Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [245,6,Mod(99,245)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(245, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([1, 0]))
N = Newforms(chi, 6, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("245.99");
S:= CuspForms(chi, 6);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 245 = 5 \cdot 7^{2} \) |
Weight: | \( k \) | \(=\) | \( 6 \) |
Character orbit: | \([\chi]\) | \(=\) | 245.b (of order \(2\), degree \(1\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(39.2940358542\) |
Analytic rank: | \(0\) |
Dimension: | \(32\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
99.1 | − | 10.4629i | − | 28.3615i | −77.4731 | −5.99023 | + | 55.5798i | −296.745 | 0 | 475.782i | −561.377 | 581.528 | + | 62.6754i | ||||||||||||
99.2 | − | 10.4629i | 28.3615i | −77.4731 | 5.99023 | − | 55.5798i | 296.745 | 0 | 475.782i | −561.377 | −581.528 | − | 62.6754i | |||||||||||||
99.3 | − | 10.2318i | − | 7.10531i | −72.6906 | −40.4579 | + | 38.5766i | −72.7004 | 0 | 416.339i | 192.515 | 394.710 | + | 413.959i | ||||||||||||
99.4 | − | 10.2318i | 7.10531i | −72.6906 | 40.4579 | − | 38.5766i | 72.7004 | 0 | 416.339i | 192.515 | −394.710 | − | 413.959i | |||||||||||||
99.5 | − | 8.36549i | − | 29.5396i | −37.9815 | 43.8645 | − | 34.6541i | −247.113 | 0 | 50.0380i | −629.586 | −289.898 | − | 366.948i | ||||||||||||
99.6 | − | 8.36549i | 29.5396i | −37.9815 | −43.8645 | + | 34.6541i | 247.113 | 0 | 50.0380i | −629.586 | 289.898 | + | 366.948i | |||||||||||||
99.7 | − | 7.24652i | − | 3.38772i | −20.5121 | −50.5162 | − | 23.9397i | −24.5492 | 0 | − | 83.2477i | 231.523 | −173.480 | + | 366.067i | |||||||||||
99.8 | − | 7.24652i | 3.38772i | −20.5121 | 50.5162 | + | 23.9397i | 24.5492 | 0 | − | 83.2477i | 231.523 | 173.480 | − | 366.067i | ||||||||||||
99.9 | − | 5.97543i | − | 0.602866i | −3.70572 | −22.0505 | − | 51.3690i | −3.60238 | 0 | − | 169.070i | 242.637 | −306.952 | + | 131.761i | |||||||||||
99.10 | − | 5.97543i | 0.602866i | −3.70572 | 22.0505 | + | 51.3690i | 3.60238 | 0 | − | 169.070i | 242.637 | 306.952 | − | 131.761i | ||||||||||||
99.11 | − | 4.76692i | − | 22.8362i | 9.27648 | 12.4215 | − | 54.5042i | −108.858 | 0 | − | 196.762i | −278.491 | −259.817 | − | 59.2122i | |||||||||||
99.12 | − | 4.76692i | 22.8362i | 9.27648 | −12.4215 | + | 54.5042i | 108.858 | 0 | − | 196.762i | −278.491 | 259.817 | + | 59.2122i | ||||||||||||
99.13 | − | 2.19823i | − | 17.6013i | 27.1678 | −53.6239 | + | 15.7949i | −38.6917 | 0 | − | 130.064i | −66.8056 | 34.7209 | + | 117.878i | |||||||||||
99.14 | − | 2.19823i | 17.6013i | 27.1678 | 53.6239 | − | 15.7949i | 38.6917 | 0 | − | 130.064i | −66.8056 | −34.7209 | − | 117.878i | ||||||||||||
99.15 | − | 0.285313i | − | 15.4407i | 31.9186 | 43.0320 | + | 35.6826i | −4.40543 | 0 | − | 18.2368i | 4.58487 | 10.1807 | − | 12.2776i | |||||||||||
99.16 | − | 0.285313i | 15.4407i | 31.9186 | −43.0320 | − | 35.6826i | 4.40543 | 0 | − | 18.2368i | 4.58487 | −10.1807 | + | 12.2776i | ||||||||||||
99.17 | 0.285313i | − | 15.4407i | 31.9186 | −43.0320 | + | 35.6826i | 4.40543 | 0 | 18.2368i | 4.58487 | −10.1807 | − | 12.2776i | |||||||||||||
99.18 | 0.285313i | 15.4407i | 31.9186 | 43.0320 | − | 35.6826i | −4.40543 | 0 | 18.2368i | 4.58487 | 10.1807 | + | 12.2776i | ||||||||||||||
99.19 | 2.19823i | − | 17.6013i | 27.1678 | 53.6239 | + | 15.7949i | 38.6917 | 0 | 130.064i | −66.8056 | −34.7209 | + | 117.878i | |||||||||||||
99.20 | 2.19823i | 17.6013i | 27.1678 | −53.6239 | − | 15.7949i | −38.6917 | 0 | 130.064i | −66.8056 | 34.7209 | − | 117.878i | ||||||||||||||
See all 32 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
5.b | even | 2 | 1 | inner |
7.b | odd | 2 | 1 | inner |
35.c | odd | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 245.6.b.g | ✓ | 32 |
5.b | even | 2 | 1 | inner | 245.6.b.g | ✓ | 32 |
7.b | odd | 2 | 1 | inner | 245.6.b.g | ✓ | 32 |
35.c | odd | 2 | 1 | inner | 245.6.b.g | ✓ | 32 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
245.6.b.g | ✓ | 32 | 1.a | even | 1 | 1 | trivial |
245.6.b.g | ✓ | 32 | 5.b | even | 2 | 1 | inner |
245.6.b.g | ✓ | 32 | 7.b | odd | 2 | 1 | inner |
245.6.b.g | ✓ | 32 | 35.c | odd | 2 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{6}^{\mathrm{new}}(245, [\chi])\):
\( T_{2}^{16} + 400 T_{2}^{14} + 63793 T_{2}^{12} + 5185294 T_{2}^{10} + 227703580 T_{2}^{8} + \cdots + 13441849344 \)
|
\( T_{19}^{16} - 24559120 T_{19}^{14} + 225629684070592 T_{19}^{12} + \cdots + 13\!\cdots\!64 \)
|