Properties

Label 245.6.f
Level $245$
Weight $6$
Character orbit 245.f
Rep. character $\chi_{245}(48,\cdot)$
Character field $\Q(\zeta_{4})$
Dimension $192$
Sturm bound $168$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 245 = 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 245.f (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 35 \)
Character field: \(\Q(i)\)
Sturm bound: \(168\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{6}(245, [\chi])\).

Total New Old
Modular forms 296 208 88
Cusp forms 264 192 72
Eisenstein series 32 16 16

Trace form

\( 192 q + 4 q^{2} + 356 q^{8} - 792 q^{11} - 2972 q^{15} - 41480 q^{16} - 5256 q^{18} - 6504 q^{22} - 9124 q^{23} + 9552 q^{25} + 29832 q^{30} + 1756 q^{32} - 213520 q^{36} - 20808 q^{37} + 42084 q^{43} + 31768 q^{46}+ \cdots - 773408 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{6}^{\mathrm{new}}(245, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{6}^{\mathrm{old}}(245, [\chi])\) into lower level spaces

\( S_{6}^{\mathrm{old}}(245, [\chi]) \simeq \) \(S_{6}^{\mathrm{new}}(35, [\chi])\)\(^{\oplus 2}\)