Properties

Label 245.8.a.b
Level $245$
Weight $8$
Character orbit 245.a
Self dual yes
Analytic conductor $76.534$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [245,8,Mod(1,245)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("245.1"); S:= CuspForms(chi, 8); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(245, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 8, names="a")
 
Level: \( N \) \(=\) \( 245 = 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 245.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,16,30] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(76.5343312436\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{11}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 11 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 35)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 2\sqrt{11}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta + 8) q^{2} + (6 \beta + 15) q^{3} + (16 \beta - 20) q^{4} - 125 q^{5} + (63 \beta + 384) q^{6} + ( - 20 \beta - 480) q^{8} + (180 \beta - 378) q^{9} + ( - 125 \beta - 1000) q^{10} + ( - 380 \beta - 3953) q^{11}+ \cdots + ( - 567900 \beta - 1515366) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 16 q^{2} + 30 q^{3} - 40 q^{4} - 250 q^{5} + 768 q^{6} - 960 q^{8} - 756 q^{9} - 2000 q^{10} - 7906 q^{11} + 7848 q^{12} + 17818 q^{13} - 3750 q^{15} - 4320 q^{16} + 2398 q^{17} + 9792 q^{18} + 3612 q^{19}+ \cdots - 3030732 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−3.31662
3.31662
1.36675 −24.7995 −126.132 −125.000 −33.8947 0 −347.335 −1571.98 −170.844
1.2 14.6332 54.7995 86.1320 −125.000 801.895 0 −612.665 815.985 −1829.16
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(5\) \( +1 \)
\(7\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 245.8.a.b 2
7.b odd 2 1 35.8.a.a 2
21.c even 2 1 315.8.a.c 2
28.d even 2 1 560.8.a.i 2
35.c odd 2 1 175.8.a.b 2
35.f even 4 2 175.8.b.c 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
35.8.a.a 2 7.b odd 2 1
175.8.a.b 2 35.c odd 2 1
175.8.b.c 4 35.f even 4 2
245.8.a.b 2 1.a even 1 1 trivial
315.8.a.c 2 21.c even 2 1
560.8.a.i 2 28.d even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{8}^{\mathrm{new}}(\Gamma_0(245))\):

\( T_{2}^{2} - 16T_{2} + 20 \) Copy content Toggle raw display
\( T_{3}^{2} - 30T_{3} - 1359 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} - 16T + 20 \) Copy content Toggle raw display
$3$ \( T^{2} - 30T - 1359 \) Copy content Toggle raw display
$5$ \( (T + 125)^{2} \) Copy content Toggle raw display
$7$ \( T^{2} \) Copy content Toggle raw display
$11$ \( T^{2} + 7906 T + 9272609 \) Copy content Toggle raw display
$13$ \( T^{2} - 17818 T + 71682425 \) Copy content Toggle raw display
$17$ \( T^{2} - 2398 T - 213462799 \) Copy content Toggle raw display
$19$ \( T^{2} + \cdots - 1348143980 \) Copy content Toggle raw display
$23$ \( T^{2} + \cdots - 4980234316 \) Copy content Toggle raw display
$29$ \( T^{2} + \cdots - 20838975695 \) Copy content Toggle raw display
$31$ \( T^{2} + \cdots - 6409132848 \) Copy content Toggle raw display
$37$ \( T^{2} + \cdots - 66117717036 \) Copy content Toggle raw display
$41$ \( T^{2} + \cdots - 58262616304 \) Copy content Toggle raw display
$43$ \( T^{2} + \cdots + 197893738100 \) Copy content Toggle raw display
$47$ \( T^{2} + \cdots - 123267405047 \) Copy content Toggle raw display
$53$ \( T^{2} + \cdots + 214640651072 \) Copy content Toggle raw display
$59$ \( T^{2} + \cdots - 818710818800 \) Copy content Toggle raw display
$61$ \( T^{2} + \cdots + 816706565136 \) Copy content Toggle raw display
$67$ \( T^{2} + \cdots - 10082635080448 \) Copy content Toggle raw display
$71$ \( T^{2} + \cdots - 1610731398080 \) Copy content Toggle raw display
$73$ \( T^{2} + \cdots + 10866534315332 \) Copy content Toggle raw display
$79$ \( T^{2} + \cdots + 14225767990465 \) Copy content Toggle raw display
$83$ \( T^{2} + \cdots - 38809208931248 \) Copy content Toggle raw display
$89$ \( T^{2} + \cdots + 77796446568160 \) Copy content Toggle raw display
$97$ \( T^{2} + \cdots - 15859623239687 \) Copy content Toggle raw display
show more
show less