Properties

Label 245.4.j.f.79.8
Level $245$
Weight $4$
Character 245.79
Analytic conductor $14.455$
Analytic rank $0$
Dimension $20$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [245,4,Mod(79,245)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(245, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 2]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("245.79");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 245 = 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 245.j (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(14.4554679514\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(10\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - 55 x^{18} + 2042 x^{16} - 41247 x^{14} + 600234 x^{12} - 4812047 x^{10} + 27547801 x^{8} + \cdots + 12960000 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{6}\cdot 3^{2}\cdot 7^{8} \)
Twist minimal: no (minimal twist has level 35)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 79.8
Root \(1.60625 - 0.927371i\) of defining polynomial
Character \(\chi\) \(=\) 245.79
Dual form 245.4.j.f.214.8

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.47228 + 1.42737i) q^{2} +(-7.78434 + 4.49429i) q^{3} +(0.0747741 + 0.129513i) q^{4} +(11.0266 + 1.84763i) q^{5} -25.6601 q^{6} -22.4110i q^{8} +(26.8973 - 46.5874i) q^{9} +(24.6236 + 20.3069i) q^{10} +(-18.7204 - 32.4247i) q^{11} +(-1.16413 - 0.672113i) q^{12} -3.96370i q^{13} +(-94.1387 + 35.1742i) q^{15} +(32.5870 - 56.4424i) q^{16} +(44.7544 - 25.8390i) q^{17} +(132.995 - 76.7847i) q^{18} +(-12.9661 + 22.4580i) q^{19} +(0.585214 + 1.56624i) q^{20} -106.884i q^{22} +(150.216 + 86.7272i) q^{23} +(100.722 + 174.455i) q^{24} +(118.173 + 40.7463i) q^{25} +(5.65768 - 9.79938i) q^{26} +240.845i q^{27} +245.676 q^{29} +(-282.944 - 47.4104i) q^{30} +(-86.0372 - 149.021i) q^{31} +(5.86031 - 3.38345i) q^{32} +(291.452 + 168.270i) q^{33} +147.527 q^{34} +8.04488 q^{36} +(-217.111 - 125.349i) q^{37} +(-64.1118 + 37.0150i) q^{38} +(17.8140 + 30.8548i) q^{39} +(41.4073 - 247.118i) q^{40} +48.8649 q^{41} -143.612i q^{43} +(2.79960 - 4.84905i) q^{44} +(382.662 - 464.005i) q^{45} +(247.584 + 428.827i) q^{46} +(31.7325 + 18.3208i) q^{47} +585.822i q^{48} +(233.995 + 269.412i) q^{50} +(-232.256 + 402.279i) q^{51} +(0.513350 - 0.296383i) q^{52} +(558.834 - 322.643i) q^{53} +(-343.775 + 595.435i) q^{54} +(-146.514 - 392.123i) q^{55} -233.094i q^{57} +(607.380 + 350.671i) q^{58} +(-197.748 - 342.509i) q^{59} +(-11.5946 - 9.56202i) q^{60} +(23.7565 - 41.1475i) q^{61} -491.228i q^{62} -502.074 q^{64} +(7.32347 - 43.7062i) q^{65} +(480.366 + 832.019i) q^{66} +(-227.929 + 131.595i) q^{67} +(6.69295 + 3.86418i) q^{68} -1559.11 q^{69} -268.177 q^{71} +(-1044.07 - 602.795i) q^{72} +(-172.995 + 99.8785i) q^{73} +(-357.840 - 619.797i) q^{74} +(-1103.02 + 213.919i) q^{75} -3.87813 q^{76} +101.709i q^{78} +(236.820 - 410.184i) q^{79} +(463.609 - 562.159i) q^{80} +(-356.199 - 616.955i) q^{81} +(120.808 + 69.7484i) q^{82} +72.7028i q^{83} +(541.231 - 202.227i) q^{85} +(204.988 - 355.049i) q^{86} +(-1912.43 + 1104.14i) q^{87} +(-726.669 + 419.543i) q^{88} +(776.123 - 1344.28i) q^{89} +(1608.36 - 600.950i) q^{90} +25.9398i q^{92} +(1339.48 + 773.352i) q^{93} +(52.3011 + 90.5881i) q^{94} +(-184.467 + 223.679i) q^{95} +(-30.4124 + 52.6758i) q^{96} +243.338i q^{97} -2014.11 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 36 q^{4} + 6 q^{5} - 24 q^{6} + 46 q^{9} - 16 q^{10} - 84 q^{11} + 16 q^{15} - 148 q^{16} + 72 q^{19} + 136 q^{20} + 72 q^{24} + 362 q^{25} - 620 q^{26} + 176 q^{29} - 52 q^{30} + 120 q^{31} - 1928 q^{34}+ \cdots - 10608 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/245\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(197\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.47228 + 1.42737i 0.874082 + 0.504652i 0.868703 0.495334i \(-0.164954\pi\)
0.00537973 + 0.999986i \(0.498288\pi\)
\(3\) −7.78434 + 4.49429i −1.49810 + 0.864926i −0.999998 0.00219412i \(-0.999302\pi\)
−0.498099 + 0.867120i \(0.665968\pi\)
\(4\) 0.0747741 + 0.129513i 0.00934677 + 0.0161891i
\(5\) 11.0266 + 1.84763i 0.986250 + 0.165257i
\(6\) −25.6601 −1.74595
\(7\) 0 0
\(8\) 22.4110i 0.990436i
\(9\) 26.8973 46.5874i 0.996195 1.72546i
\(10\) 24.6236 + 20.3069i 0.778667 + 0.642162i
\(11\) −18.7204 32.4247i −0.513128 0.888764i −0.999884 0.0152260i \(-0.995153\pi\)
0.486756 0.873538i \(-0.338180\pi\)
\(12\) −1.16413 0.672113i −0.0280047 0.0161685i
\(13\) 3.96370i 0.0845641i −0.999106 0.0422821i \(-0.986537\pi\)
0.999106 0.0422821i \(-0.0134628\pi\)
\(14\) 0 0
\(15\) −94.1387 + 35.1742i −1.62043 + 0.605463i
\(16\) 32.5870 56.4424i 0.509172 0.881912i
\(17\) 44.7544 25.8390i 0.638503 0.368640i −0.145535 0.989353i \(-0.546490\pi\)
0.784038 + 0.620713i \(0.213157\pi\)
\(18\) 132.995 76.7847i 1.74151 1.00546i
\(19\) −12.9661 + 22.4580i −0.156560 + 0.271170i −0.933626 0.358249i \(-0.883374\pi\)
0.777066 + 0.629419i \(0.216707\pi\)
\(20\) 0.585214 + 1.56624i 0.00654289 + 0.0175111i
\(21\) 0 0
\(22\) 106.884i 1.03580i
\(23\) 150.216 + 86.7272i 1.36183 + 0.786255i 0.989868 0.141991i \(-0.0453506\pi\)
0.371966 + 0.928246i \(0.378684\pi\)
\(24\) 100.722 + 174.455i 0.856654 + 1.48377i
\(25\) 118.173 + 40.7463i 0.945380 + 0.325970i
\(26\) 5.65768 9.79938i 0.0426754 0.0739160i
\(27\) 240.845i 1.71669i
\(28\) 0 0
\(29\) 245.676 1.57314 0.786568 0.617503i \(-0.211856\pi\)
0.786568 + 0.617503i \(0.211856\pi\)
\(30\) −282.944 47.4104i −1.72194 0.288530i
\(31\) −86.0372 149.021i −0.498475 0.863385i 0.501523 0.865144i \(-0.332773\pi\)
−0.999998 + 0.00175963i \(0.999440\pi\)
\(32\) 5.86031 3.38345i 0.0323739 0.0186911i
\(33\) 291.452 + 168.270i 1.53743 + 0.887636i
\(34\) 147.527 0.744139
\(35\) 0 0
\(36\) 8.04488 0.0372448
\(37\) −217.111 125.349i −0.964673 0.556954i −0.0670648 0.997749i \(-0.521363\pi\)
−0.897608 + 0.440795i \(0.854697\pi\)
\(38\) −64.1118 + 37.0150i −0.273692 + 0.158016i
\(39\) 17.8140 + 30.8548i 0.0731417 + 0.126685i
\(40\) 41.4073 247.118i 0.163677 0.976818i
\(41\) 48.8649 0.186132 0.0930661 0.995660i \(-0.470333\pi\)
0.0930661 + 0.995660i \(0.470333\pi\)
\(42\) 0 0
\(43\) 143.612i 0.509317i −0.967031 0.254658i \(-0.918037\pi\)
0.967031 0.254658i \(-0.0819630\pi\)
\(44\) 2.79960 4.84905i 0.00959218 0.0166141i
\(45\) 382.662 464.005i 1.26764 1.53711i
\(46\) 247.584 + 428.827i 0.793570 + 1.37450i
\(47\) 31.7325 + 18.3208i 0.0984821 + 0.0568587i 0.548432 0.836195i \(-0.315225\pi\)
−0.449950 + 0.893054i \(0.648558\pi\)
\(48\) 585.822i 1.76159i
\(49\) 0 0
\(50\) 233.995 + 269.412i 0.661839 + 0.762012i
\(51\) −232.256 + 402.279i −0.637692 + 1.10452i
\(52\) 0.513350 0.296383i 0.00136902 0.000790401i
\(53\) 558.834 322.643i 1.44833 0.836196i 0.449952 0.893053i \(-0.351441\pi\)
0.998382 + 0.0568566i \(0.0181078\pi\)
\(54\) −343.775 + 595.435i −0.866330 + 1.50053i
\(55\) −146.514 392.123i −0.359198 0.961342i
\(56\) 0 0
\(57\) 233.094i 0.541651i
\(58\) 607.380 + 350.671i 1.37505 + 0.793886i
\(59\) −197.748 342.509i −0.436348 0.755777i 0.561056 0.827778i \(-0.310395\pi\)
−0.997405 + 0.0720003i \(0.977062\pi\)
\(60\) −11.5946 9.56202i −0.0249477 0.0205742i
\(61\) 23.7565 41.1475i 0.0498641 0.0863671i −0.840016 0.542562i \(-0.817455\pi\)
0.889880 + 0.456194i \(0.150788\pi\)
\(62\) 491.228i 1.00623i
\(63\) 0 0
\(64\) −502.074 −0.980614
\(65\) 7.32347 43.7062i 0.0139748 0.0834014i
\(66\) 480.366 + 832.019i 0.895894 + 1.55173i
\(67\) −227.929 + 131.595i −0.415611 + 0.239953i −0.693198 0.720748i \(-0.743799\pi\)
0.277587 + 0.960701i \(0.410465\pi\)
\(68\) 6.69295 + 3.86418i 0.0119359 + 0.00689118i
\(69\) −1559.11 −2.72021
\(70\) 0 0
\(71\) −268.177 −0.448264 −0.224132 0.974559i \(-0.571955\pi\)
−0.224132 + 0.974559i \(0.571955\pi\)
\(72\) −1044.07 602.795i −1.70896 0.986667i
\(73\) −172.995 + 99.8785i −0.277363 + 0.160136i −0.632229 0.774782i \(-0.717860\pi\)
0.354866 + 0.934917i \(0.384526\pi\)
\(74\) −357.840 619.797i −0.562136 0.973648i
\(75\) −1103.02 + 213.919i −1.69821 + 0.329349i
\(76\) −3.87813 −0.00585331
\(77\) 0 0
\(78\) 101.709i 0.147644i
\(79\) 236.820 410.184i 0.337270 0.584169i −0.646648 0.762788i \(-0.723830\pi\)
0.983918 + 0.178620i \(0.0571632\pi\)
\(80\) 463.609 562.159i 0.647914 0.785642i
\(81\) −356.199 616.955i −0.488614 0.846303i
\(82\) 120.808 + 69.7484i 0.162695 + 0.0939319i
\(83\) 72.7028i 0.0961466i 0.998844 + 0.0480733i \(0.0153081\pi\)
−0.998844 + 0.0480733i \(0.984692\pi\)
\(84\) 0 0
\(85\) 541.231 202.227i 0.690644 0.258054i
\(86\) 204.988 355.049i 0.257028 0.445185i
\(87\) −1912.43 + 1104.14i −2.35671 + 1.36065i
\(88\) −726.669 + 419.543i −0.880264 + 0.508221i
\(89\) 776.123 1344.28i 0.924369 1.60105i 0.131796 0.991277i \(-0.457926\pi\)
0.792573 0.609777i \(-0.208741\pi\)
\(90\) 1608.36 600.950i 1.88373 0.703841i
\(91\) 0 0
\(92\) 25.9398i 0.0293958i
\(93\) 1339.48 + 773.352i 1.49353 + 0.862289i
\(94\) 52.3011 + 90.5881i 0.0573877 + 0.0993984i
\(95\) −184.467 + 223.679i −0.199220 + 0.241568i
\(96\) −30.4124 + 52.6758i −0.0323328 + 0.0560021i
\(97\) 243.338i 0.254714i 0.991857 + 0.127357i \(0.0406494\pi\)
−0.991857 + 0.127357i \(0.959351\pi\)
\(98\) 0 0
\(99\) −2014.11 −2.04470
\(100\) 3.55909 + 18.3516i 0.00355909 + 0.0183516i
\(101\) −769.668 1333.10i −0.758265 1.31335i −0.943734 0.330704i \(-0.892714\pi\)
0.185469 0.982650i \(-0.440620\pi\)
\(102\) −1148.40 + 663.030i −1.11479 + 0.643625i
\(103\) 821.536 + 474.314i 0.785906 + 0.453743i 0.838519 0.544872i \(-0.183422\pi\)
−0.0526133 + 0.998615i \(0.516755\pi\)
\(104\) −88.8306 −0.0837554
\(105\) 0 0
\(106\) 1842.12 1.68795
\(107\) 748.231 + 431.992i 0.676021 + 0.390301i 0.798354 0.602188i \(-0.205704\pi\)
−0.122333 + 0.992489i \(0.539038\pi\)
\(108\) −31.1924 + 18.0089i −0.0277916 + 0.0160455i
\(109\) 443.159 + 767.575i 0.389422 + 0.674498i 0.992372 0.123281i \(-0.0393415\pi\)
−0.602950 + 0.797779i \(0.706008\pi\)
\(110\) 197.482 1178.57i 0.171174 1.02156i
\(111\) 2253.42 1.92690
\(112\) 0 0
\(113\) 765.957i 0.637657i 0.947812 + 0.318828i \(0.103289\pi\)
−0.947812 + 0.318828i \(0.896711\pi\)
\(114\) 332.712 576.274i 0.273345 0.473448i
\(115\) 1496.13 + 1233.85i 1.21317 + 1.00050i
\(116\) 18.3702 + 31.8182i 0.0147037 + 0.0254676i
\(117\) −184.659 106.613i −0.145912 0.0842424i
\(118\) 1129.04i 0.880816i
\(119\) 0 0
\(120\) 788.289 + 2109.74i 0.599672 + 1.60494i
\(121\) −35.4058 + 61.3246i −0.0266009 + 0.0460741i
\(122\) 117.465 67.8187i 0.0871707 0.0503280i
\(123\) −380.381 + 219.613i −0.278844 + 0.160991i
\(124\) 12.8667 22.2858i 0.00931826 0.0161397i
\(125\) 1227.76 + 667.633i 0.878513 + 0.477719i
\(126\) 0 0
\(127\) 505.042i 0.352876i −0.984312 0.176438i \(-0.943543\pi\)
0.984312 0.176438i \(-0.0564575\pi\)
\(128\) −1288.15 743.714i −0.889512 0.513560i
\(129\) 645.434 + 1117.92i 0.440521 + 0.763006i
\(130\) 80.4907 97.6007i 0.0543038 0.0658473i
\(131\) 336.465 582.775i 0.224405 0.388682i −0.731736 0.681589i \(-0.761289\pi\)
0.956141 + 0.292907i \(0.0946227\pi\)
\(132\) 50.3289i 0.0331861i
\(133\) 0 0
\(134\) −751.337 −0.484371
\(135\) −444.992 + 2655.70i −0.283695 + 1.69308i
\(136\) −579.078 1002.99i −0.365114 0.632396i
\(137\) −1344.31 + 776.141i −0.838340 + 0.484016i −0.856700 0.515816i \(-0.827489\pi\)
0.0183597 + 0.999831i \(0.494156\pi\)
\(138\) −3854.55 2225.42i −2.37769 1.37276i
\(139\) −1072.02 −0.654154 −0.327077 0.944998i \(-0.606064\pi\)
−0.327077 + 0.944998i \(0.606064\pi\)
\(140\) 0 0
\(141\) −329.355 −0.196714
\(142\) −663.008 382.788i −0.391820 0.226217i
\(143\) −128.522 + 74.2021i −0.0751576 + 0.0433922i
\(144\) −1753.00 3036.29i −1.01447 1.75711i
\(145\) 2708.98 + 453.920i 1.55151 + 0.259972i
\(146\) −570.255 −0.323251
\(147\) 0 0
\(148\) 37.4915i 0.0208229i
\(149\) 322.968 559.397i 0.177574 0.307568i −0.763475 0.645838i \(-0.776508\pi\)
0.941049 + 0.338270i \(0.109842\pi\)
\(150\) −3032.31 1045.55i −1.65058 0.569126i
\(151\) −121.597 210.612i −0.0655326 0.113506i 0.831398 0.555678i \(-0.187541\pi\)
−0.896930 + 0.442172i \(0.854208\pi\)
\(152\) 503.307 + 290.584i 0.268576 + 0.155063i
\(153\) 2779.99i 1.46895i
\(154\) 0 0
\(155\) −673.363 1802.16i −0.348941 0.933890i
\(156\) −2.66406 + 4.61428i −0.00136728 + 0.00236819i
\(157\) −1344.56 + 776.281i −0.683487 + 0.394611i −0.801168 0.598440i \(-0.795787\pi\)
0.117681 + 0.993052i \(0.462454\pi\)
\(158\) 1170.97 676.060i 0.589603 0.340408i
\(159\) −2900.10 + 5023.12i −1.44650 + 2.50540i
\(160\) 70.8707 26.4803i 0.0350176 0.0130841i
\(161\) 0 0
\(162\) 2033.71i 0.986319i
\(163\) −2211.53 1276.82i −1.06270 0.613550i −0.136522 0.990637i \(-0.543592\pi\)
−0.926178 + 0.377087i \(0.876926\pi\)
\(164\) 3.65383 + 6.32862i 0.00173973 + 0.00301331i
\(165\) 2902.82 + 2393.94i 1.36960 + 1.12950i
\(166\) −103.774 + 179.741i −0.0485205 + 0.0840400i
\(167\) 3573.14i 1.65568i 0.560966 + 0.827839i \(0.310430\pi\)
−0.560966 + 0.827839i \(0.689570\pi\)
\(168\) 0 0
\(169\) 2181.29 0.992849
\(170\) 1626.73 + 272.576i 0.733907 + 0.122974i
\(171\) 697.507 + 1208.12i 0.311928 + 0.540275i
\(172\) 18.5996 10.7385i 0.00824537 0.00476046i
\(173\) 1935.31 + 1117.35i 0.850515 + 0.491045i 0.860825 0.508902i \(-0.169948\pi\)
−0.0103095 + 0.999947i \(0.503282\pi\)
\(174\) −6304.07 −2.74661
\(175\) 0 0
\(176\) −2440.17 −1.04508
\(177\) 3078.67 + 1777.47i 1.30738 + 0.754818i
\(178\) 3837.58 2215.63i 1.61595 0.932969i
\(179\) −915.267 1585.29i −0.382180 0.661956i 0.609193 0.793022i \(-0.291493\pi\)
−0.991374 + 0.131066i \(0.958160\pi\)
\(180\) 88.7078 + 14.8640i 0.0367327 + 0.00615497i
\(181\) −2437.22 −1.00087 −0.500433 0.865775i \(-0.666826\pi\)
−0.500433 + 0.865775i \(0.666826\pi\)
\(182\) 0 0
\(183\) 427.075i 0.172515i
\(184\) 1943.64 3366.49i 0.778735 1.34881i
\(185\) −2162.40 1783.32i −0.859368 0.708715i
\(186\) 2207.72 + 3823.88i 0.870311 + 1.50742i
\(187\) −1675.64 967.432i −0.655267 0.378319i
\(188\) 5.47968i 0.00212578i
\(189\) 0 0
\(190\) −775.327 + 289.695i −0.296043 + 0.110614i
\(191\) −2539.75 + 4398.97i −0.962145 + 1.66648i −0.245047 + 0.969511i \(0.578804\pi\)
−0.717098 + 0.696973i \(0.754530\pi\)
\(192\) 3908.32 2256.47i 1.46905 0.848159i
\(193\) −2429.28 + 1402.55i −0.906028 + 0.523095i −0.879151 0.476543i \(-0.841890\pi\)
−0.0268769 + 0.999639i \(0.508556\pi\)
\(194\) −347.334 + 601.599i −0.128542 + 0.222641i
\(195\) 139.420 + 373.138i 0.0512004 + 0.137031i
\(196\) 0 0
\(197\) 3107.79i 1.12396i 0.827149 + 0.561982i \(0.189961\pi\)
−0.827149 + 0.561982i \(0.810039\pi\)
\(198\) −4979.44 2874.88i −1.78724 1.03186i
\(199\) 1072.82 + 1858.17i 0.382161 + 0.661922i 0.991371 0.131087i \(-0.0418468\pi\)
−0.609210 + 0.793009i \(0.708513\pi\)
\(200\) 913.165 2648.37i 0.322853 0.936338i
\(201\) 1182.85 2048.75i 0.415083 0.718945i
\(202\) 4394.41i 1.53064i
\(203\) 0 0
\(204\) −69.4669 −0.0238414
\(205\) 538.815 + 90.2844i 0.183573 + 0.0307597i
\(206\) 1354.04 + 2345.27i 0.457964 + 0.793218i
\(207\) 8080.79 4665.45i 2.71330 1.56653i
\(208\) −223.721 129.165i −0.0745781 0.0430577i
\(209\) 970.925 0.321341
\(210\) 0 0
\(211\) 2837.45 0.925772 0.462886 0.886418i \(-0.346814\pi\)
0.462886 + 0.886418i \(0.346814\pi\)
\(212\) 83.5726 + 48.2507i 0.0270745 + 0.0156315i
\(213\) 2087.58 1205.26i 0.671542 0.387715i
\(214\) 1233.22 + 2136.01i 0.393932 + 0.682310i
\(215\) 265.342 1583.55i 0.0841683 0.502314i
\(216\) 5397.57 1.70027
\(217\) 0 0
\(218\) 2530.21i 0.786089i
\(219\) 897.766 1554.98i 0.277011 0.479797i
\(220\) 39.8294 48.2960i 0.0122059 0.0148005i
\(221\) −102.418 177.393i −0.0311737 0.0539944i
\(222\) 5571.09 + 3216.47i 1.68427 + 0.972412i
\(223\) 4741.40i 1.42380i 0.702280 + 0.711901i \(0.252166\pi\)
−0.702280 + 0.711901i \(0.747834\pi\)
\(224\) 0 0
\(225\) 5076.78 4409.39i 1.50423 1.30649i
\(226\) −1093.31 + 1893.66i −0.321795 + 0.557365i
\(227\) −832.069 + 480.395i −0.243288 + 0.140462i −0.616687 0.787208i \(-0.711526\pi\)
0.373399 + 0.927671i \(0.378192\pi\)
\(228\) 30.1887 17.4294i 0.00876883 0.00506268i
\(229\) −372.003 + 644.328i −0.107348 + 0.185932i −0.914695 0.404145i \(-0.867569\pi\)
0.807347 + 0.590077i \(0.200903\pi\)
\(230\) 1937.69 + 5185.96i 0.555512 + 1.48675i
\(231\) 0 0
\(232\) 5505.86i 1.55809i
\(233\) −1342.82 775.279i −0.377559 0.217984i 0.299197 0.954191i \(-0.403281\pi\)
−0.676756 + 0.736208i \(0.736615\pi\)
\(234\) −304.352 527.153i −0.0850261 0.147270i
\(235\) 316.052 + 260.646i 0.0877318 + 0.0723518i
\(236\) 29.5728 51.2216i 0.00815689 0.0141281i
\(237\) 4257.35i 1.16685i
\(238\) 0 0
\(239\) −2775.00 −0.751045 −0.375523 0.926813i \(-0.622537\pi\)
−0.375523 + 0.926813i \(0.622537\pi\)
\(240\) −1082.38 + 6459.63i −0.291115 + 1.73736i
\(241\) −1275.10 2208.54i −0.340815 0.590309i 0.643769 0.765220i \(-0.277370\pi\)
−0.984584 + 0.174911i \(0.944036\pi\)
\(242\) −175.066 + 101.074i −0.0465028 + 0.0268484i
\(243\) −86.0446 49.6779i −0.0227151 0.0131146i
\(244\) 7.10549 0.00186427
\(245\) 0 0
\(246\) −1253.88 −0.324977
\(247\) 89.0169 + 51.3939i 0.0229312 + 0.0132393i
\(248\) −3339.71 + 1928.18i −0.855127 + 0.493708i
\(249\) −326.747 565.943i −0.0831597 0.144037i
\(250\) 2082.40 + 3403.04i 0.526811 + 0.860909i
\(251\) 2933.00 0.737568 0.368784 0.929515i \(-0.379774\pi\)
0.368784 + 0.929515i \(0.379774\pi\)
\(252\) 0 0
\(253\) 6494.26i 1.61380i
\(254\) 720.882 1248.60i 0.178079 0.308442i
\(255\) −3304.26 + 4006.65i −0.811454 + 0.983946i
\(256\) −114.813 198.862i −0.0280306 0.0485504i
\(257\) −2360.11 1362.61i −0.572840 0.330729i 0.185443 0.982655i \(-0.440628\pi\)
−0.758283 + 0.651926i \(0.773961\pi\)
\(258\) 3685.09i 0.889240i
\(259\) 0 0
\(260\) 6.20811 2.31961i 0.00148081 0.000553294i
\(261\) 6608.02 11445.4i 1.56715 2.71438i
\(262\) 1663.67 960.521i 0.392298 0.226493i
\(263\) 2621.68 1513.63i 0.614676 0.354884i −0.160117 0.987098i \(-0.551187\pi\)
0.774793 + 0.632214i \(0.217854\pi\)
\(264\) 3771.09 6531.72i 0.879147 1.52273i
\(265\) 6758.17 2525.14i 1.56661 0.585351i
\(266\) 0 0
\(267\) 13952.5i 3.19804i
\(268\) −34.0863 19.6798i −0.00776923 0.00448557i
\(269\) 721.231 + 1249.21i 0.163473 + 0.283144i 0.936112 0.351702i \(-0.114397\pi\)
−0.772639 + 0.634846i \(0.781064\pi\)
\(270\) −4890.82 + 5930.46i −1.10239 + 1.33673i
\(271\) −3232.23 + 5598.38i −0.724516 + 1.25490i 0.234657 + 0.972078i \(0.424603\pi\)
−0.959173 + 0.282820i \(0.908730\pi\)
\(272\) 3368.06i 0.750804i
\(273\) 0 0
\(274\) −4431.36 −0.977038
\(275\) −891.051 4594.49i −0.195391 1.00748i
\(276\) −116.581 201.924i −0.0254252 0.0440377i
\(277\) 759.170 438.307i 0.164672 0.0950733i −0.415399 0.909639i \(-0.636358\pi\)
0.580071 + 0.814566i \(0.303025\pi\)
\(278\) −2650.33 1530.17i −0.571784 0.330120i
\(279\) −9256.66 −1.98631
\(280\) 0 0
\(281\) 6252.19 1.32731 0.663655 0.748038i \(-0.269004\pi\)
0.663655 + 0.748038i \(0.269004\pi\)
\(282\) −814.258 470.112i −0.171945 0.0992722i
\(283\) 1948.62 1125.04i 0.409305 0.236312i −0.281186 0.959653i \(-0.590728\pi\)
0.690491 + 0.723341i \(0.257394\pi\)
\(284\) −20.0527 34.7323i −0.00418982 0.00725698i
\(285\) 430.673 2570.24i 0.0895117 0.534203i
\(286\) −423.655 −0.0875919
\(287\) 0 0
\(288\) 364.022i 0.0744799i
\(289\) −1121.19 + 1941.96i −0.228210 + 0.395271i
\(290\) 6049.44 + 4988.93i 1.22495 + 1.01021i
\(291\) −1093.63 1894.23i −0.220309 0.381586i
\(292\) −25.8710 14.9367i −0.00518489 0.00299350i
\(293\) 5917.86i 1.17995i −0.807422 0.589975i \(-0.799138\pi\)
0.807422 0.589975i \(-0.200862\pi\)
\(294\) 0 0
\(295\) −1547.66 4142.08i −0.305451 0.817495i
\(296\) −2809.20 + 4865.69i −0.551627 + 0.955447i
\(297\) 7809.31 4508.70i 1.52573 0.880881i
\(298\) 1596.93 921.990i 0.310429 0.179226i
\(299\) 343.761 595.411i 0.0664890 0.115162i
\(300\) −110.183 126.859i −0.0212046 0.0244141i
\(301\) 0 0
\(302\) 694.256i 0.132284i
\(303\) 11982.7 + 6918.22i 2.27191 + 1.31169i
\(304\) 845.056 + 1463.68i 0.159432 + 0.276144i
\(305\) 337.979 409.824i 0.0634513 0.0769392i
\(306\) 3968.08 6872.91i 0.741307 1.28398i
\(307\) 9458.47i 1.75838i −0.476469 0.879191i \(-0.658084\pi\)
0.476469 0.879191i \(-0.341916\pi\)
\(308\) 0 0
\(309\) −8526.81 −1.56982
\(310\) 907.609 5416.58i 0.166286 0.992391i
\(311\) −3788.39 6561.69i −0.690739 1.19640i −0.971596 0.236646i \(-0.923952\pi\)
0.280857 0.959750i \(-0.409381\pi\)
\(312\) 691.487 399.230i 0.125474 0.0724422i
\(313\) 7943.54 + 4586.21i 1.43449 + 0.828204i 0.997459 0.0712425i \(-0.0226964\pi\)
0.437032 + 0.899446i \(0.356030\pi\)
\(314\) −4432.16 −0.796565
\(315\) 0 0
\(316\) 70.8320 0.0126095
\(317\) 2665.57 + 1538.97i 0.472283 + 0.272672i 0.717195 0.696873i \(-0.245426\pi\)
−0.244912 + 0.969545i \(0.578759\pi\)
\(318\) −14339.7 + 8279.04i −2.52871 + 1.45995i
\(319\) −4599.16 7965.97i −0.807221 1.39815i
\(320\) −5536.18 927.649i −0.967131 0.162054i
\(321\) −7765.98 −1.35033
\(322\) 0 0
\(323\) 1340.13i 0.230857i
\(324\) 53.2690 92.2646i 0.00913391 0.0158204i
\(325\) 161.506 468.401i 0.0275654 0.0799452i
\(326\) −3645.00 6313.33i −0.619258 1.07259i
\(327\) −6899.40 3983.37i −1.16678 0.673642i
\(328\) 1095.11i 0.184352i
\(329\) 0 0
\(330\) 3759.55 + 10061.9i 0.627141 + 1.67845i
\(331\) −1617.25 + 2801.16i −0.268557 + 0.465154i −0.968489 0.249055i \(-0.919880\pi\)
0.699933 + 0.714209i \(0.253213\pi\)
\(332\) −9.41592 + 5.43629i −0.00155652 + 0.000898659i
\(333\) −11679.4 + 6743.11i −1.92200 + 1.10967i
\(334\) −5100.20 + 8833.80i −0.835540 + 1.44720i
\(335\) −2756.42 + 1029.92i −0.449550 + 0.167971i
\(336\) 0 0
\(337\) 3777.84i 0.610658i −0.952247 0.305329i \(-0.901234\pi\)
0.952247 0.305329i \(-0.0987665\pi\)
\(338\) 5392.75 + 3113.51i 0.867832 + 0.501043i
\(339\) −3442.43 5962.47i −0.551526 0.955271i
\(340\) 66.6610 + 54.9749i 0.0106329 + 0.00876892i
\(341\) −3221.30 + 5579.45i −0.511563 + 0.886054i
\(342\) 3982.41i 0.629660i
\(343\) 0 0
\(344\) −3218.49 −0.504446
\(345\) −17191.7 2880.66i −2.68281 0.449535i
\(346\) 3189.75 + 5524.82i 0.495614 + 0.858428i
\(347\) −7139.58 + 4122.04i −1.10453 + 0.637702i −0.937408 0.348234i \(-0.886782\pi\)
−0.167125 + 0.985936i \(0.553448\pi\)
\(348\) −286.000 165.122i −0.0440552 0.0254353i
\(349\) 7173.78 1.10030 0.550148 0.835067i \(-0.314571\pi\)
0.550148 + 0.835067i \(0.314571\pi\)
\(350\) 0 0
\(351\) 954.637 0.145170
\(352\) −219.414 126.679i −0.0332239 0.0191819i
\(353\) −3629.95 + 2095.76i −0.547317 + 0.315994i −0.748039 0.663655i \(-0.769005\pi\)
0.200722 + 0.979648i \(0.435671\pi\)
\(354\) 5074.22 + 8788.80i 0.761840 + 1.31955i
\(355\) −2957.08 495.492i −0.442100 0.0740789i
\(356\) 232.136 0.0345594
\(357\) 0 0
\(358\) 5225.70i 0.771472i
\(359\) −1568.15 + 2716.11i −0.230539 + 0.399306i −0.957967 0.286879i \(-0.907382\pi\)
0.727428 + 0.686184i \(0.240716\pi\)
\(360\) −10398.8 8575.85i −1.52241 1.25552i
\(361\) 3093.26 + 5357.68i 0.450978 + 0.781117i
\(362\) −6025.48 3478.81i −0.874840 0.505089i
\(363\) 636.496i 0.0920313i
\(364\) 0 0
\(365\) −2092.08 + 781.691i −0.300013 + 0.112098i
\(366\) −609.594 + 1055.85i −0.0870600 + 0.150792i
\(367\) −1492.42 + 861.649i −0.212272 + 0.122555i −0.602367 0.798220i \(-0.705775\pi\)
0.390095 + 0.920775i \(0.372442\pi\)
\(368\) 9790.17 5652.36i 1.38682 0.800678i
\(369\) 1314.33 2276.49i 0.185424 0.321164i
\(370\) −2800.61 7495.42i −0.393504 1.05316i
\(371\) 0 0
\(372\) 231.307i 0.0322384i
\(373\) −2440.94 1409.28i −0.338839 0.195629i 0.320919 0.947106i \(-0.396008\pi\)
−0.659759 + 0.751478i \(0.729341\pi\)
\(374\) −2761.77 4783.52i −0.381838 0.661364i
\(375\) −12557.8 + 320.824i −1.72929 + 0.0441794i
\(376\) 410.587 711.157i 0.0563149 0.0975403i
\(377\) 973.788i 0.133031i
\(378\) 0 0
\(379\) 10466.1 1.41849 0.709246 0.704961i \(-0.249036\pi\)
0.709246 + 0.704961i \(0.249036\pi\)
\(380\) −42.7626 7.16535i −0.00577283 0.000967303i
\(381\) 2269.80 + 3931.42i 0.305211 + 0.528642i
\(382\) −12557.9 + 7250.32i −1.68199 + 0.971096i
\(383\) −223.482 129.028i −0.0298157 0.0172141i 0.485018 0.874504i \(-0.338813\pi\)
−0.514834 + 0.857290i \(0.672146\pi\)
\(384\) 13369.9 1.77677
\(385\) 0 0
\(386\) −8007.81 −1.05592
\(387\) −6690.51 3862.77i −0.878806 0.507379i
\(388\) −31.5153 + 18.1954i −0.00412358 + 0.00238075i
\(389\) 2286.94 + 3961.09i 0.298078 + 0.516286i 0.975696 0.219128i \(-0.0703211\pi\)
−0.677618 + 0.735414i \(0.736988\pi\)
\(390\) −187.921 + 1121.50i −0.0243993 + 0.145614i
\(391\) 8963.77 1.15938
\(392\) 0 0
\(393\) 6048.69i 0.776376i
\(394\) −4435.97 + 7683.33i −0.567211 + 0.982438i
\(395\) 3369.19 4085.39i 0.429171 0.520400i
\(396\) −150.603 260.852i −0.0191114 0.0331018i
\(397\) −3138.96 1812.28i −0.396825 0.229107i 0.288288 0.957544i \(-0.406914\pi\)
−0.685113 + 0.728437i \(0.740247\pi\)
\(398\) 6125.23i 0.771432i
\(399\) 0 0
\(400\) 6150.70 5342.14i 0.768838 0.667767i
\(401\) −3179.16 + 5506.47i −0.395910 + 0.685736i −0.993217 0.116277i \(-0.962904\pi\)
0.597307 + 0.802013i \(0.296237\pi\)
\(402\) 5848.66 3376.73i 0.725634 0.418945i
\(403\) −590.674 + 341.026i −0.0730114 + 0.0421531i
\(404\) 115.102 199.363i 0.0141747 0.0245512i
\(405\) −2787.77 7461.05i −0.342038 0.915414i
\(406\) 0 0
\(407\) 9386.35i 1.14316i
\(408\) 9015.47 + 5205.09i 1.09395 + 0.631593i
\(409\) 3268.19 + 5660.68i 0.395114 + 0.684358i 0.993116 0.117137i \(-0.0373717\pi\)
−0.598002 + 0.801495i \(0.704038\pi\)
\(410\) 1203.23 + 992.297i 0.144935 + 0.119527i
\(411\) 6976.40 12083.5i 0.837276 1.45020i
\(412\) 141.866i 0.0169641i
\(413\) 0 0
\(414\) 26637.3 3.16220
\(415\) −134.328 + 801.665i −0.0158889 + 0.0948246i
\(416\) −13.4110 23.2285i −0.00158060 0.00273767i
\(417\) 8344.95 4817.96i 0.979985 0.565795i
\(418\) 2400.40 + 1385.87i 0.280879 + 0.162165i
\(419\) 6333.56 0.738460 0.369230 0.929338i \(-0.379621\pi\)
0.369230 + 0.929338i \(0.379621\pi\)
\(420\) 0 0
\(421\) −8139.62 −0.942282 −0.471141 0.882058i \(-0.656158\pi\)
−0.471141 + 0.882058i \(0.656158\pi\)
\(422\) 7014.96 + 4050.09i 0.809201 + 0.467193i
\(423\) 1707.03 985.557i 0.196215 0.113285i
\(424\) −7230.75 12524.0i −0.828199 1.43448i
\(425\) 6341.59 1229.88i 0.723793 0.140372i
\(426\) 6881.43 0.782645
\(427\) 0 0
\(428\) 129.207i 0.0145922i
\(429\) 666.971 1155.23i 0.0750622 0.130011i
\(430\) 2916.32 3536.25i 0.327064 0.396588i
\(431\) 7183.79 + 12442.7i 0.802856 + 1.39059i 0.917729 + 0.397208i \(0.130021\pi\)
−0.114873 + 0.993380i \(0.536646\pi\)
\(432\) 13593.8 + 7848.41i 1.51397 + 0.874089i
\(433\) 8399.05i 0.932176i 0.884738 + 0.466088i \(0.154337\pi\)
−0.884738 + 0.466088i \(0.845663\pi\)
\(434\) 0 0
\(435\) −23127.6 + 8641.47i −2.54916 + 0.952475i
\(436\) −66.2737 + 114.789i −0.00727967 + 0.0126088i
\(437\) −3895.44 + 2249.03i −0.426417 + 0.246192i
\(438\) 4439.05 2562.89i 0.484261 0.279588i
\(439\) 8930.41 15467.9i 0.970901 1.68165i 0.278053 0.960566i \(-0.410311\pi\)
0.692848 0.721084i \(-0.256356\pi\)
\(440\) −8787.87 + 3283.52i −0.952148 + 0.355763i
\(441\) 0 0
\(442\) 584.754i 0.0629274i
\(443\) −1646.80 950.783i −0.176619 0.101971i 0.409084 0.912497i \(-0.365848\pi\)
−0.585703 + 0.810526i \(0.699181\pi\)
\(444\) 168.498 + 291.847i 0.0180103 + 0.0311947i
\(445\) 11041.7 13388.9i 1.17625 1.42628i
\(446\) −6767.74 + 11722.1i −0.718524 + 1.24452i
\(447\) 5806.05i 0.614355i
\(448\) 0 0
\(449\) 5185.68 0.545050 0.272525 0.962149i \(-0.412141\pi\)
0.272525 + 0.962149i \(0.412141\pi\)
\(450\) 18845.0 3654.79i 1.97414 0.382863i
\(451\) −914.770 1584.43i −0.0955096 0.165428i
\(452\) −99.2011 + 57.2738i −0.0103231 + 0.00596003i
\(453\) 1893.10 + 1092.98i 0.196348 + 0.113362i
\(454\) −2742.81 −0.283538
\(455\) 0 0
\(456\) −5223.88 −0.536471
\(457\) −9698.45 5599.41i −0.992723 0.573149i −0.0866361 0.996240i \(-0.527612\pi\)
−0.906087 + 0.423091i \(0.860945\pi\)
\(458\) −1839.39 + 1061.97i −0.187662 + 0.108347i
\(459\) 6223.18 + 10778.9i 0.632839 + 1.09611i
\(460\) −47.9272 + 286.028i −0.00485786 + 0.0289916i
\(461\) −17270.7 −1.74485 −0.872427 0.488744i \(-0.837455\pi\)
−0.872427 + 0.488744i \(0.837455\pi\)
\(462\) 0 0
\(463\) 385.660i 0.0387109i 0.999813 + 0.0193554i \(0.00616141\pi\)
−0.999813 + 0.0193554i \(0.993839\pi\)
\(464\) 8005.86 13866.6i 0.800997 1.38737i
\(465\) 13341.1 + 11002.3i 1.33049 + 1.09725i
\(466\) −2213.22 3833.41i −0.220012 0.381072i
\(467\) −4360.75 2517.68i −0.432101 0.249474i 0.268140 0.963380i \(-0.413591\pi\)
−0.700241 + 0.713906i \(0.746924\pi\)
\(468\) 31.8875i 0.00314957i
\(469\) 0 0
\(470\) 409.330 + 1095.51i 0.0401723 + 0.107515i
\(471\) 6977.66 12085.7i 0.682620 1.18233i
\(472\) −7675.97 + 4431.72i −0.748549 + 0.432175i
\(473\) −4656.57 + 2688.47i −0.452662 + 0.261345i
\(474\) −6076.81 + 10525.4i −0.588855 + 1.01993i
\(475\) −2447.32 + 2125.60i −0.236402 + 0.205324i
\(476\) 0 0
\(477\) 34712.8i 3.33206i
\(478\) −6860.57 3960.95i −0.656475 0.379016i
\(479\) 4341.00 + 7518.83i 0.414082 + 0.717211i 0.995332 0.0965145i \(-0.0307694\pi\)
−0.581250 + 0.813725i \(0.697436\pi\)
\(480\) −432.671 + 524.645i −0.0411430 + 0.0498889i
\(481\) −496.848 + 860.565i −0.0470983 + 0.0815767i
\(482\) 7280.16i 0.687972i
\(483\) 0 0
\(484\) −10.5898 −0.000994530
\(485\) −449.599 + 2683.20i −0.0420933 + 0.251212i
\(486\) −141.817 245.635i −0.0132366 0.0229264i
\(487\) −771.174 + 445.238i −0.0717562 + 0.0414284i −0.535449 0.844568i \(-0.679858\pi\)
0.463693 + 0.885996i \(0.346524\pi\)
\(488\) −922.157 532.407i −0.0855411 0.0493872i
\(489\) 22953.7 2.12270
\(490\) 0 0
\(491\) 1562.48 0.143613 0.0718063 0.997419i \(-0.477124\pi\)
0.0718063 + 0.997419i \(0.477124\pi\)
\(492\) −56.8853 32.8428i −0.00521258 0.00300948i
\(493\) 10995.1 6348.03i 1.00445 0.579921i
\(494\) 146.716 + 254.120i 0.0133625 + 0.0231446i
\(495\) −22208.8 3721.33i −2.01659 0.337902i
\(496\) −11214.8 −1.01524
\(497\) 0 0
\(498\) 1865.56i 0.167867i
\(499\) 4117.17 7131.14i 0.369358 0.639747i −0.620107 0.784517i \(-0.712911\pi\)
0.989465 + 0.144770i \(0.0462443\pi\)
\(500\) 5.33773 + 208.932i 0.000477421 + 0.0186874i
\(501\) −16058.7 27814.5i −1.43204 2.48036i
\(502\) 7251.20 + 4186.48i 0.644695 + 0.372215i
\(503\) 72.5340i 0.00642969i −0.999995 0.00321484i \(-0.998977\pi\)
0.999995 0.00321484i \(-0.00102332\pi\)
\(504\) 0 0
\(505\) −6023.75 16121.7i −0.530798 1.42061i
\(506\) 9269.72 16055.6i 0.814406 1.41059i
\(507\) −16979.9 + 9803.34i −1.48738 + 0.858741i
\(508\) 65.4093 37.7641i 0.00571273 0.00329825i
\(509\) −3896.72 + 6749.32i −0.339330 + 0.587737i −0.984307 0.176465i \(-0.943534\pi\)
0.644977 + 0.764202i \(0.276867\pi\)
\(510\) −13888.0 + 5189.15i −1.20583 + 0.450548i
\(511\) 0 0
\(512\) 11243.9i 0.970537i
\(513\) −5408.89 3122.83i −0.465514 0.268764i
\(514\) −3889.91 6737.51i −0.333806 0.578169i
\(515\) 8182.40 + 6747.97i 0.700116 + 0.577381i
\(516\) −96.5235 + 167.184i −0.00823490 + 0.0142633i
\(517\) 1371.89i 0.116703i
\(518\) 0 0
\(519\) −20086.8 −1.69887
\(520\) −979.501 164.126i −0.0826038 0.0138412i
\(521\) 2322.71 + 4023.05i 0.195316 + 0.338298i 0.947004 0.321221i \(-0.104093\pi\)
−0.751688 + 0.659519i \(0.770760\pi\)
\(522\) 32673.7 18864.2i 2.73964 1.58173i
\(523\) 7607.06 + 4391.94i 0.636011 + 0.367201i 0.783076 0.621926i \(-0.213649\pi\)
−0.147065 + 0.989127i \(0.546983\pi\)
\(524\) 100.636 0.00838986
\(525\) 0 0
\(526\) 8642.04 0.716371
\(527\) −7701.09 4446.23i −0.636556 0.367516i
\(528\) 18995.1 10966.8i 1.56563 0.903919i
\(529\) 8959.70 + 15518.7i 0.736394 + 1.27547i
\(530\) 20312.4 + 3403.57i 1.66474 + 0.278946i
\(531\) −21275.5 −1.73875
\(532\) 0 0
\(533\) 193.686i 0.0157401i
\(534\) −19915.4 + 34494.4i −1.61390 + 2.79535i
\(535\) 7452.30 + 6145.86i 0.602226 + 0.496652i
\(536\) 2949.17 + 5108.11i 0.237658 + 0.411636i
\(537\) 14249.5 + 8226.95i 1.14509 + 0.661116i
\(538\) 4117.86i 0.329988i
\(539\) 0 0
\(540\) −377.221 + 140.946i −0.0300611 + 0.0112321i
\(541\) 3527.07 6109.06i 0.280296 0.485488i −0.691161 0.722701i \(-0.742901\pi\)
0.971458 + 0.237213i \(0.0762339\pi\)
\(542\) −15981.9 + 9227.17i −1.26657 + 0.731256i
\(543\) 18972.1 10953.6i 1.49939 0.865676i
\(544\) 174.850 302.849i 0.0137806 0.0238686i
\(545\) 3468.35 + 9282.55i 0.272602 + 0.729579i
\(546\) 0 0
\(547\) 5776.83i 0.451553i 0.974179 + 0.225776i \(0.0724919\pi\)
−0.974179 + 0.225776i \(0.927508\pi\)
\(548\) −201.040 116.070i −0.0156715 0.00904796i
\(549\) −1277.97 2213.51i −0.0993487 0.172077i
\(550\) 4355.11 12630.7i 0.337641 0.979228i
\(551\) −3185.47 + 5517.40i −0.246290 + 0.426587i
\(552\) 34941.2i 2.69419i
\(553\) 0 0
\(554\) 2502.51 0.191916
\(555\) 24847.6 + 4163.50i 1.90040 + 0.318434i
\(556\) −80.1592 138.840i −0.00611422 0.0105901i
\(557\) −17807.8 + 10281.3i −1.35465 + 0.782106i −0.988896 0.148607i \(-0.952521\pi\)
−0.365751 + 0.930713i \(0.619188\pi\)
\(558\) −22885.0 13212.7i −1.73620 1.00240i
\(559\) −569.235 −0.0430699
\(560\) 0 0
\(561\) 17391.7 1.30887
\(562\) 15457.2 + 8924.19i 1.16018 + 0.669830i
\(563\) 20792.8 12004.8i 1.55651 0.898650i 0.558921 0.829221i \(-0.311216\pi\)
0.997587 0.0694291i \(-0.0221178\pi\)
\(564\) −24.6273 42.6557i −0.00183864 0.00318462i
\(565\) −1415.21 + 8445.92i −0.105377 + 0.628889i
\(566\) 6423.37 0.477022
\(567\) 0 0
\(568\) 6010.11i 0.443977i
\(569\) −12078.7 + 20921.0i −0.889925 + 1.54140i −0.0499623 + 0.998751i \(0.515910\pi\)
−0.839963 + 0.542644i \(0.817423\pi\)
\(570\) 4733.43 5739.62i 0.347827 0.421766i
\(571\) 353.497 + 612.274i 0.0259078 + 0.0448737i 0.878689 0.477395i \(-0.158419\pi\)
−0.852781 + 0.522269i \(0.825086\pi\)
\(572\) −19.2202 11.0968i −0.00140496 0.000811154i
\(573\) 45657.4i 3.32874i
\(574\) 0 0
\(575\) 14217.6 + 16369.5i 1.03115 + 1.18723i
\(576\) −13504.4 + 23390.4i −0.976883 + 1.69201i
\(577\) 13906.0 8028.62i 1.00332 0.579265i 0.0940886 0.995564i \(-0.470006\pi\)
0.909228 + 0.416299i \(0.136673\pi\)
\(578\) −5543.81 + 3200.72i −0.398948 + 0.230333i
\(579\) 12606.9 21835.8i 0.904878 1.56729i
\(580\) 143.773 + 384.788i 0.0102929 + 0.0275474i
\(581\) 0 0
\(582\) 6244.07i 0.444717i
\(583\) −20923.2 12080.0i −1.48636 0.858152i
\(584\) 2238.38 + 3876.98i 0.158604 + 0.274710i
\(585\) −1839.18 1516.76i −0.129984 0.107197i
\(586\) 8446.98 14630.6i 0.595463 1.03137i
\(587\) 8605.63i 0.605098i 0.953134 + 0.302549i \(0.0978376\pi\)
−0.953134 + 0.302549i \(0.902162\pi\)
\(588\) 0 0
\(589\) 4462.28 0.312165
\(590\) 2086.04 12449.5i 0.145561 0.868705i
\(591\) −13967.3 24192.1i −0.972147 1.68381i
\(592\) −14150.0 + 8169.52i −0.982369 + 0.567171i
\(593\) −17628.5 10177.8i −1.22077 0.704809i −0.255684 0.966760i \(-0.582301\pi\)
−0.965081 + 0.261951i \(0.915634\pi\)
\(594\) 25742.4 1.77815
\(595\) 0 0
\(596\) 96.5986 0.00663898
\(597\) −16702.3 9643.10i −1.14503 0.661082i
\(598\) 1699.75 981.348i 0.116234 0.0671076i
\(599\) 11317.8 + 19603.1i 0.772010 + 1.33716i 0.936460 + 0.350776i \(0.114082\pi\)
−0.164449 + 0.986386i \(0.552585\pi\)
\(600\) 4794.13 + 24719.8i 0.326200 + 1.68197i
\(601\) 22553.8 1.53077 0.765383 0.643575i \(-0.222550\pi\)
0.765383 + 0.643575i \(0.222550\pi\)
\(602\) 0 0
\(603\) 14158.1i 0.956159i
\(604\) 18.1846 31.4967i 0.00122504 0.00212182i
\(605\) −503.712 + 610.786i −0.0338492 + 0.0410446i
\(606\) 19749.7 + 34207.5i 1.32389 + 2.29305i
\(607\) 15185.1 + 8767.12i 1.01539 + 0.586238i 0.912767 0.408482i \(-0.133942\pi\)
0.102628 + 0.994720i \(0.467275\pi\)
\(608\) 175.481i 0.0117051i
\(609\) 0 0
\(610\) 1420.55 530.778i 0.0942892 0.0352304i
\(611\) 72.6181 125.778i 0.00480821 0.00832806i
\(612\) 360.044 207.871i 0.0237809 0.0137299i
\(613\) −9046.07 + 5222.75i −0.596031 + 0.344119i −0.767479 0.641074i \(-0.778489\pi\)
0.171447 + 0.985193i \(0.445156\pi\)
\(614\) 13500.7 23384.0i 0.887371 1.53697i
\(615\) −4600.08 + 1718.78i −0.301615 + 0.112696i
\(616\) 0 0
\(617\) 13218.9i 0.862516i −0.902229 0.431258i \(-0.858070\pi\)
0.902229 0.431258i \(-0.141930\pi\)
\(618\) −21080.7 12170.9i −1.37215 0.792211i
\(619\) −11719.4 20298.7i −0.760976 1.31805i −0.942348 0.334635i \(-0.891387\pi\)
0.181372 0.983415i \(-0.441946\pi\)
\(620\) 183.052 221.964i 0.0118573 0.0143779i
\(621\) −20887.8 + 36178.7i −1.34975 + 2.33784i
\(622\) 21629.8i 1.39433i
\(623\) 0 0
\(624\) 2322.02 0.148967
\(625\) 12304.5 + 9630.18i 0.787487 + 0.616331i
\(626\) 13092.4 + 22676.8i 0.835909 + 1.44784i
\(627\) −7558.00 + 4363.62i −0.481400 + 0.277936i
\(628\) −201.076 116.092i −0.0127768 0.00737668i
\(629\) −12955.6 −0.821262
\(630\) 0 0
\(631\) −874.004 −0.0551403 −0.0275702 0.999620i \(-0.508777\pi\)
−0.0275702 + 0.999620i \(0.508777\pi\)
\(632\) −9192.64 5307.37i −0.578582 0.334044i
\(633\) −22087.6 + 12752.3i −1.38690 + 0.800725i
\(634\) 4393.36 + 7609.53i 0.275209 + 0.476676i
\(635\) 933.132 5568.90i 0.0583153 0.348024i
\(636\) −867.410 −0.0540802
\(637\) 0 0
\(638\) 26258.8i 1.62946i
\(639\) −7213.22 + 12493.7i −0.446558 + 0.773461i
\(640\) −12829.8 10580.7i −0.792412 0.653497i
\(641\) −11988.5 20764.7i −0.738715 1.27949i −0.953074 0.302738i \(-0.902099\pi\)
0.214359 0.976755i \(-0.431234\pi\)
\(642\) −19199.7 11084.9i −1.18030 0.681444i
\(643\) 27698.0i 1.69876i 0.527782 + 0.849380i \(0.323024\pi\)
−0.527782 + 0.849380i \(0.676976\pi\)
\(644\) 0 0
\(645\) 5051.44 + 13519.4i 0.308372 + 0.825314i
\(646\) −1912.86 + 3313.17i −0.116502 + 0.201788i
\(647\) −9496.10 + 5482.57i −0.577017 + 0.333141i −0.759947 0.649985i \(-0.774775\pi\)
0.182930 + 0.983126i \(0.441442\pi\)
\(648\) −13826.6 + 7982.79i −0.838209 + 0.483940i
\(649\) −7403.82 + 12823.8i −0.447805 + 0.775621i
\(650\) 1067.87 927.488i 0.0644389 0.0559678i
\(651\) 0 0
\(652\) 381.894i 0.0229388i
\(653\) 10683.5 + 6168.10i 0.640239 + 0.369642i 0.784707 0.619867i \(-0.212814\pi\)
−0.144467 + 0.989510i \(0.546147\pi\)
\(654\) −11371.5 19696.0i −0.679909 1.17764i
\(655\) 4786.83 5804.37i 0.285552 0.346253i
\(656\) 1592.36 2758.05i 0.0947733 0.164152i
\(657\) 10745.8i 0.638105i
\(658\) 0 0
\(659\) 25275.6 1.49408 0.747040 0.664779i \(-0.231474\pi\)
0.747040 + 0.664779i \(0.231474\pi\)
\(660\) −92.9893 + 554.957i −0.00548424 + 0.0327298i
\(661\) −2223.96 3852.01i −0.130865 0.226666i 0.793145 0.609033i \(-0.208442\pi\)
−0.924010 + 0.382367i \(0.875109\pi\)
\(662\) −7996.60 + 4616.84i −0.469481 + 0.271055i
\(663\) 1594.51 + 920.593i 0.0934024 + 0.0539259i
\(664\) 1629.34 0.0952270
\(665\) 0 0
\(666\) −38499.7 −2.23999
\(667\) 36904.5 + 21306.8i 2.14235 + 1.23689i
\(668\) −462.767 + 267.179i −0.0268039 + 0.0154752i
\(669\) −21309.2 36908.7i −1.23148 2.13299i
\(670\) −8284.71 1388.20i −0.477711 0.0800458i
\(671\) −1778.92 −0.102347
\(672\) 0 0
\(673\) 30358.9i 1.73885i 0.494061 + 0.869427i \(0.335512\pi\)
−0.494061 + 0.869427i \(0.664488\pi\)
\(674\) 5392.37 9339.86i 0.308170 0.533766i
\(675\) −9813.52 + 28461.2i −0.559589 + 1.62292i
\(676\) 163.104 + 282.504i 0.00927993 + 0.0160733i
\(677\) −5989.85 3458.24i −0.340042 0.196324i 0.320248 0.947334i \(-0.396234\pi\)
−0.660291 + 0.751010i \(0.729567\pi\)
\(678\) 19654.5i 1.11331i
\(679\) 0 0
\(680\) −4532.11 12129.5i −0.255586 0.684039i
\(681\) 4318.07 7479.11i 0.242979 0.420852i
\(682\) −15927.9 + 9195.98i −0.894297 + 0.516323i
\(683\) 3925.45 2266.36i 0.219917 0.126969i −0.385995 0.922501i \(-0.626142\pi\)
0.605912 + 0.795532i \(0.292808\pi\)
\(684\) −104.311 + 180.672i −0.00583104 + 0.0100997i
\(685\) −16257.3 + 6074.40i −0.906800 + 0.338819i
\(686\) 0 0
\(687\) 6687.56i 0.371392i
\(688\) −8105.80 4679.88i −0.449172 0.259330i
\(689\) −1278.86 2215.05i −0.0707122 0.122477i
\(690\) −38390.9 31660.7i −2.11814 1.74681i
\(691\) 13617.6 23586.4i 0.749694 1.29851i −0.198276 0.980146i \(-0.563534\pi\)
0.947969 0.318361i \(-0.103132\pi\)
\(692\) 334.197i 0.0183587i
\(693\) 0 0
\(694\) −23534.7 −1.28727
\(695\) −11820.7 1980.69i −0.645159 0.108104i
\(696\) 24744.9 + 42859.4i 1.34763 + 2.33417i
\(697\) 2186.92 1262.62i 0.118846 0.0686157i
\(698\) 17735.6 + 10239.6i 0.961750 + 0.555267i
\(699\) 13937.3 0.754160
\(700\) 0 0
\(701\) −17144.3 −0.923726 −0.461863 0.886951i \(-0.652819\pi\)
−0.461863 + 0.886951i \(0.652819\pi\)
\(702\) 2360.13 + 1362.62i 0.126891 + 0.0732604i
\(703\) 5630.19 3250.59i 0.302058 0.174393i
\(704\) 9399.03 + 16279.6i 0.503181 + 0.871534i
\(705\) −3631.67 608.528i −0.194010 0.0325085i
\(706\) −11965.7 −0.637867
\(707\) 0 0
\(708\) 531.635i 0.0282204i
\(709\) 8362.05 14483.5i 0.442939 0.767192i −0.554967 0.831872i \(-0.687269\pi\)
0.997906 + 0.0646799i \(0.0206026\pi\)
\(710\) −6603.48 5445.85i −0.349048 0.287858i
\(711\) −12739.6 22065.7i −0.671973 1.16389i
\(712\) −30126.8 17393.7i −1.58574 0.915528i
\(713\) 29847.0i 1.56771i
\(714\) 0 0
\(715\) −1554.26 + 580.737i −0.0812951 + 0.0303753i
\(716\) 136.877 237.077i 0.00714430 0.0123743i
\(717\) 21601.5 12471.7i 1.12514 0.649599i
\(718\) −7753.79 + 4476.65i −0.403021 + 0.232684i
\(719\) −2154.33 + 3731.41i −0.111743 + 0.193544i −0.916473 0.400097i \(-0.868977\pi\)
0.804730 + 0.593641i \(0.202310\pi\)
\(720\) −13719.7 36718.9i −0.710145 1.90060i
\(721\) 0 0
\(722\) 17660.9i 0.910347i
\(723\) 19851.6 + 11461.3i 1.02115 + 0.589560i
\(724\) −182.241 315.650i −0.00935487 0.0162031i
\(725\) 29032.2 + 10010.4i 1.48721 + 0.512796i
\(726\) 908.515 1573.59i 0.0464437 0.0804429i
\(727\) 29435.6i 1.50166i −0.660496 0.750830i \(-0.729654\pi\)
0.660496 0.750830i \(-0.270346\pi\)
\(728\) 0 0
\(729\) 20127.8 1.02260
\(730\) −6287.98 1053.62i −0.318806 0.0534195i
\(731\) −3710.79 6427.27i −0.187754 0.325200i
\(732\) −55.3115 + 31.9341i −0.00279286 + 0.00161246i
\(733\) −5705.11 3293.85i −0.287480 0.165977i 0.349325 0.937002i \(-0.386411\pi\)
−0.636805 + 0.771025i \(0.719744\pi\)
\(734\) −4919.57 −0.247390
\(735\) 0 0
\(736\) 1173.75 0.0587839
\(737\) 8533.82 + 4927.01i 0.426523 + 0.246253i
\(738\) 6498.79 3752.08i 0.324152 0.187149i
\(739\) 1842.23 + 3190.84i 0.0917018 + 0.158832i 0.908227 0.418477i \(-0.137436\pi\)
−0.816526 + 0.577309i \(0.804103\pi\)
\(740\) 69.2706 413.405i 0.00344113 0.0205366i
\(741\) −923.917 −0.0458042
\(742\) 0 0
\(743\) 12271.9i 0.605940i 0.953000 + 0.302970i \(0.0979783\pi\)
−0.953000 + 0.302970i \(0.902022\pi\)
\(744\) 17331.6 30019.2i 0.854042 1.47924i
\(745\) 4594.80 5571.53i 0.225961 0.273993i
\(746\) −4023.12 6968.25i −0.197449 0.341992i
\(747\) 3387.03 + 1955.51i 0.165897 + 0.0957807i
\(748\) 289.355i 0.0141442i
\(749\) 0 0
\(750\) −31504.4 17131.5i −1.53384 0.834072i
\(751\) 15435.5 26735.1i 0.749999 1.29904i −0.197824 0.980238i \(-0.563387\pi\)
0.947823 0.318798i \(-0.103279\pi\)
\(752\) 2068.13 1194.04i 0.100289 0.0579017i
\(753\) −22831.5 + 13181.8i −1.10495 + 0.637942i
\(754\) 1389.96 2407.48i 0.0671343 0.116280i
\(755\) −951.669 2547.00i −0.0458739 0.122775i
\(756\) 0 0
\(757\) 11442.1i 0.549368i −0.961535 0.274684i \(-0.911427\pi\)
0.961535 0.274684i \(-0.0885732\pi\)
\(758\) 25875.2 + 14939.0i 1.23988 + 0.715844i
\(759\) 29187.1 + 50553.5i 1.39582 + 2.41762i
\(760\) 5012.88 + 4134.09i 0.239258 + 0.197315i
\(761\) 7211.64 12490.9i 0.343524 0.595001i −0.641560 0.767073i \(-0.721713\pi\)
0.985085 + 0.172071i \(0.0550459\pi\)
\(762\) 12959.4i 0.616102i
\(763\) 0 0
\(764\) −759.630 −0.0359718
\(765\) 5136.40 30653.9i 0.242754 1.44875i
\(766\) −368.341 637.985i −0.0173743 0.0300931i
\(767\) −1357.60 + 783.813i −0.0639116 + 0.0368994i
\(768\) 1787.49 + 1032.01i 0.0839850 + 0.0484887i
\(769\) 26772.8 1.25546 0.627731 0.778430i \(-0.283984\pi\)
0.627731 + 0.778430i \(0.283984\pi\)
\(770\) 0 0
\(771\) 24495.9 1.14423
\(772\) −363.295 209.748i −0.0169369 0.00977850i
\(773\)