Properties

Label 2450.2.a.bs.1.1
Level $2450$
Weight $2$
Character 2450.1
Self dual yes
Analytic conductor $19.563$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 2450 = 2 \cdot 5^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2450.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(19.5633484952\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{8})^+\)
Defining polynomial: \(x^{2} - 2\)
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 490)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-1.41421\) of defining polynomial
Character \(\chi\) \(=\) 2450.1

$q$-expansion

\(f(q)\) \(=\) \(q+1.00000 q^{2} +0.585786 q^{3} +1.00000 q^{4} +0.585786 q^{6} +1.00000 q^{8} -2.65685 q^{9} +O(q^{10})\) \(q+1.00000 q^{2} +0.585786 q^{3} +1.00000 q^{4} +0.585786 q^{6} +1.00000 q^{8} -2.65685 q^{9} +4.82843 q^{11} +0.585786 q^{12} +0.828427 q^{13} +1.00000 q^{16} +5.41421 q^{17} -2.65685 q^{18} -3.41421 q^{19} +4.82843 q^{22} +6.82843 q^{23} +0.585786 q^{24} +0.828427 q^{26} -3.31371 q^{27} +0.828427 q^{29} -2.82843 q^{31} +1.00000 q^{32} +2.82843 q^{33} +5.41421 q^{34} -2.65685 q^{36} -3.65685 q^{37} -3.41421 q^{38} +0.485281 q^{39} -11.0711 q^{41} +3.17157 q^{43} +4.82843 q^{44} +6.82843 q^{46} +10.8284 q^{47} +0.585786 q^{48} +3.17157 q^{51} +0.828427 q^{52} +10.4853 q^{53} -3.31371 q^{54} -2.00000 q^{57} +0.828427 q^{58} -11.4142 q^{59} +13.3137 q^{61} -2.82843 q^{62} +1.00000 q^{64} +2.82843 q^{66} +9.65685 q^{67} +5.41421 q^{68} +4.00000 q^{69} +12.4853 q^{71} -2.65685 q^{72} -6.58579 q^{73} -3.65685 q^{74} -3.41421 q^{76} +0.485281 q^{78} -1.17157 q^{79} +6.02944 q^{81} -11.0711 q^{82} +6.24264 q^{83} +3.17157 q^{86} +0.485281 q^{87} +4.82843 q^{88} +12.7279 q^{89} +6.82843 q^{92} -1.65685 q^{93} +10.8284 q^{94} +0.585786 q^{96} -16.2426 q^{97} -12.8284 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q + 2q^{2} + 4q^{3} + 2q^{4} + 4q^{6} + 2q^{8} + 6q^{9} + O(q^{10}) \) \( 2q + 2q^{2} + 4q^{3} + 2q^{4} + 4q^{6} + 2q^{8} + 6q^{9} + 4q^{11} + 4q^{12} - 4q^{13} + 2q^{16} + 8q^{17} + 6q^{18} - 4q^{19} + 4q^{22} + 8q^{23} + 4q^{24} - 4q^{26} + 16q^{27} - 4q^{29} + 2q^{32} + 8q^{34} + 6q^{36} + 4q^{37} - 4q^{38} - 16q^{39} - 8q^{41} + 12q^{43} + 4q^{44} + 8q^{46} + 16q^{47} + 4q^{48} + 12q^{51} - 4q^{52} + 4q^{53} + 16q^{54} - 4q^{57} - 4q^{58} - 20q^{59} + 4q^{61} + 2q^{64} + 8q^{67} + 8q^{68} + 8q^{69} + 8q^{71} + 6q^{72} - 16q^{73} + 4q^{74} - 4q^{76} - 16q^{78} - 8q^{79} + 46q^{81} - 8q^{82} + 4q^{83} + 12q^{86} - 16q^{87} + 4q^{88} + 8q^{92} + 8q^{93} + 16q^{94} + 4q^{96} - 24q^{97} - 20q^{99} + O(q^{100}) \)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) 0.585786 0.338204 0.169102 0.985599i \(-0.445913\pi\)
0.169102 + 0.985599i \(0.445913\pi\)
\(4\) 1.00000 0.500000
\(5\) 0 0
\(6\) 0.585786 0.239146
\(7\) 0 0
\(8\) 1.00000 0.353553
\(9\) −2.65685 −0.885618
\(10\) 0 0
\(11\) 4.82843 1.45583 0.727913 0.685670i \(-0.240491\pi\)
0.727913 + 0.685670i \(0.240491\pi\)
\(12\) 0.585786 0.169102
\(13\) 0.828427 0.229764 0.114882 0.993379i \(-0.463351\pi\)
0.114882 + 0.993379i \(0.463351\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) 5.41421 1.31314 0.656570 0.754265i \(-0.272007\pi\)
0.656570 + 0.754265i \(0.272007\pi\)
\(18\) −2.65685 −0.626227
\(19\) −3.41421 −0.783274 −0.391637 0.920120i \(-0.628091\pi\)
−0.391637 + 0.920120i \(0.628091\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 4.82843 1.02942
\(23\) 6.82843 1.42383 0.711913 0.702268i \(-0.247829\pi\)
0.711913 + 0.702268i \(0.247829\pi\)
\(24\) 0.585786 0.119573
\(25\) 0 0
\(26\) 0.828427 0.162468
\(27\) −3.31371 −0.637723
\(28\) 0 0
\(29\) 0.828427 0.153835 0.0769175 0.997037i \(-0.475492\pi\)
0.0769175 + 0.997037i \(0.475492\pi\)
\(30\) 0 0
\(31\) −2.82843 −0.508001 −0.254000 0.967204i \(-0.581746\pi\)
−0.254000 + 0.967204i \(0.581746\pi\)
\(32\) 1.00000 0.176777
\(33\) 2.82843 0.492366
\(34\) 5.41421 0.928530
\(35\) 0 0
\(36\) −2.65685 −0.442809
\(37\) −3.65685 −0.601183 −0.300592 0.953753i \(-0.597184\pi\)
−0.300592 + 0.953753i \(0.597184\pi\)
\(38\) −3.41421 −0.553859
\(39\) 0.485281 0.0777072
\(40\) 0 0
\(41\) −11.0711 −1.72901 −0.864505 0.502624i \(-0.832368\pi\)
−0.864505 + 0.502624i \(0.832368\pi\)
\(42\) 0 0
\(43\) 3.17157 0.483660 0.241830 0.970319i \(-0.422252\pi\)
0.241830 + 0.970319i \(0.422252\pi\)
\(44\) 4.82843 0.727913
\(45\) 0 0
\(46\) 6.82843 1.00680
\(47\) 10.8284 1.57949 0.789744 0.613436i \(-0.210213\pi\)
0.789744 + 0.613436i \(0.210213\pi\)
\(48\) 0.585786 0.0845510
\(49\) 0 0
\(50\) 0 0
\(51\) 3.17157 0.444109
\(52\) 0.828427 0.114882
\(53\) 10.4853 1.44026 0.720132 0.693837i \(-0.244081\pi\)
0.720132 + 0.693837i \(0.244081\pi\)
\(54\) −3.31371 −0.450939
\(55\) 0 0
\(56\) 0 0
\(57\) −2.00000 −0.264906
\(58\) 0.828427 0.108778
\(59\) −11.4142 −1.48600 −0.743002 0.669289i \(-0.766599\pi\)
−0.743002 + 0.669289i \(0.766599\pi\)
\(60\) 0 0
\(61\) 13.3137 1.70465 0.852323 0.523016i \(-0.175193\pi\)
0.852323 + 0.523016i \(0.175193\pi\)
\(62\) −2.82843 −0.359211
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) 0 0
\(66\) 2.82843 0.348155
\(67\) 9.65685 1.17977 0.589886 0.807486i \(-0.299173\pi\)
0.589886 + 0.807486i \(0.299173\pi\)
\(68\) 5.41421 0.656570
\(69\) 4.00000 0.481543
\(70\) 0 0
\(71\) 12.4853 1.48173 0.740865 0.671654i \(-0.234416\pi\)
0.740865 + 0.671654i \(0.234416\pi\)
\(72\) −2.65685 −0.313113
\(73\) −6.58579 −0.770808 −0.385404 0.922748i \(-0.625938\pi\)
−0.385404 + 0.922748i \(0.625938\pi\)
\(74\) −3.65685 −0.425101
\(75\) 0 0
\(76\) −3.41421 −0.391637
\(77\) 0 0
\(78\) 0.485281 0.0549473
\(79\) −1.17157 −0.131812 −0.0659061 0.997826i \(-0.520994\pi\)
−0.0659061 + 0.997826i \(0.520994\pi\)
\(80\) 0 0
\(81\) 6.02944 0.669937
\(82\) −11.0711 −1.22259
\(83\) 6.24264 0.685219 0.342609 0.939478i \(-0.388689\pi\)
0.342609 + 0.939478i \(0.388689\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 3.17157 0.341999
\(87\) 0.485281 0.0520276
\(88\) 4.82843 0.514712
\(89\) 12.7279 1.34916 0.674579 0.738203i \(-0.264325\pi\)
0.674579 + 0.738203i \(0.264325\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 6.82843 0.711913
\(93\) −1.65685 −0.171808
\(94\) 10.8284 1.11687
\(95\) 0 0
\(96\) 0.585786 0.0597866
\(97\) −16.2426 −1.64919 −0.824595 0.565723i \(-0.808597\pi\)
−0.824595 + 0.565723i \(0.808597\pi\)
\(98\) 0 0
\(99\) −12.8284 −1.28931
\(100\) 0 0
\(101\) 9.31371 0.926749 0.463374 0.886163i \(-0.346639\pi\)
0.463374 + 0.886163i \(0.346639\pi\)
\(102\) 3.17157 0.314033
\(103\) −9.17157 −0.903702 −0.451851 0.892093i \(-0.649236\pi\)
−0.451851 + 0.892093i \(0.649236\pi\)
\(104\) 0.828427 0.0812340
\(105\) 0 0
\(106\) 10.4853 1.01842
\(107\) 1.65685 0.160174 0.0800871 0.996788i \(-0.474480\pi\)
0.0800871 + 0.996788i \(0.474480\pi\)
\(108\) −3.31371 −0.318862
\(109\) −14.4853 −1.38744 −0.693719 0.720246i \(-0.744029\pi\)
−0.693719 + 0.720246i \(0.744029\pi\)
\(110\) 0 0
\(111\) −2.14214 −0.203323
\(112\) 0 0
\(113\) −7.31371 −0.688016 −0.344008 0.938967i \(-0.611785\pi\)
−0.344008 + 0.938967i \(0.611785\pi\)
\(114\) −2.00000 −0.187317
\(115\) 0 0
\(116\) 0.828427 0.0769175
\(117\) −2.20101 −0.203483
\(118\) −11.4142 −1.05076
\(119\) 0 0
\(120\) 0 0
\(121\) 12.3137 1.11943
\(122\) 13.3137 1.20537
\(123\) −6.48528 −0.584758
\(124\) −2.82843 −0.254000
\(125\) 0 0
\(126\) 0 0
\(127\) 2.82843 0.250982 0.125491 0.992095i \(-0.459949\pi\)
0.125491 + 0.992095i \(0.459949\pi\)
\(128\) 1.00000 0.0883883
\(129\) 1.85786 0.163576
\(130\) 0 0
\(131\) −2.24264 −0.195940 −0.0979702 0.995189i \(-0.531235\pi\)
−0.0979702 + 0.995189i \(0.531235\pi\)
\(132\) 2.82843 0.246183
\(133\) 0 0
\(134\) 9.65685 0.834225
\(135\) 0 0
\(136\) 5.41421 0.464265
\(137\) 16.0000 1.36697 0.683486 0.729964i \(-0.260463\pi\)
0.683486 + 0.729964i \(0.260463\pi\)
\(138\) 4.00000 0.340503
\(139\) −0.100505 −0.00852473 −0.00426236 0.999991i \(-0.501357\pi\)
−0.00426236 + 0.999991i \(0.501357\pi\)
\(140\) 0 0
\(141\) 6.34315 0.534189
\(142\) 12.4853 1.04774
\(143\) 4.00000 0.334497
\(144\) −2.65685 −0.221405
\(145\) 0 0
\(146\) −6.58579 −0.545044
\(147\) 0 0
\(148\) −3.65685 −0.300592
\(149\) −6.00000 −0.491539 −0.245770 0.969328i \(-0.579041\pi\)
−0.245770 + 0.969328i \(0.579041\pi\)
\(150\) 0 0
\(151\) 11.3137 0.920697 0.460348 0.887738i \(-0.347725\pi\)
0.460348 + 0.887738i \(0.347725\pi\)
\(152\) −3.41421 −0.276929
\(153\) −14.3848 −1.16294
\(154\) 0 0
\(155\) 0 0
\(156\) 0.485281 0.0388536
\(157\) −10.4853 −0.836817 −0.418408 0.908259i \(-0.637412\pi\)
−0.418408 + 0.908259i \(0.637412\pi\)
\(158\) −1.17157 −0.0932053
\(159\) 6.14214 0.487103
\(160\) 0 0
\(161\) 0 0
\(162\) 6.02944 0.473717
\(163\) −8.14214 −0.637741 −0.318871 0.947798i \(-0.603304\pi\)
−0.318871 + 0.947798i \(0.603304\pi\)
\(164\) −11.0711 −0.864505
\(165\) 0 0
\(166\) 6.24264 0.484523
\(167\) −23.7990 −1.84162 −0.920811 0.390010i \(-0.872471\pi\)
−0.920811 + 0.390010i \(0.872471\pi\)
\(168\) 0 0
\(169\) −12.3137 −0.947208
\(170\) 0 0
\(171\) 9.07107 0.693682
\(172\) 3.17157 0.241830
\(173\) −3.17157 −0.241130 −0.120565 0.992705i \(-0.538471\pi\)
−0.120565 + 0.992705i \(0.538471\pi\)
\(174\) 0.485281 0.0367891
\(175\) 0 0
\(176\) 4.82843 0.363956
\(177\) −6.68629 −0.502572
\(178\) 12.7279 0.953998
\(179\) 4.00000 0.298974 0.149487 0.988764i \(-0.452238\pi\)
0.149487 + 0.988764i \(0.452238\pi\)
\(180\) 0 0
\(181\) −14.4853 −1.07668 −0.538341 0.842727i \(-0.680949\pi\)
−0.538341 + 0.842727i \(0.680949\pi\)
\(182\) 0 0
\(183\) 7.79899 0.576518
\(184\) 6.82843 0.503398
\(185\) 0 0
\(186\) −1.65685 −0.121486
\(187\) 26.1421 1.91170
\(188\) 10.8284 0.789744
\(189\) 0 0
\(190\) 0 0
\(191\) −18.1421 −1.31272 −0.656359 0.754448i \(-0.727904\pi\)
−0.656359 + 0.754448i \(0.727904\pi\)
\(192\) 0.585786 0.0422755
\(193\) 5.65685 0.407189 0.203595 0.979055i \(-0.434738\pi\)
0.203595 + 0.979055i \(0.434738\pi\)
\(194\) −16.2426 −1.16615
\(195\) 0 0
\(196\) 0 0
\(197\) −13.7990 −0.983137 −0.491569 0.870839i \(-0.663576\pi\)
−0.491569 + 0.870839i \(0.663576\pi\)
\(198\) −12.8284 −0.911677
\(199\) 0.485281 0.0344007 0.0172003 0.999852i \(-0.494525\pi\)
0.0172003 + 0.999852i \(0.494525\pi\)
\(200\) 0 0
\(201\) 5.65685 0.399004
\(202\) 9.31371 0.655310
\(203\) 0 0
\(204\) 3.17157 0.222055
\(205\) 0 0
\(206\) −9.17157 −0.639014
\(207\) −18.1421 −1.26097
\(208\) 0.828427 0.0574411
\(209\) −16.4853 −1.14031
\(210\) 0 0
\(211\) −26.6274 −1.83311 −0.916553 0.399912i \(-0.869041\pi\)
−0.916553 + 0.399912i \(0.869041\pi\)
\(212\) 10.4853 0.720132
\(213\) 7.31371 0.501127
\(214\) 1.65685 0.113260
\(215\) 0 0
\(216\) −3.31371 −0.225469
\(217\) 0 0
\(218\) −14.4853 −0.981067
\(219\) −3.85786 −0.260690
\(220\) 0 0
\(221\) 4.48528 0.301713
\(222\) −2.14214 −0.143771
\(223\) 15.3137 1.02548 0.512741 0.858543i \(-0.328630\pi\)
0.512741 + 0.858543i \(0.328630\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) −7.31371 −0.486501
\(227\) 9.75736 0.647619 0.323809 0.946122i \(-0.395036\pi\)
0.323809 + 0.946122i \(0.395036\pi\)
\(228\) −2.00000 −0.132453
\(229\) −12.1421 −0.802375 −0.401187 0.915996i \(-0.631402\pi\)
−0.401187 + 0.915996i \(0.631402\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0.828427 0.0543889
\(233\) −0.686292 −0.0449605 −0.0224802 0.999747i \(-0.507156\pi\)
−0.0224802 + 0.999747i \(0.507156\pi\)
\(234\) −2.20101 −0.143885
\(235\) 0 0
\(236\) −11.4142 −0.743002
\(237\) −0.686292 −0.0445794
\(238\) 0 0
\(239\) −9.65685 −0.624650 −0.312325 0.949975i \(-0.601108\pi\)
−0.312325 + 0.949975i \(0.601108\pi\)
\(240\) 0 0
\(241\) 10.5858 0.681890 0.340945 0.940083i \(-0.389253\pi\)
0.340945 + 0.940083i \(0.389253\pi\)
\(242\) 12.3137 0.791555
\(243\) 13.4731 0.864299
\(244\) 13.3137 0.852323
\(245\) 0 0
\(246\) −6.48528 −0.413486
\(247\) −2.82843 −0.179969
\(248\) −2.82843 −0.179605
\(249\) 3.65685 0.231744
\(250\) 0 0
\(251\) −3.41421 −0.215503 −0.107752 0.994178i \(-0.534365\pi\)
−0.107752 + 0.994178i \(0.534365\pi\)
\(252\) 0 0
\(253\) 32.9706 2.07284
\(254\) 2.82843 0.177471
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 9.89949 0.617514 0.308757 0.951141i \(-0.400087\pi\)
0.308757 + 0.951141i \(0.400087\pi\)
\(258\) 1.85786 0.115666
\(259\) 0 0
\(260\) 0 0
\(261\) −2.20101 −0.136239
\(262\) −2.24264 −0.138551
\(263\) −28.0000 −1.72655 −0.863277 0.504730i \(-0.831592\pi\)
−0.863277 + 0.504730i \(0.831592\pi\)
\(264\) 2.82843 0.174078
\(265\) 0 0
\(266\) 0 0
\(267\) 7.45584 0.456290
\(268\) 9.65685 0.589886
\(269\) −1.51472 −0.0923540 −0.0461770 0.998933i \(-0.514704\pi\)
−0.0461770 + 0.998933i \(0.514704\pi\)
\(270\) 0 0
\(271\) −12.0000 −0.728948 −0.364474 0.931214i \(-0.618751\pi\)
−0.364474 + 0.931214i \(0.618751\pi\)
\(272\) 5.41421 0.328285
\(273\) 0 0
\(274\) 16.0000 0.966595
\(275\) 0 0
\(276\) 4.00000 0.240772
\(277\) −20.1421 −1.21022 −0.605112 0.796140i \(-0.706872\pi\)
−0.605112 + 0.796140i \(0.706872\pi\)
\(278\) −0.100505 −0.00602789
\(279\) 7.51472 0.449894
\(280\) 0 0
\(281\) 8.00000 0.477240 0.238620 0.971113i \(-0.423305\pi\)
0.238620 + 0.971113i \(0.423305\pi\)
\(282\) 6.34315 0.377729
\(283\) 6.24264 0.371086 0.185543 0.982636i \(-0.440596\pi\)
0.185543 + 0.982636i \(0.440596\pi\)
\(284\) 12.4853 0.740865
\(285\) 0 0
\(286\) 4.00000 0.236525
\(287\) 0 0
\(288\) −2.65685 −0.156557
\(289\) 12.3137 0.724336
\(290\) 0 0
\(291\) −9.51472 −0.557763
\(292\) −6.58579 −0.385404
\(293\) −19.6569 −1.14837 −0.574183 0.818727i \(-0.694680\pi\)
−0.574183 + 0.818727i \(0.694680\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) −3.65685 −0.212550
\(297\) −16.0000 −0.928414
\(298\) −6.00000 −0.347571
\(299\) 5.65685 0.327144
\(300\) 0 0
\(301\) 0 0
\(302\) 11.3137 0.651031
\(303\) 5.45584 0.313430
\(304\) −3.41421 −0.195819
\(305\) 0 0
\(306\) −14.3848 −0.822323
\(307\) 29.0711 1.65917 0.829587 0.558378i \(-0.188576\pi\)
0.829587 + 0.558378i \(0.188576\pi\)
\(308\) 0 0
\(309\) −5.37258 −0.305636
\(310\) 0 0
\(311\) −4.00000 −0.226819 −0.113410 0.993548i \(-0.536177\pi\)
−0.113410 + 0.993548i \(0.536177\pi\)
\(312\) 0.485281 0.0274736
\(313\) −22.3848 −1.26526 −0.632631 0.774453i \(-0.718025\pi\)
−0.632631 + 0.774453i \(0.718025\pi\)
\(314\) −10.4853 −0.591719
\(315\) 0 0
\(316\) −1.17157 −0.0659061
\(317\) 6.48528 0.364250 0.182125 0.983275i \(-0.441702\pi\)
0.182125 + 0.983275i \(0.441702\pi\)
\(318\) 6.14214 0.344434
\(319\) 4.00000 0.223957
\(320\) 0 0
\(321\) 0.970563 0.0541715
\(322\) 0 0
\(323\) −18.4853 −1.02855
\(324\) 6.02944 0.334969
\(325\) 0 0
\(326\) −8.14214 −0.450951
\(327\) −8.48528 −0.469237
\(328\) −11.0711 −0.611297
\(329\) 0 0
\(330\) 0 0
\(331\) −5.79899 −0.318741 −0.159371 0.987219i \(-0.550946\pi\)
−0.159371 + 0.987219i \(0.550946\pi\)
\(332\) 6.24264 0.342609
\(333\) 9.71573 0.532419
\(334\) −23.7990 −1.30222
\(335\) 0 0
\(336\) 0 0
\(337\) −6.00000 −0.326841 −0.163420 0.986557i \(-0.552253\pi\)
−0.163420 + 0.986557i \(0.552253\pi\)
\(338\) −12.3137 −0.669777
\(339\) −4.28427 −0.232690
\(340\) 0 0
\(341\) −13.6569 −0.739560
\(342\) 9.07107 0.490507
\(343\) 0 0
\(344\) 3.17157 0.171000
\(345\) 0 0
\(346\) −3.17157 −0.170505
\(347\) 8.82843 0.473935 0.236967 0.971518i \(-0.423847\pi\)
0.236967 + 0.971518i \(0.423847\pi\)
\(348\) 0.485281 0.0260138
\(349\) 14.4853 0.775379 0.387690 0.921790i \(-0.373273\pi\)
0.387690 + 0.921790i \(0.373273\pi\)
\(350\) 0 0
\(351\) −2.74517 −0.146526
\(352\) 4.82843 0.257356
\(353\) 34.3848 1.83012 0.915058 0.403321i \(-0.132144\pi\)
0.915058 + 0.403321i \(0.132144\pi\)
\(354\) −6.68629 −0.355372
\(355\) 0 0
\(356\) 12.7279 0.674579
\(357\) 0 0
\(358\) 4.00000 0.211407
\(359\) −28.2843 −1.49279 −0.746393 0.665505i \(-0.768216\pi\)
−0.746393 + 0.665505i \(0.768216\pi\)
\(360\) 0 0
\(361\) −7.34315 −0.386481
\(362\) −14.4853 −0.761329
\(363\) 7.21320 0.378595
\(364\) 0 0
\(365\) 0 0
\(366\) 7.79899 0.407660
\(367\) −8.97056 −0.468260 −0.234130 0.972205i \(-0.575224\pi\)
−0.234130 + 0.972205i \(0.575224\pi\)
\(368\) 6.82843 0.355956
\(369\) 29.4142 1.53124
\(370\) 0 0
\(371\) 0 0
\(372\) −1.65685 −0.0859039
\(373\) 13.5147 0.699766 0.349883 0.936793i \(-0.386221\pi\)
0.349883 + 0.936793i \(0.386221\pi\)
\(374\) 26.1421 1.35178
\(375\) 0 0
\(376\) 10.8284 0.558433
\(377\) 0.686292 0.0353458
\(378\) 0 0
\(379\) 17.5147 0.899671 0.449835 0.893112i \(-0.351483\pi\)
0.449835 + 0.893112i \(0.351483\pi\)
\(380\) 0 0
\(381\) 1.65685 0.0848832
\(382\) −18.1421 −0.928232
\(383\) −15.5147 −0.792765 −0.396383 0.918085i \(-0.629735\pi\)
−0.396383 + 0.918085i \(0.629735\pi\)
\(384\) 0.585786 0.0298933
\(385\) 0 0
\(386\) 5.65685 0.287926
\(387\) −8.42641 −0.428338
\(388\) −16.2426 −0.824595
\(389\) −0.142136 −0.00720656 −0.00360328 0.999994i \(-0.501147\pi\)
−0.00360328 + 0.999994i \(0.501147\pi\)
\(390\) 0 0
\(391\) 36.9706 1.86968
\(392\) 0 0
\(393\) −1.31371 −0.0662678
\(394\) −13.7990 −0.695183
\(395\) 0 0
\(396\) −12.8284 −0.644653
\(397\) −5.79899 −0.291043 −0.145521 0.989355i \(-0.546486\pi\)
−0.145521 + 0.989355i \(0.546486\pi\)
\(398\) 0.485281 0.0243250
\(399\) 0 0
\(400\) 0 0
\(401\) −6.00000 −0.299626 −0.149813 0.988714i \(-0.547867\pi\)
−0.149813 + 0.988714i \(0.547867\pi\)
\(402\) 5.65685 0.282138
\(403\) −2.34315 −0.116720
\(404\) 9.31371 0.463374
\(405\) 0 0
\(406\) 0 0
\(407\) −17.6569 −0.875218
\(408\) 3.17157 0.157016
\(409\) 13.4142 0.663290 0.331645 0.943404i \(-0.392396\pi\)
0.331645 + 0.943404i \(0.392396\pi\)
\(410\) 0 0
\(411\) 9.37258 0.462315
\(412\) −9.17157 −0.451851
\(413\) 0 0
\(414\) −18.1421 −0.891637
\(415\) 0 0
\(416\) 0.828427 0.0406170
\(417\) −0.0588745 −0.00288310
\(418\) −16.4853 −0.806321
\(419\) −32.8701 −1.60581 −0.802904 0.596109i \(-0.796713\pi\)
−0.802904 + 0.596109i \(0.796713\pi\)
\(420\) 0 0
\(421\) −5.31371 −0.258974 −0.129487 0.991581i \(-0.541333\pi\)
−0.129487 + 0.991581i \(0.541333\pi\)
\(422\) −26.6274 −1.29620
\(423\) −28.7696 −1.39882
\(424\) 10.4853 0.509210
\(425\) 0 0
\(426\) 7.31371 0.354350
\(427\) 0 0
\(428\) 1.65685 0.0800871
\(429\) 2.34315 0.113128
\(430\) 0 0
\(431\) −33.6569 −1.62119 −0.810597 0.585605i \(-0.800857\pi\)
−0.810597 + 0.585605i \(0.800857\pi\)
\(432\) −3.31371 −0.159431
\(433\) 13.4142 0.644646 0.322323 0.946630i \(-0.395536\pi\)
0.322323 + 0.946630i \(0.395536\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −14.4853 −0.693719
\(437\) −23.3137 −1.11525
\(438\) −3.85786 −0.184336
\(439\) −8.97056 −0.428142 −0.214071 0.976818i \(-0.568672\pi\)
−0.214071 + 0.976818i \(0.568672\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 4.48528 0.213343
\(443\) −36.9706 −1.75652 −0.878262 0.478179i \(-0.841297\pi\)
−0.878262 + 0.478179i \(0.841297\pi\)
\(444\) −2.14214 −0.101661
\(445\) 0 0
\(446\) 15.3137 0.725125
\(447\) −3.51472 −0.166240
\(448\) 0 0
\(449\) 28.6274 1.35101 0.675506 0.737355i \(-0.263925\pi\)
0.675506 + 0.737355i \(0.263925\pi\)
\(450\) 0 0
\(451\) −53.4558 −2.51714
\(452\) −7.31371 −0.344008
\(453\) 6.62742 0.311383
\(454\) 9.75736 0.457936
\(455\) 0 0
\(456\) −2.00000 −0.0936586
\(457\) −10.3431 −0.483832 −0.241916 0.970297i \(-0.577776\pi\)
−0.241916 + 0.970297i \(0.577776\pi\)
\(458\) −12.1421 −0.567365
\(459\) −17.9411 −0.837420
\(460\) 0 0
\(461\) 7.17157 0.334013 0.167007 0.985956i \(-0.446590\pi\)
0.167007 + 0.985956i \(0.446590\pi\)
\(462\) 0 0
\(463\) −16.9706 −0.788689 −0.394344 0.918963i \(-0.629028\pi\)
−0.394344 + 0.918963i \(0.629028\pi\)
\(464\) 0.828427 0.0384588
\(465\) 0 0
\(466\) −0.686292 −0.0317918
\(467\) 3.89949 0.180447 0.0902236 0.995922i \(-0.471242\pi\)
0.0902236 + 0.995922i \(0.471242\pi\)
\(468\) −2.20101 −0.101742
\(469\) 0 0
\(470\) 0 0
\(471\) −6.14214 −0.283015
\(472\) −11.4142 −0.525382
\(473\) 15.3137 0.704125
\(474\) −0.686292 −0.0315224
\(475\) 0 0
\(476\) 0 0
\(477\) −27.8579 −1.27552
\(478\) −9.65685 −0.441694
\(479\) 22.8284 1.04306 0.521529 0.853234i \(-0.325362\pi\)
0.521529 + 0.853234i \(0.325362\pi\)
\(480\) 0 0
\(481\) −3.02944 −0.138130
\(482\) 10.5858 0.482169
\(483\) 0 0
\(484\) 12.3137 0.559714
\(485\) 0 0
\(486\) 13.4731 0.611152
\(487\) 7.79899 0.353406 0.176703 0.984264i \(-0.443457\pi\)
0.176703 + 0.984264i \(0.443457\pi\)
\(488\) 13.3137 0.602683
\(489\) −4.76955 −0.215687
\(490\) 0 0
\(491\) −24.2843 −1.09593 −0.547967 0.836500i \(-0.684598\pi\)
−0.547967 + 0.836500i \(0.684598\pi\)
\(492\) −6.48528 −0.292379
\(493\) 4.48528 0.202007
\(494\) −2.82843 −0.127257
\(495\) 0 0
\(496\) −2.82843 −0.127000
\(497\) 0 0
\(498\) 3.65685 0.163868
\(499\) 41.6569 1.86482 0.932408 0.361406i \(-0.117703\pi\)
0.932408 + 0.361406i \(0.117703\pi\)
\(500\) 0 0
\(501\) −13.9411 −0.622844
\(502\) −3.41421 −0.152384
\(503\) 6.34315 0.282827 0.141413 0.989951i \(-0.454835\pi\)
0.141413 + 0.989951i \(0.454835\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 32.9706 1.46572
\(507\) −7.21320 −0.320350
\(508\) 2.82843 0.125491
\(509\) 33.7990 1.49811 0.749057 0.662506i \(-0.230507\pi\)
0.749057 + 0.662506i \(0.230507\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 1.00000 0.0441942
\(513\) 11.3137 0.499512
\(514\) 9.89949 0.436648
\(515\) 0 0
\(516\) 1.85786 0.0817879
\(517\) 52.2843 2.29946
\(518\) 0 0
\(519\) −1.85786 −0.0815512
\(520\) 0 0
\(521\) −4.92893 −0.215940 −0.107970 0.994154i \(-0.534435\pi\)
−0.107970 + 0.994154i \(0.534435\pi\)
\(522\) −2.20101 −0.0963356
\(523\) 4.10051 0.179303 0.0896513 0.995973i \(-0.471425\pi\)
0.0896513 + 0.995973i \(0.471425\pi\)
\(524\) −2.24264 −0.0979702
\(525\) 0 0
\(526\) −28.0000 −1.22086
\(527\) −15.3137 −0.667076
\(528\) 2.82843 0.123091
\(529\) 23.6274 1.02728
\(530\) 0 0
\(531\) 30.3259 1.31603
\(532\) 0 0
\(533\) −9.17157 −0.397265
\(534\) 7.45584 0.322646
\(535\) 0 0
\(536\) 9.65685 0.417113
\(537\) 2.34315 0.101114
\(538\) −1.51472 −0.0653042
\(539\) 0 0
\(540\) 0 0
\(541\) 18.9706 0.815608 0.407804 0.913069i \(-0.366295\pi\)
0.407804 + 0.913069i \(0.366295\pi\)
\(542\) −12.0000 −0.515444
\(543\) −8.48528 −0.364138
\(544\) 5.41421 0.232132
\(545\) 0 0
\(546\) 0 0
\(547\) −6.48528 −0.277291 −0.138645 0.990342i \(-0.544275\pi\)
−0.138645 + 0.990342i \(0.544275\pi\)
\(548\) 16.0000 0.683486
\(549\) −35.3726 −1.50967
\(550\) 0 0
\(551\) −2.82843 −0.120495
\(552\) 4.00000 0.170251
\(553\) 0 0
\(554\) −20.1421 −0.855757
\(555\) 0 0
\(556\) −0.100505 −0.00426236
\(557\) −20.8284 −0.882529 −0.441264 0.897377i \(-0.645470\pi\)
−0.441264 + 0.897377i \(0.645470\pi\)
\(558\) 7.51472 0.318123
\(559\) 2.62742 0.111128
\(560\) 0 0
\(561\) 15.3137 0.646545
\(562\) 8.00000 0.337460
\(563\) −39.4142 −1.66111 −0.830556 0.556936i \(-0.811977\pi\)
−0.830556 + 0.556936i \(0.811977\pi\)
\(564\) 6.34315 0.267095
\(565\) 0 0
\(566\) 6.24264 0.262398
\(567\) 0 0
\(568\) 12.4853 0.523871
\(569\) −6.68629 −0.280304 −0.140152 0.990130i \(-0.544759\pi\)
−0.140152 + 0.990130i \(0.544759\pi\)
\(570\) 0 0
\(571\) −41.7990 −1.74923 −0.874617 0.484815i \(-0.838887\pi\)
−0.874617 + 0.484815i \(0.838887\pi\)
\(572\) 4.00000 0.167248
\(573\) −10.6274 −0.443967
\(574\) 0 0
\(575\) 0 0
\(576\) −2.65685 −0.110702
\(577\) 25.8995 1.07821 0.539105 0.842239i \(-0.318763\pi\)
0.539105 + 0.842239i \(0.318763\pi\)
\(578\) 12.3137 0.512183
\(579\) 3.31371 0.137713
\(580\) 0 0
\(581\) 0 0
\(582\) −9.51472 −0.394398
\(583\) 50.6274 2.09677
\(584\) −6.58579 −0.272522
\(585\) 0 0
\(586\) −19.6569 −0.812017
\(587\) 2.92893 0.120890 0.0604450 0.998172i \(-0.480748\pi\)
0.0604450 + 0.998172i \(0.480748\pi\)
\(588\) 0 0
\(589\) 9.65685 0.397904
\(590\) 0 0
\(591\) −8.08326 −0.332501
\(592\) −3.65685 −0.150296
\(593\) 28.7279 1.17971 0.589857 0.807508i \(-0.299184\pi\)
0.589857 + 0.807508i \(0.299184\pi\)
\(594\) −16.0000 −0.656488
\(595\) 0 0
\(596\) −6.00000 −0.245770
\(597\) 0.284271 0.0116344
\(598\) 5.65685 0.231326
\(599\) −5.17157 −0.211305 −0.105652 0.994403i \(-0.533693\pi\)
−0.105652 + 0.994403i \(0.533693\pi\)
\(600\) 0 0
\(601\) −9.41421 −0.384014 −0.192007 0.981394i \(-0.561500\pi\)
−0.192007 + 0.981394i \(0.561500\pi\)
\(602\) 0 0
\(603\) −25.6569 −1.04483
\(604\) 11.3137 0.460348
\(605\) 0 0
\(606\) 5.45584 0.221629
\(607\) −40.2843 −1.63509 −0.817544 0.575866i \(-0.804665\pi\)
−0.817544 + 0.575866i \(0.804665\pi\)
\(608\) −3.41421 −0.138465
\(609\) 0 0
\(610\) 0 0
\(611\) 8.97056 0.362910
\(612\) −14.3848 −0.581470
\(613\) 23.6569 0.955491 0.477746 0.878498i \(-0.341454\pi\)
0.477746 + 0.878498i \(0.341454\pi\)
\(614\) 29.0711 1.17321
\(615\) 0 0
\(616\) 0 0
\(617\) 10.6863 0.430214 0.215107 0.976590i \(-0.430990\pi\)
0.215107 + 0.976590i \(0.430990\pi\)
\(618\) −5.37258 −0.216117
\(619\) −14.9289 −0.600044 −0.300022 0.953932i \(-0.596994\pi\)
−0.300022 + 0.953932i \(0.596994\pi\)
\(620\) 0 0
\(621\) −22.6274 −0.908007
\(622\) −4.00000 −0.160385
\(623\) 0 0
\(624\) 0.485281 0.0194268
\(625\) 0 0
\(626\) −22.3848 −0.894676
\(627\) −9.65685 −0.385658
\(628\) −10.4853 −0.418408
\(629\) −19.7990 −0.789437
\(630\) 0 0
\(631\) 4.48528 0.178556 0.0892781 0.996007i \(-0.471544\pi\)
0.0892781 + 0.996007i \(0.471544\pi\)
\(632\) −1.17157 −0.0466027
\(633\) −15.5980 −0.619964
\(634\) 6.48528 0.257563
\(635\) 0 0
\(636\) 6.14214 0.243552
\(637\) 0 0
\(638\) 4.00000 0.158362
\(639\) −33.1716 −1.31225
\(640\) 0 0
\(641\) 20.6274 0.814734 0.407367 0.913265i \(-0.366447\pi\)
0.407367 + 0.913265i \(0.366447\pi\)
\(642\) 0.970563 0.0383051
\(643\) 47.2132 1.86191 0.930953 0.365138i \(-0.118978\pi\)
0.930953 + 0.365138i \(0.118978\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) −18.4853 −0.727294
\(647\) 39.1127 1.53768 0.768839 0.639442i \(-0.220835\pi\)
0.768839 + 0.639442i \(0.220835\pi\)
\(648\) 6.02944 0.236859
\(649\) −55.1127 −2.16336
\(650\) 0 0
\(651\) 0 0
\(652\) −8.14214 −0.318871
\(653\) −15.6569 −0.612700 −0.306350 0.951919i \(-0.599108\pi\)
−0.306350 + 0.951919i \(0.599108\pi\)
\(654\) −8.48528 −0.331801
\(655\) 0 0
\(656\) −11.0711 −0.432253
\(657\) 17.4975 0.682642
\(658\) 0 0
\(659\) −32.8284 −1.27881 −0.639407 0.768868i \(-0.720820\pi\)
−0.639407 + 0.768868i \(0.720820\pi\)
\(660\) 0 0
\(661\) −18.2843 −0.711176 −0.355588 0.934643i \(-0.615719\pi\)
−0.355588 + 0.934643i \(0.615719\pi\)
\(662\) −5.79899 −0.225384
\(663\) 2.62742 0.102040
\(664\) 6.24264 0.242261
\(665\) 0 0
\(666\) 9.71573 0.376477
\(667\) 5.65685 0.219034
\(668\) −23.7990 −0.920811
\(669\) 8.97056 0.346822
\(670\) 0 0
\(671\) 64.2843 2.48167
\(672\) 0 0
\(673\) 48.0000 1.85026 0.925132 0.379646i \(-0.123954\pi\)
0.925132 + 0.379646i \(0.123954\pi\)
\(674\) −6.00000 −0.231111
\(675\) 0 0
\(676\) −12.3137 −0.473604
\(677\) −11.4558 −0.440284 −0.220142 0.975468i \(-0.570652\pi\)
−0.220142 + 0.975468i \(0.570652\pi\)
\(678\) −4.28427 −0.164536
\(679\) 0 0
\(680\) 0 0
\(681\) 5.71573 0.219027
\(682\) −13.6569 −0.522948
\(683\) −22.3431 −0.854937 −0.427468 0.904030i \(-0.640594\pi\)
−0.427468 + 0.904030i \(0.640594\pi\)
\(684\) 9.07107 0.346841
\(685\) 0 0
\(686\) 0 0
\(687\) −7.11270 −0.271366
\(688\) 3.17157 0.120915
\(689\) 8.68629 0.330921
\(690\) 0 0
\(691\) −10.2426 −0.389648 −0.194824 0.980838i \(-0.562414\pi\)
−0.194824 + 0.980838i \(0.562414\pi\)
\(692\) −3.17157 −0.120565
\(693\) 0 0
\(694\) 8.82843 0.335123
\(695\) 0 0
\(696\) 0.485281 0.0183945
\(697\) −59.9411 −2.27043
\(698\) 14.4853 0.548276
\(699\) −0.402020 −0.0152058
\(700\) 0 0
\(701\) −14.4853 −0.547102 −0.273551 0.961858i \(-0.588198\pi\)
−0.273551 + 0.961858i \(0.588198\pi\)
\(702\) −2.74517 −0.103610
\(703\) 12.4853 0.470891
\(704\) 4.82843 0.181978
\(705\) 0 0
\(706\) 34.3848 1.29409
\(707\) 0 0
\(708\) −6.68629 −0.251286
\(709\) −17.1127 −0.642681 −0.321340 0.946964i \(-0.604133\pi\)
−0.321340 + 0.946964i \(0.604133\pi\)
\(710\) 0 0
\(711\) 3.11270 0.116735
\(712\) 12.7279 0.476999
\(713\) −19.3137 −0.723304
\(714\) 0 0
\(715\) 0 0
\(716\) 4.00000 0.149487
\(717\) −5.65685 −0.211259
\(718\) −28.2843 −1.05556
\(719\) 9.45584 0.352643 0.176322 0.984333i \(-0.443580\pi\)
0.176322 + 0.984333i \(0.443580\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) −7.34315 −0.273284
\(723\) 6.20101 0.230618
\(724\) −14.4853 −0.538341
\(725\) 0 0
\(726\) 7.21320 0.267707
\(727\) −20.4853 −0.759757 −0.379879 0.925036i \(-0.624034\pi\)
−0.379879 + 0.925036i \(0.624034\pi\)
\(728\) 0 0
\(729\) −10.1960 −0.377628
\(730\) 0 0
\(731\) 17.1716 0.635114
\(732\) 7.79899 0.288259
\(733\) 34.0000 1.25582 0.627909 0.778287i \(-0.283911\pi\)
0.627909 + 0.778287i \(0.283911\pi\)
\(734\) −8.97056 −0.331110
\(735\) 0 0
\(736\) 6.82843 0.251699
\(737\) 46.6274 1.71754
\(738\) 29.4142 1.08275
\(739\) 8.82843 0.324759 0.162379 0.986728i \(-0.448083\pi\)
0.162379 + 0.986728i \(0.448083\pi\)
\(740\) 0 0
\(741\) −1.65685 −0.0608661
\(742\) 0 0
\(743\) −12.2010 −0.447612 −0.223806 0.974634i \(-0.571848\pi\)
−0.223806 + 0.974634i \(0.571848\pi\)
\(744\) −1.65685 −0.0607432
\(745\) 0 0
\(746\) 13.5147 0.494809
\(747\) −16.5858 −0.606842
\(748\) 26.1421 0.955851
\(749\) 0 0
\(750\) 0 0
\(751\) −16.6863 −0.608891 −0.304446 0.952530i \(-0.598471\pi\)
−0.304446 + 0.952530i \(0.598471\pi\)
\(752\) 10.8284 0.394872
\(753\) −2.00000 −0.0728841
\(754\) 0.686292 0.0249933
\(755\) 0 0
\(756\) 0 0
\(757\) 7.65685 0.278293 0.139147 0.990272i \(-0.455564\pi\)
0.139147 + 0.990272i \(0.455564\pi\)
\(758\) 17.5147 0.636163
\(759\) 19.3137 0.701043
\(760\) 0 0
\(761\) 14.3848 0.521448 0.260724 0.965413i \(-0.416039\pi\)
0.260724 + 0.965413i \(0.416039\pi\)
\(762\) 1.65685 0.0600215
\(763\) 0 0
\(764\) −18.1421 −0.656359
\(765\) 0 0
\(766\) −15.5147 −0.560570
\(767\) −9.45584 −0.341431
\(768\) 0.585786 0.0211377
\(769\) 11.5563 0.416733 0.208366 0.978051i \(-0.433185\pi\)
0.208366 + 0.978051i \(0.433185\pi\)
\(770\) 0 0
\(771\) 5.79899 0.208846
\(772\) 5.65685 0.203595
\(773\) −2.00000 −0.0719350 −0.0359675 0.999353i \(-0.511451\pi\)
−0.0359675 + 0.999353i \(0.511451\pi\)
\(774\) −8.42641 −0.302881
\(775\) 0 0
\(776\) −16.2426 −0.583077
\(777\) 0 0
\(778\) −0.142136 −0.00509581
\(779\) 37.7990 1.35429
\(780\) 0 0
\(781\) 60.2843 2.15714
\(782\) 36.9706 1.32206
\(783\) −2.74517 −0.0981042
\(784\) 0 0
\(785\) 0 0
\(786\) −1.31371 −0.0468584
\(787\) −26.7279 −0.952748 −0.476374 0.879243i \(-0.658049\pi\)
−0.476374 + 0.879243i \(0.658049\pi\)
\(788\) −13.7990 −0.491569
\(789\) −16.4020 −0.583927
\(790\) 0 0
\(791\) 0 0
\(792\) −12.8284 −0.455838
\(793\) 11.0294 0.391667
\(794\) −5.79899 −0.205798
\(795\) 0 0
\(796\) 0.485281 0.0172003
\(797\) −2.20101 −0.0779638 −0.0389819 0.999240i \(-0.512411\pi\)
−0.0389819 + 0.999240i \(0.512411\pi\)
\(798\) 0 0
\(799\) 58.6274 2.07409
\(800\) 0 0
\(801\) −33.8162 −1.19484
\(802\) −6.00000 −0.211867
\(803\) −31.7990 −1.12216
\(804\) 5.65685 0.199502
\(805\) 0 0
\(806\) −2.34315 −0.0825338
\(807\) −0.887302 −0.0312345
\(808\) 9.31371 0.327655
\(809\) 36.9706 1.29982 0.649908 0.760013i \(-0.274807\pi\)
0.649908 + 0.760013i \(0.274807\pi\)
\(810\) 0 0
\(811\) −35.4142 −1.24356 −0.621781 0.783191i \(-0.713590\pi\)
−0.621781 + 0.783191i \(0.713590\pi\)
\(812\) 0 0
\(813\) −7.02944 −0.246533
\(814\) −17.6569 −0.618872
\(815\) 0 0
\(816\) 3.17157 0.111027
\(817\) −10.8284 −0.378839
\(818\) 13.4142 0.469017
\(819\) 0 0
\(820\) 0 0
\(821\) −5.31371 −0.185450 −0.0927249 0.995692i \(-0.529558\pi\)
−0.0927249 + 0.995692i \(0.529558\pi\)
\(822\) 9.37258 0.326906
\(823\) 36.2843 1.26479 0.632395 0.774646i \(-0.282072\pi\)
0.632395 + 0.774646i \(0.282072\pi\)
\(824\) −9.17157 −0.319507
\(825\) 0 0
\(826\) 0 0
\(827\) 50.6274 1.76049 0.880244 0.474522i \(-0.157379\pi\)
0.880244 + 0.474522i \(0.157379\pi\)
\(828\) −18.1421 −0.630483
\(829\) 38.9706 1.35350 0.676752 0.736211i \(-0.263387\pi\)
0.676752 + 0.736211i \(0.263387\pi\)
\(830\) 0 0
\(831\) −11.7990 −0.409302
\(832\) 0.828427 0.0287205
\(833\) 0 0
\(834\) −0.0588745 −0.00203866
\(835\) 0 0
\(836\) −16.4853 −0.570155
\(837\) 9.37258 0.323964
\(838\) −32.8701 −1.13548
\(839\) 13.8579 0.478427 0.239213 0.970967i \(-0.423110\pi\)
0.239213 + 0.970967i \(0.423110\pi\)
\(840\) 0 0
\(841\) −28.3137 −0.976335
\(842\) −5.31371 −0.183122
\(843\) 4.68629 0.161404
\(844\) −26.6274 −0.916553
\(845\) 0 0
\(846\) −28.7696 −0.989118
\(847\) 0 0
\(848\) 10.4853 0.360066
\(849\) 3.65685 0.125503
\(850\) 0 0
\(851\) −24.9706 −0.855980
\(852\) 7.31371 0.250564
\(853\) −48.8284 −1.67185 −0.835927 0.548841i \(-0.815069\pi\)
−0.835927 + 0.548841i \(0.815069\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 1.65685 0.0566301
\(857\) −19.0711 −0.651455 −0.325728 0.945464i \(-0.605609\pi\)
−0.325728 + 0.945464i \(0.605609\pi\)
\(858\) 2.34315 0.0799937
\(859\) −35.2132 −1.20146 −0.600729 0.799452i \(-0.705123\pi\)
−0.600729 + 0.799452i \(0.705123\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) −33.6569 −1.14636
\(863\) −28.9706 −0.986169 −0.493085 0.869981i \(-0.664131\pi\)
−0.493085 + 0.869981i \(0.664131\pi\)
\(864\) −3.31371 −0.112735
\(865\) 0 0
\(866\) 13.4142 0.455834
\(867\) 7.21320 0.244973
\(868\) 0 0
\(869\) −5.65685 −0.191896
\(870\) 0 0
\(871\) 8.00000 0.271070
\(872\) −14.4853 −0.490534
\(873\) 43.1543 1.46055
\(874\) −23.3137 −0.788598
\(875\) 0 0
\(876\) −3.85786 −0.130345
\(877\) −26.2843 −0.887557 −0.443778 0.896137i \(-0.646362\pi\)
−0.443778 + 0.896137i \(0.646362\pi\)
\(878\) −8.97056 −0.302742
\(879\) −11.5147 −0.388382
\(880\) 0 0
\(881\) −34.3848 −1.15845 −0.579226 0.815167i \(-0.696645\pi\)
−0.579226 + 0.815167i \(0.696645\pi\)
\(882\) 0 0
\(883\) 30.3431 1.02113 0.510564 0.859840i \(-0.329437\pi\)
0.510564 + 0.859840i \(0.329437\pi\)
\(884\) 4.48528 0.150856
\(885\) 0 0
\(886\) −36.9706 −1.24205
\(887\) 7.11270 0.238821 0.119411 0.992845i \(-0.461900\pi\)
0.119411 + 0.992845i \(0.461900\pi\)
\(888\) −2.14214 −0.0718854
\(889\) 0 0
\(890\) 0 0
\(891\) 29.1127 0.975312
\(892\) 15.3137 0.512741
\(893\) −36.9706 −1.23717
\(894\) −3.51472 −0.117550
\(895\) 0 0
\(896\) 0 0
\(897\) 3.31371 0.110642
\(898\) 28.6274 0.955309
\(899\) −2.34315 −0.0781483
\(900\) 0 0
\(901\) 56.7696 1.89127
\(902\) −53.4558 −1.77988
\(903\) 0 0
\(904\) −7.31371 −0.243250
\(905\) 0 0
\(906\) 6.62742 0.220181
\(907\) 56.2843 1.86889 0.934444 0.356109i \(-0.115897\pi\)
0.934444 + 0.356109i \(0.115897\pi\)
\(908\) 9.75736 0.323809
\(909\) −24.7452 −0.820745
\(910\) 0 0
\(911\) −20.2843 −0.672048 −0.336024 0.941853i \(-0.609082\pi\)
−0.336024 + 0.941853i \(0.609082\pi\)
\(912\) −2.00000 −0.0662266
\(913\) 30.1421 0.997559
\(914\) −10.3431 −0.342121
\(915\) 0 0
\(916\) −12.1421 −0.401187
\(917\) 0 0
\(918\) −17.9411 −0.592145
\(919\) 32.4853 1.07159 0.535795 0.844348i \(-0.320012\pi\)
0.535795 + 0.844348i \(0.320012\pi\)
\(920\) 0 0
\(921\) 17.0294 0.561139
\(922\) 7.17157 0.236183
\(923\) 10.3431 0.340449
\(924\) 0 0
\(925\) 0 0
\(926\) −16.9706 −0.557687
\(927\) 24.3675 0.800335
\(928\) 0.828427 0.0271945
\(929\) −25.2132 −0.827218 −0.413609 0.910455i \(-0.635732\pi\)
−0.413609 + 0.910455i \(0.635732\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) −0.686292 −0.0224802
\(933\) −2.34315 −0.0767111
\(934\) 3.89949 0.127595
\(935\) 0 0
\(936\) −2.20101 −0.0719423
\(937\) 11.7574 0.384096 0.192048 0.981386i \(-0.438487\pi\)
0.192048 + 0.981386i \(0.438487\pi\)
\(938\) 0 0
\(939\) −13.1127 −0.427917
\(940\) 0 0
\(941\) 50.0000 1.62995 0.814977 0.579494i \(-0.196750\pi\)
0.814977 + 0.579494i \(0.196750\pi\)
\(942\) −6.14214 −0.200122
\(943\) −75.5980 −2.46181
\(944\) −11.4142 −0.371501
\(945\) 0 0
\(946\) 15.3137 0.497892
\(947\) −0.828427 −0.0269203 −0.0134601 0.999909i \(-0.504285\pi\)
−0.0134601 + 0.999909i \(0.504285\pi\)
\(948\) −0.686292 −0.0222897
\(949\) −5.45584 −0.177104
\(950\) 0 0
\(951\) 3.79899 0.123191
\(952\) 0 0
\(953\) −11.6569 −0.377603 −0.188801 0.982015i \(-0.560460\pi\)
−0.188801 + 0.982015i \(0.560460\pi\)
\(954\) −27.8579 −0.901932
\(955\) 0 0
\(956\) −9.65685 −0.312325
\(957\) 2.34315 0.0757431
\(958\) 22.8284 0.737553
\(959\) 0 0
\(960\) 0 0
\(961\) −23.0000 −0.741935
\(962\) −3.02944 −0.0976730
\(963\) −4.40202 −0.141853
\(964\) 10.5858 0.340945
\(965\) 0 0
\(966\) 0 0
\(967\) −13.4558 −0.432711 −0.216355 0.976315i \(-0.569417\pi\)
−0.216355 + 0.976315i \(0.569417\pi\)
\(968\) 12.3137 0.395778
\(969\) −10.8284 −0.347859
\(970\) 0 0
\(971\) −37.3553 −1.19879 −0.599395 0.800453i \(-0.704592\pi\)
−0.599395 + 0.800453i \(0.704592\pi\)
\(972\) 13.4731 0.432150
\(973\) 0 0
\(974\) 7.79899 0.249896
\(975\) 0 0
\(976\) 13.3137 0.426161
\(977\) 35.3137 1.12979 0.564893 0.825164i \(-0.308918\pi\)
0.564893 + 0.825164i \(0.308918\pi\)
\(978\) −4.76955 −0.152513
\(979\) 61.4558 1.96414
\(980\) 0 0
\(981\) 38.4853 1.22874
\(982\) −24.2843 −0.774942
\(983\) −51.7990 −1.65213 −0.826066 0.563574i \(-0.809426\pi\)
−0.826066 + 0.563574i \(0.809426\pi\)
\(984\) −6.48528 −0.206743
\(985\) 0 0
\(986\) 4.48528 0.142840
\(987\) 0 0
\(988\) −2.82843 −0.0899843
\(989\) 21.6569 0.688648
\(990\) 0 0
\(991\) −28.7696 −0.913895 −0.456947 0.889494i \(-0.651057\pi\)
−0.456947 + 0.889494i \(0.651057\pi\)
\(992\) −2.82843 −0.0898027
\(993\) −3.39697 −0.107800
\(994\) 0 0
\(995\) 0 0
\(996\) 3.65685 0.115872
\(997\) 38.2843 1.21248 0.606238 0.795284i \(-0.292678\pi\)
0.606238 + 0.795284i \(0.292678\pi\)
\(998\) 41.6569 1.31862
\(999\) 12.1177 0.383389
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2450.2.a.bs.1.1 2
5.2 odd 4 2450.2.c.w.99.4 4
5.3 odd 4 2450.2.c.w.99.1 4
5.4 even 2 490.2.a.l.1.2 2
7.6 odd 2 2450.2.a.bn.1.2 2
15.14 odd 2 4410.2.a.by.1.1 2
20.19 odd 2 3920.2.a.ca.1.1 2
35.4 even 6 490.2.e.j.471.1 4
35.9 even 6 490.2.e.j.361.1 4
35.13 even 4 2450.2.c.t.99.2 4
35.19 odd 6 490.2.e.i.361.2 4
35.24 odd 6 490.2.e.i.471.2 4
35.27 even 4 2450.2.c.t.99.3 4
35.34 odd 2 490.2.a.m.1.1 yes 2
105.104 even 2 4410.2.a.bt.1.1 2
140.139 even 2 3920.2.a.bm.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
490.2.a.l.1.2 2 5.4 even 2
490.2.a.m.1.1 yes 2 35.34 odd 2
490.2.e.i.361.2 4 35.19 odd 6
490.2.e.i.471.2 4 35.24 odd 6
490.2.e.j.361.1 4 35.9 even 6
490.2.e.j.471.1 4 35.4 even 6
2450.2.a.bn.1.2 2 7.6 odd 2
2450.2.a.bs.1.1 2 1.1 even 1 trivial
2450.2.c.t.99.2 4 35.13 even 4
2450.2.c.t.99.3 4 35.27 even 4
2450.2.c.w.99.1 4 5.3 odd 4
2450.2.c.w.99.4 4 5.2 odd 4
3920.2.a.bm.1.2 2 140.139 even 2
3920.2.a.ca.1.1 2 20.19 odd 2
4410.2.a.bt.1.1 2 105.104 even 2
4410.2.a.by.1.1 2 15.14 odd 2