Properties

Label 245.6.j
Level $245$
Weight $6$
Character orbit 245.j
Rep. character $\chi_{245}(79,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $192$
Sturm bound $168$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 245 = 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 245.j (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 35 \)
Character field: \(\Q(\zeta_{6})\)
Sturm bound: \(168\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{6}(245, [\chi])\).

Total New Old
Modular forms 296 208 88
Cusp forms 264 192 72
Eisenstein series 32 16 16

Trace form

\( 192 q + 1474 q^{4} + 12 q^{5} - 72 q^{6} + 7540 q^{9} + 84 q^{10} + 550 q^{11} - 1188 q^{15} - 21946 q^{16} - 3316 q^{19} + 1096 q^{20} - 3300 q^{24} + 1742 q^{25} + 13570 q^{26} - 23120 q^{29} - 14930 q^{30}+ \cdots + 188664 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{6}^{\mathrm{new}}(245, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{6}^{\mathrm{old}}(245, [\chi])\) into lower level spaces

\( S_{6}^{\mathrm{old}}(245, [\chi]) \simeq \) \(S_{6}^{\mathrm{new}}(35, [\chi])\)\(^{\oplus 2}\)