Properties

Label 2450.2.a.bj
Level $2450$
Weight $2$
Character orbit 2450.a
Self dual yes
Analytic conductor $19.563$
Analytic rank $1$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2450,2,Mod(1,2450)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2450.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2450, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 2450 = 2 \cdot 5^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2450.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,-2,0,2,0,0,0,-2,-2,0,-4,0,0,0,0,2,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(19.5633484952\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{2}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 98)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{2}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - q^{2} + \beta q^{3} + q^{4} - \beta q^{6} - q^{8} - q^{9} - 2 q^{11} + \beta q^{12} + q^{16} + \beta q^{17} + q^{18} - 5 \beta q^{19} + 2 q^{22} + 4 q^{23} - \beta q^{24} - 4 \beta q^{27} + 2 q^{29} + \cdots + 2 q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{2} + 2 q^{4} - 2 q^{8} - 2 q^{9} - 4 q^{11} + 2 q^{16} + 2 q^{18} + 4 q^{22} + 8 q^{23} + 4 q^{29} - 2 q^{32} - 2 q^{36} - 20 q^{37} - 4 q^{43} - 4 q^{44} - 8 q^{46} + 4 q^{51} + 4 q^{53} - 20 q^{57}+ \cdots + 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.41421
1.41421
−1.00000 −1.41421 1.00000 0 1.41421 0 −1.00000 −1.00000 0
1.2 −1.00000 1.41421 1.00000 0 −1.41421 0 −1.00000 −1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(5\) \( +1 \)
\(7\) \( +1 \)

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2450.2.a.bj 2
5.b even 2 1 98.2.a.b 2
5.c odd 4 2 2450.2.c.v 4
7.b odd 2 1 inner 2450.2.a.bj 2
15.d odd 2 1 882.2.a.n 2
20.d odd 2 1 784.2.a.l 2
35.c odd 2 1 98.2.a.b 2
35.f even 4 2 2450.2.c.v 4
35.i odd 6 2 98.2.c.c 4
35.j even 6 2 98.2.c.c 4
40.e odd 2 1 3136.2.a.bm 2
40.f even 2 1 3136.2.a.bn 2
60.h even 2 1 7056.2.a.cl 2
105.g even 2 1 882.2.a.n 2
105.o odd 6 2 882.2.g.l 4
105.p even 6 2 882.2.g.l 4
140.c even 2 1 784.2.a.l 2
140.p odd 6 2 784.2.i.m 4
140.s even 6 2 784.2.i.m 4
280.c odd 2 1 3136.2.a.bn 2
280.n even 2 1 3136.2.a.bm 2
420.o odd 2 1 7056.2.a.cl 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
98.2.a.b 2 5.b even 2 1
98.2.a.b 2 35.c odd 2 1
98.2.c.c 4 35.i odd 6 2
98.2.c.c 4 35.j even 6 2
784.2.a.l 2 20.d odd 2 1
784.2.a.l 2 140.c even 2 1
784.2.i.m 4 140.p odd 6 2
784.2.i.m 4 140.s even 6 2
882.2.a.n 2 15.d odd 2 1
882.2.a.n 2 105.g even 2 1
882.2.g.l 4 105.o odd 6 2
882.2.g.l 4 105.p even 6 2
2450.2.a.bj 2 1.a even 1 1 trivial
2450.2.a.bj 2 7.b odd 2 1 inner
2450.2.c.v 4 5.c odd 4 2
2450.2.c.v 4 35.f even 4 2
3136.2.a.bm 2 40.e odd 2 1
3136.2.a.bm 2 280.n even 2 1
3136.2.a.bn 2 40.f even 2 1
3136.2.a.bn 2 280.c odd 2 1
7056.2.a.cl 2 60.h even 2 1
7056.2.a.cl 2 420.o odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(2450))\):

\( T_{3}^{2} - 2 \) Copy content Toggle raw display
\( T_{11} + 2 \) Copy content Toggle raw display
\( T_{13} \) Copy content Toggle raw display
\( T_{17}^{2} - 2 \) Copy content Toggle raw display
\( T_{19}^{2} - 50 \) Copy content Toggle raw display
\( T_{23} - 4 \) Copy content Toggle raw display
\( T_{37} + 10 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T + 1)^{2} \) Copy content Toggle raw display
$3$ \( T^{2} - 2 \) Copy content Toggle raw display
$5$ \( T^{2} \) Copy content Toggle raw display
$7$ \( T^{2} \) Copy content Toggle raw display
$11$ \( (T + 2)^{2} \) Copy content Toggle raw display
$13$ \( T^{2} \) Copy content Toggle raw display
$17$ \( T^{2} - 2 \) Copy content Toggle raw display
$19$ \( T^{2} - 50 \) Copy content Toggle raw display
$23$ \( (T - 4)^{2} \) Copy content Toggle raw display
$29$ \( (T - 2)^{2} \) Copy content Toggle raw display
$31$ \( T^{2} - 72 \) Copy content Toggle raw display
$37$ \( (T + 10)^{2} \) Copy content Toggle raw display
$41$ \( T^{2} - 98 \) Copy content Toggle raw display
$43$ \( (T + 2)^{2} \) Copy content Toggle raw display
$47$ \( T^{2} - 8 \) Copy content Toggle raw display
$53$ \( (T - 2)^{2} \) Copy content Toggle raw display
$59$ \( T^{2} - 2 \) Copy content Toggle raw display
$61$ \( T^{2} - 8 \) Copy content Toggle raw display
$67$ \( (T + 12)^{2} \) Copy content Toggle raw display
$71$ \( (T + 12)^{2} \) Copy content Toggle raw display
$73$ \( T^{2} - 2 \) Copy content Toggle raw display
$79$ \( (T + 4)^{2} \) Copy content Toggle raw display
$83$ \( T^{2} - 98 \) Copy content Toggle raw display
$89$ \( T^{2} - 50 \) Copy content Toggle raw display
$97$ \( T^{2} - 98 \) Copy content Toggle raw display
show more
show less