Properties

Label 245.6.e
Level $245$
Weight $6$
Character orbit 245.e
Rep. character $\chi_{245}(116,\cdot)$
Character field $\Q(\zeta_{3})$
Dimension $132$
Sturm bound $168$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 245 = 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 245.e (of order \(3\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 7 \)
Character field: \(\Q(\zeta_{3})\)
Sturm bound: \(168\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{6}(245, [\chi])\).

Total New Old
Modular forms 296 132 164
Cusp forms 264 132 132
Eisenstein series 32 0 32

Trace form

\( 132 q - 4 q^{2} + 18 q^{3} - 1068 q^{4} + 50 q^{5} - 80 q^{6} - 456 q^{8} - 4774 q^{9} + 200 q^{10} - 1598 q^{11} - 514 q^{12} - 3688 q^{13} + 2200 q^{15} - 12208 q^{16} + 3396 q^{17} + 1398 q^{18} - 1736 q^{19}+ \cdots + 1428776 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{6}^{\mathrm{new}}(245, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{6}^{\mathrm{old}}(245, [\chi])\) into lower level spaces

\( S_{6}^{\mathrm{old}}(245, [\chi]) \simeq \) \(S_{6}^{\mathrm{new}}(7, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(35, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(49, [\chi])\)\(^{\oplus 2}\)