998337i \(0.518361\pi\)
\(678\) −24.0000 −0.921714
\(679\) 0 0
\(680\) 0 0
\(681\) 48.0000 1.83936
\(682\) −12.0000 −0.459504
\(683\) 12.0000 0.459167 0.229584 0.973289i \(-0.426264\pi\)
0.229584 + 0.973289i \(0.426264\pi\)
\(684\) 1.00000 0.0382360
\(685\) 0 0
\(686\) 0 0
\(687\) −56.0000 −2.13653
\(688\) 10.0000 0.381246
\(689\) −15.0000 −0.571454
\(690\) 0 0
\(691\) −32.0000 −1.21734 −0.608669 0.793424i \(-0.708296\pi\)
−0.608669 + 0.793424i \(0.708296\pi\)
\(692\) 3.00000 0.114043
\(693\) 0 0
\(694\) 24.0000 0.911028
\(695\) 0 0
\(696\) −12.0000 −0.454859
\(697\) −18.0000 −0.681799
\(698\) −10.0000 −0.378506
\(699\) −12.0000 −0.453882
\(700\) 0 0
\(701\) 18.0000 0.679851 0.339925 0.940452i \(-0.389598\pi\)
0.339925 + 0.940452i \(0.389598\pi\)
\(702\) −20.0000 −0.754851
\(703\) −11.0000 −0.414873
\(704\) 3.00000 0.113067
\(705\) 0 0
\(706\) −12.0000 −0.451626
\(707\) 0 0
\(708\) 0 0
\(709\) 14.0000 0.525781 0.262891 0.964826i \(-0.415324\pi\)
0.262891 + 0.964826i \(0.415324\pi\)
\(710\) 0 0
\(711\) −10.0000 −0.375029
\(712\) 6.00000 0.224860
\(713\) −12.0000 −0.449404
\(714\) 0 0
\(715\) 0 0
\(716\) −3.00000 −0.112115
\(717\) −12.0000 −0.448148
\(718\) −6.00000 −0.223918
\(719\) 36.0000 1.34257 0.671287 0.741198i \(-0.265742\pi\)
0.671287 + 0.741198i \(0.265742\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 18.0000 0.669891
\(723\) −50.0000 −1.85952
\(724\) −2.00000 −0.0743294
\(725\) 0 0
\(726\) −4.00000 −0.148454
\(727\) 29.0000 1.07555 0.537775 0.843088i \(-0.319265\pi\)
0.537775 + 0.843088i \(0.319265\pi\)
\(728\) 0 0
\(729\) 13.0000 0.481481
\(730\) 0 0
\(731\) 60.0000 2.21918
\(732\) −8.00000 −0.295689
\(733\) 47.0000 1.73598 0.867992 0.496578i \(-0.165410\pi\)
0.867992 + 0.496578i \(0.165410\pi\)
\(734\) 1.00000 0.0369107
\(735\) 0 0
\(736\) 3.00000 0.110581
\(737\) 12.0000 0.442026
\(738\) 3.00000 0.110432
\(739\) −37.0000 −1.36107 −0.680534 0.732717i \(-0.738252\pi\)
−0.680534 + 0.732717i \(0.738252\pi\)
\(740\) 0 0
\(741\) −10.0000 −0.367359
\(742\) 0 0
\(743\) −9.00000 −0.330178 −0.165089 0.986279i \(-0.552791\pi\)
−0.165089 + 0.986279i \(0.552791\pi\)
\(744\) 8.00000 0.293294
\(745\) 0 0
\(746\) −34.0000 −1.24483
\(747\) −12.0000 −0.439057
\(748\) 18.0000 0.658145
\(749\) 0 0
\(750\) 0 0
\(751\) 26.0000 0.948753 0.474377 0.880322i \(-0.342673\pi\)
0.474377 + 0.880322i \(0.342673\pi\)
\(752\) 3.00000 0.109399
\(753\) −30.0000 −1.09326
\(754\) 30.0000 1.09254
\(755\) 0 0
\(756\) 0 0
\(757\) −26.0000 −0.944986 −0.472493 0.881334i \(-0.656646\pi\)
−0.472493 + 0.881334i \(0.656646\pi\)
\(758\) 25.0000 0.908041
\(759\) 18.0000 0.653359
\(760\) 0 0
\(761\) 51.0000 1.84875 0.924374 0.381487i \(-0.124588\pi\)
0.924374 + 0.381487i \(0.124588\pi\)
\(762\) 38.0000 1.37659
\(763\) 0 0
\(764\) 12.0000 0.434145
\(765\) 0 0
\(766\) −15.0000 −0.541972
\(767\) 0 0
\(768\) −2.00000 −0.0721688
\(769\) 49.0000 1.76699 0.883493 0.468445i \(-0.155186\pi\)
0.883493 + 0.468445i \(0.155186\pi\)
\(770\) 0 0
\(771\) 24.0000 0.864339
\(772\) 4.00000 0.143963
\(773\) 39.0000 1.40273 0.701366 0.712801i \(-0.252574\pi\)
0.701366 + 0.712801i \(0.252574\pi\)
\(774\) −10.0000 −0.359443
\(775\) 0 0
\(776\) −14.0000 −0.502571
\(777\) 0 0
\(778\) 24.0000 0.860442
\(779\) −3.00000 −0.107486
\(780\) 0 0
\(781\) 36.0000 1.28818
\(782\) 18.0000 0.643679
\(783\) −24.0000 −0.857690
\(784\) 0 0
\(785\) 0 0
\(786\) −6.00000 −0.214013
\(787\) −34.0000 −1.21197 −0.605985 0.795476i \(-0.707221\pi\)
−0.605985 + 0.795476i \(0.707221\pi\)
\(788\) 3.00000 0.106871
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) −3.00000 −0.106600
\(793\) 20.0000 0.710221
\(794\) −2.00000 −0.0709773
\(795\) 0 0
\(796\) 4.00000 0.141776
\(797\) −30.0000 −1.06265 −0.531327 0.847167i \(-0.678307\pi\)
−0.531327 + 0.847167i \(0.678307\pi\)
\(798\) 0 0
\(799\) 18.0000 0.636794
\(800\) 0 0
\(801\) −6.00000 −0.212000
\(802\) −21.0000 −0.741536
\(803\) −12.0000 −0.423471
\(804\) −8.00000 −0.282138
\(805\) 0 0
\(806\) −20.0000 −0.704470
\(807\) −24.0000 −0.844840
\(808\) −12.0000 −0.422159
\(809\) 39.0000 1.37117 0.685583 0.727994i \(-0.259547\pi\)
0.685583 + 0.727994i \(0.259547\pi\)
\(810\) 0 0
\(811\) −47.0000 −1.65039 −0.825197 0.564846i \(-0.808936\pi\)
−0.825197 + 0.564846i \(0.808936\pi\)
\(812\) 0 0
\(813\) −32.0000 −1.12229
\(814\) 33.0000 1.15665
\(815\) 0 0
\(816\) −12.0000 −0.420084
\(817\) 10.0000 0.349856
\(818\) −22.0000 −0.769212
\(819\) 0 0
\(820\) 0 0
\(821\) −18.0000 −0.628204 −0.314102 0.949389i \(-0.601703\pi\)
−0.314102 + 0.949389i \(0.601703\pi\)
\(822\) −24.0000 −0.837096
\(823\) −44.0000 −1.53374 −0.766872 0.641800i \(-0.778188\pi\)
−0.766872 + 0.641800i \(0.778188\pi\)
\(824\) 4.00000 0.139347
\(825\) 0 0
\(826\) 0 0
\(827\) 54.0000 1.87776 0.938882 0.344239i \(-0.111863\pi\)
0.938882 + 0.344239i \(0.111863\pi\)
\(828\) −3.00000 −0.104257
\(829\) −14.0000 −0.486240 −0.243120 0.969996i \(-0.578171\pi\)
−0.243120 + 0.969996i \(0.578171\pi\)
\(830\) 0 0
\(831\) 4.00000 0.138758
\(832\) 5.00000 0.173344
\(833\) 0 0
\(834\) 8.00000 0.277017
\(835\) 0 0
\(836\) 3.00000 0.103757
\(837\) 16.0000 0.553041
\(838\) 15.0000 0.518166
\(839\) 6.00000 0.207143 0.103572 0.994622i \(-0.466973\pi\)
0.103572 + 0.994622i \(0.466973\pi\)
\(840\) 0 0
\(841\) 7.00000 0.241379
\(842\) 34.0000 1.17172
\(843\) 6.00000 0.206651
\(844\) −1.00000 −0.0344214
\(845\) 0 0
\(846\) −3.00000 −0.103142
\(847\) 0 0
\(848\) −3.00000 −0.103020
\(849\) −52.0000 −1.78464
\(850\) 0 0
\(851\) 33.0000 1.13123
\(852\) −24.0000 −0.822226
\(853\) −1.00000 −0.0342393 −0.0171197 0.999853i \(-0.505450\pi\)
−0.0171197 + 0.999853i \(0.505450\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) −12.0000 −0.410152
\(857\) −18.0000 −0.614868 −0.307434 0.951569i \(-0.599470\pi\)
−0.307434 + 0.951569i \(0.599470\pi\)
\(858\) 30.0000 1.02418
\(859\) −32.0000 −1.09183 −0.545913 0.837842i \(-0.683817\pi\)
−0.545913 + 0.837842i \(0.683817\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −39.0000 −1.32758 −0.663788 0.747921i \(-0.731052\pi\)
−0.663788 + 0.747921i \(0.731052\pi\)
\(864\) −4.00000 −0.136083
\(865\) 0 0
\(866\) 16.0000 0.543702
\(867\) −38.0000 −1.29055
\(868\) 0 0
\(869\) −30.0000 −1.01768
\(870\) 0 0
\(871\) 20.0000 0.677674
\(872\) 4.00000 0.135457
\(873\) 14.0000 0.473828
\(874\) 3.00000 0.101477
\(875\) 0 0
\(876\) 8.00000 0.270295
\(877\) 7.00000 0.236373 0.118187 0.992991i \(-0.462292\pi\)
0.118187 + 0.992991i \(0.462292\pi\)
\(878\) −10.0000 −0.337484
\(879\) 54.0000 1.82137
\(880\) 0 0
\(881\) −33.0000 −1.11180 −0.555899 0.831250i \(-0.687626\pi\)
−0.555899 + 0.831250i \(0.687626\pi\)
\(882\) 0 0
\(883\) −8.00000 −0.269221 −0.134611 0.990899i \(-0.542978\pi\)
−0.134611 + 0.990899i \(0.542978\pi\)
\(884\) 30.0000 1.00901
\(885\) 0 0
\(886\) −24.0000 −0.806296
\(887\) 24.0000 0.805841 0.402921 0.915235i \(-0.367995\pi\)
0.402921 + 0.915235i \(0.367995\pi\)
\(888\) −22.0000 −0.738272
\(889\) 0 0
\(890\) 0 0
\(891\) −33.0000 −1.10554
\(892\) 8.00000 0.267860
\(893\) 3.00000 0.100391
\(894\) 36.0000 1.20402
\(895\) 0 0
\(896\) 0 0
\(897\) 30.0000 1.00167
\(898\) 3.00000 0.100111
\(899\) −24.0000 −0.800445
\(900\) 0 0
\(901\) −18.0000 −0.599667
\(902\) 9.00000 0.299667
\(903\) 0 0
\(904\) 12.0000 0.399114
\(905\) 0 0
\(906\) 28.0000 0.930238
\(907\) 10.0000 0.332045 0.166022 0.986122i \(-0.446908\pi\)
0.166022 + 0.986122i \(0.446908\pi\)
\(908\) −24.0000 −0.796468
\(909\) 12.0000 0.398015
\(910\) 0 0
\(911\) −30.0000 −0.993944 −0.496972 0.867766i \(-0.665555\pi\)
−0.496972 + 0.867766i \(0.665555\pi\)
\(912\) −2.00000 −0.0662266
\(913\) −36.0000 −1.19143
\(914\) −22.0000 −0.727695
\(915\) 0 0
\(916\) 28.0000 0.925146
\(917\) 0 0
\(918\) −24.0000 −0.792118
\(919\) 38.0000 1.25350 0.626752 0.779219i \(-0.284384\pi\)
0.626752 + 0.779219i \(0.284384\pi\)
\(920\) 0 0
\(921\) −4.00000 −0.131804
\(922\) 6.00000 0.197599
\(923\) 60.0000 1.97492
\(924\) 0 0
\(925\) 0 0
\(926\) −19.0000 −0.624379
\(927\) −4.00000 −0.131377
\(928\) 6.00000 0.196960
\(929\) −33.0000 −1.08269 −0.541347 0.840799i \(-0.682086\pi\)
−0.541347 + 0.840799i \(0.682086\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 6.00000 0.196537
\(933\) 24.0000 0.785725
\(934\) 18.0000 0.588978
\(935\) 0 0
\(936\) −5.00000 −0.163430
\(937\) 2.00000 0.0653372 0.0326686 0.999466i \(-0.489599\pi\)
0.0326686 + 0.999466i \(0.489599\pi\)
\(938\) 0 0
\(939\) −16.0000 −0.522140
\(940\) 0 0
\(941\) −24.0000 −0.782378 −0.391189 0.920310i \(-0.627936\pi\)
−0.391189 + 0.920310i \(0.627936\pi\)
\(942\) 10.0000 0.325818
\(943\) 9.00000 0.293080
\(944\) 0 0
\(945\) 0 0
\(946\) −30.0000 −0.975384
\(947\) −30.0000 −0.974869 −0.487435 0.873160i \(-0.662067\pi\)
−0.487435 + 0.873160i \(0.662067\pi\)
\(948\) 20.0000 0.649570
\(949\) −20.0000 −0.649227
\(950\) 0 0
\(951\) 36.0000 1.16738
\(952\) 0 0
\(953\) 12.0000 0.388718 0.194359 0.980930i \(-0.437737\pi\)
0.194359 + 0.980930i \(0.437737\pi\)
\(954\) 3.00000 0.0971286
\(955\) 0 0
\(956\) 6.00000 0.194054
\(957\) 36.0000 1.16371
\(958\) 24.0000 0.775405
\(959\) 0 0
\(960\) 0 0
\(961\) −15.0000 −0.483871
\(962\) 55.0000 1.77327
\(963\) 12.0000 0.386695
\(964\) 25.0000 0.805196
\(965\) 0 0
\(966\) 0 0
\(967\) −32.0000 −1.02905 −0.514525 0.857475i \(-0.672032\pi\)
−0.514525 + 0.857475i \(0.672032\pi\)
\(968\) 2.00000 0.0642824
\(969\) −12.0000 −0.385496
\(970\) 0 0
\(971\) −27.0000 −0.866471 −0.433236 0.901281i \(-0.642628\pi\)
−0.433236 + 0.901281i \(0.642628\pi\)
\(972\) 10.0000 0.320750
\(973\) 0 0
\(974\) −16.0000 −0.512673
\(975\) 0 0
\(976\) 4.00000 0.128037
\(977\) 30.0000 0.959785 0.479893 0.877327i \(-0.340676\pi\)
0.479893 + 0.877327i \(0.340676\pi\)
\(978\) 8.00000 0.255812
\(979\) −18.0000 −0.575282
\(980\) 0 0
\(981\) −4.00000 −0.127710
\(982\) 12.0000 0.382935
\(983\) 57.0000 1.81802 0.909009 0.416777i \(-0.136840\pi\)
0.909009 + 0.416777i \(0.136840\pi\)
\(984\) −6.00000 −0.191273
\(985\) 0 0
\(986\) 36.0000 1.14647
\(987\) 0 0
\(988\) 5.00000 0.159071
\(989\) −30.0000 −0.953945
\(990\) 0 0
\(991\) 20.0000 0.635321 0.317660 0.948205i \(-0.397103\pi\)
0.317660 + 0.948205i \(0.397103\pi\)
\(992\) −4.00000 −0.127000
\(993\) 14.0000 0.444277
\(994\) 0 0
\(995\) 0 0
\(996\) 24.0000 0.760469
\(997\) 14.0000 0.443384 0.221692 0.975117i \(-0.428842\pi\)
0.221692 + 0.975117i \(0.428842\pi\)
\(998\) 28.0000 0.886325
\(999\) −44.0000 −1.39210
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2450.2.a.f.1.1 1
5.2 odd 4 2450.2.c.p.99.1 2
5.3 odd 4 2450.2.c.p.99.2 2
5.4 even 2 490.2.a.j.1.1 1
7.3 odd 6 350.2.e.h.51.1 2
7.5 odd 6 350.2.e.h.151.1 2
7.6 odd 2 2450.2.a.p.1.1 1
15.14 odd 2 4410.2.a.c.1.1 1
20.19 odd 2 3920.2.a.g.1.1 1
35.3 even 12 350.2.j.a.149.1 4
35.4 even 6 490.2.e.a.471.1 2
35.9 even 6 490.2.e.a.361.1 2
35.12 even 12 350.2.j.a.249.1 4
35.13 even 4 2450.2.c.f.99.2 2
35.17 even 12 350.2.j.a.149.2 4
35.19 odd 6 70.2.e.b.11.1 2
35.24 odd 6 70.2.e.b.51.1 yes 2
35.27 even 4 2450.2.c.f.99.1 2
35.33 even 12 350.2.j.a.249.2 4
35.34 odd 2 490.2.a.g.1.1 1
105.59 even 6 630.2.k.e.541.1 2
105.89 even 6 630.2.k.e.361.1 2
105.104 even 2 4410.2.a.m.1.1 1
140.19 even 6 560.2.q.d.81.1 2
140.59 even 6 560.2.q.d.401.1 2
140.139 even 2 3920.2.a.be.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
70.2.e.b.11.1 2 35.19 odd 6
70.2.e.b.51.1 yes 2 35.24 odd 6
350.2.e.h.51.1 2 7.3 odd 6
350.2.e.h.151.1 2 7.5 odd 6
350.2.j.a.149.1 4 35.3 even 12
350.2.j.a.149.2 4 35.17 even 12
350.2.j.a.249.1 4 35.12 even 12
350.2.j.a.249.2 4 35.33 even 12
490.2.a.g.1.1 1 35.34 odd 2
490.2.a.j.1.1 1 5.4 even 2
490.2.e.a.361.1 2 35.9 even 6
490.2.e.a.471.1 2 35.4 even 6
560.2.q.d.81.1 2 140.19 even 6
560.2.q.d.401.1 2 140.59 even 6
630.2.k.e.361.1 2 105.89 even 6
630.2.k.e.541.1 2 105.59 even 6
2450.2.a.f.1.1 1 1.1 even 1 trivial
2450.2.a.p.1.1 1 7.6 odd 2
2450.2.c.f.99.1 2 35.27 even 4
2450.2.c.f.99.2 2 35.13 even 4
2450.2.c.p.99.1 2 5.2 odd 4
2450.2.c.p.99.2 2 5.3 odd 4
3920.2.a.g.1.1 1 20.19 odd 2
3920.2.a.be.1.1 1 140.139 even 2
4410.2.a.c.1.1 1 15.14 odd 2
4410.2.a.m.1.1 1 105.104 even 2