Properties

Label 2450.2.a.bq
Level 2450
Weight 2
Character orbit 2450.a
Self dual yes
Analytic conductor 19.563
Analytic rank 0
Dimension 2
CM no
Inner twists 1

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 2450 = 2 \cdot 5^{2} \cdot 7^{2} \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 2450.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(19.5633484952\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{6}) \)
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 70)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + q^{2} + \beta q^{3} + q^{4} + \beta q^{6} + q^{8} + 3 q^{9} +O(q^{10})\) \( q + q^{2} + \beta q^{3} + q^{4} + \beta q^{6} + q^{8} + 3 q^{9} + 2 \beta q^{11} + \beta q^{12} + ( 2 - \beta ) q^{13} + q^{16} + 2 q^{17} + 3 q^{18} + ( -4 - \beta ) q^{19} + 2 \beta q^{22} + ( 2 + 2 \beta ) q^{23} + \beta q^{24} + ( 2 - \beta ) q^{26} + ( 2 - 2 \beta ) q^{29} + ( -4 + 2 \beta ) q^{31} + q^{32} + 12 q^{33} + 2 q^{34} + 3 q^{36} -2 q^{37} + ( -4 - \beta ) q^{38} + ( -6 + 2 \beta ) q^{39} + ( 6 + 2 \beta ) q^{41} + ( -4 - 2 \beta ) q^{43} + 2 \beta q^{44} + ( 2 + 2 \beta ) q^{46} + ( 4 - 2 \beta ) q^{47} + \beta q^{48} + 2 \beta q^{51} + ( 2 - \beta ) q^{52} + ( 6 - 2 \beta ) q^{53} + ( -6 - 4 \beta ) q^{57} + ( 2 - 2 \beta ) q^{58} + ( 4 + \beta ) q^{59} + ( -6 - \beta ) q^{61} + ( -4 + 2 \beta ) q^{62} + q^{64} + 12 q^{66} + 8 q^{67} + 2 q^{68} + ( 12 + 2 \beta ) q^{69} + ( -6 - 2 \beta ) q^{71} + 3 q^{72} + ( -2 - 2 \beta ) q^{73} -2 q^{74} + ( -4 - \beta ) q^{76} + ( -6 + 2 \beta ) q^{78} + ( 2 - 2 \beta ) q^{79} -9 q^{81} + ( 6 + 2 \beta ) q^{82} + \beta q^{83} + ( -4 - 2 \beta ) q^{86} + ( -12 + 2 \beta ) q^{87} + 2 \beta q^{88} + 10 q^{89} + ( 2 + 2 \beta ) q^{92} + ( 12 - 4 \beta ) q^{93} + ( 4 - 2 \beta ) q^{94} + \beta q^{96} + ( 6 - 4 \beta ) q^{97} + 6 \beta q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q + 2q^{2} + 2q^{4} + 2q^{8} + 6q^{9} + O(q^{10}) \) \( 2q + 2q^{2} + 2q^{4} + 2q^{8} + 6q^{9} + 4q^{13} + 2q^{16} + 4q^{17} + 6q^{18} - 8q^{19} + 4q^{23} + 4q^{26} + 4q^{29} - 8q^{31} + 2q^{32} + 24q^{33} + 4q^{34} + 6q^{36} - 4q^{37} - 8q^{38} - 12q^{39} + 12q^{41} - 8q^{43} + 4q^{46} + 8q^{47} + 4q^{52} + 12q^{53} - 12q^{57} + 4q^{58} + 8q^{59} - 12q^{61} - 8q^{62} + 2q^{64} + 24q^{66} + 16q^{67} + 4q^{68} + 24q^{69} - 12q^{71} + 6q^{72} - 4q^{73} - 4q^{74} - 8q^{76} - 12q^{78} + 4q^{79} - 18q^{81} + 12q^{82} - 8q^{86} - 24q^{87} + 20q^{89} + 4q^{92} + 24q^{93} + 8q^{94} + 12q^{97} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−2.44949
2.44949
1.00000 −2.44949 1.00000 0 −2.44949 0 1.00000 3.00000 0
1.2 1.00000 2.44949 1.00000 0 2.44949 0 1.00000 3.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2450.2.a.bq 2
5.b even 2 1 2450.2.a.bl 2
5.c odd 4 2 490.2.c.e 4
7.b odd 2 1 350.2.a.h 2
21.c even 2 1 3150.2.a.bs 2
28.d even 2 1 2800.2.a.bl 2
35.c odd 2 1 350.2.a.g 2
35.f even 4 2 70.2.c.a 4
35.k even 12 4 490.2.i.c 8
35.l odd 12 4 490.2.i.f 8
105.g even 2 1 3150.2.a.bt 2
105.k odd 4 2 630.2.g.g 4
140.c even 2 1 2800.2.a.bm 2
140.j odd 4 2 560.2.g.e 4
280.s even 4 2 2240.2.g.j 4
280.y odd 4 2 2240.2.g.i 4
420.w even 4 2 5040.2.t.t 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
70.2.c.a 4 35.f even 4 2
350.2.a.g 2 35.c odd 2 1
350.2.a.h 2 7.b odd 2 1
490.2.c.e 4 5.c odd 4 2
490.2.i.c 8 35.k even 12 4
490.2.i.f 8 35.l odd 12 4
560.2.g.e 4 140.j odd 4 2
630.2.g.g 4 105.k odd 4 2
2240.2.g.i 4 280.y odd 4 2
2240.2.g.j 4 280.s even 4 2
2450.2.a.bl 2 5.b even 2 1
2450.2.a.bq 2 1.a even 1 1 trivial
2800.2.a.bl 2 28.d even 2 1
2800.2.a.bm 2 140.c even 2 1
3150.2.a.bs 2 21.c even 2 1
3150.2.a.bt 2 105.g even 2 1
5040.2.t.t 4 420.w even 4 2

Atkin-Lehner signs

\( p \) Sign
\(2\) \(-1\)
\(5\) \(-1\)
\(7\) \(-1\)

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(2450))\):

\( T_{3}^{2} - 6 \)
\( T_{11}^{2} - 24 \)
\( T_{13}^{2} - 4 T_{13} - 2 \)
\( T_{17} - 2 \)
\( T_{19}^{2} + 8 T_{19} + 10 \)
\( T_{23}^{2} - 4 T_{23} - 20 \)
\( T_{37} + 2 \)

Hecke Characteristic Polynomials

$p$ $F_p(T)$
$2$ \( ( 1 - T )^{2} \)
$3$ \( 1 + 9 T^{4} \)
$5$ 1
$7$ 1
$11$ \( 1 - 2 T^{2} + 121 T^{4} \)
$13$ \( 1 - 4 T + 24 T^{2} - 52 T^{3} + 169 T^{4} \)
$17$ \( ( 1 - 2 T + 17 T^{2} )^{2} \)
$19$ \( 1 + 8 T + 48 T^{2} + 152 T^{3} + 361 T^{4} \)
$23$ \( 1 - 4 T + 26 T^{2} - 92 T^{3} + 529 T^{4} \)
$29$ \( 1 - 4 T + 38 T^{2} - 116 T^{3} + 841 T^{4} \)
$31$ \( 1 + 8 T + 54 T^{2} + 248 T^{3} + 961 T^{4} \)
$37$ \( ( 1 + 2 T + 37 T^{2} )^{2} \)
$41$ \( 1 - 12 T + 94 T^{2} - 492 T^{3} + 1681 T^{4} \)
$43$ \( 1 + 8 T + 78 T^{2} + 344 T^{3} + 1849 T^{4} \)
$47$ \( 1 - 8 T + 86 T^{2} - 376 T^{3} + 2209 T^{4} \)
$53$ \( 1 - 12 T + 118 T^{2} - 636 T^{3} + 2809 T^{4} \)
$59$ \( 1 - 8 T + 128 T^{2} - 472 T^{3} + 3481 T^{4} \)
$61$ \( 1 + 12 T + 152 T^{2} + 732 T^{3} + 3721 T^{4} \)
$67$ \( ( 1 - 8 T + 67 T^{2} )^{2} \)
$71$ \( 1 + 12 T + 154 T^{2} + 852 T^{3} + 5041 T^{4} \)
$73$ \( 1 + 4 T + 126 T^{2} + 292 T^{3} + 5329 T^{4} \)
$79$ \( 1 - 4 T + 138 T^{2} - 316 T^{3} + 6241 T^{4} \)
$83$ \( 1 + 160 T^{2} + 6889 T^{4} \)
$89$ \( ( 1 - 10 T + 89 T^{2} )^{2} \)
$97$ \( 1 - 12 T + 134 T^{2} - 1164 T^{3} + 9409 T^{4} \)
show more
show less