Properties

Label 245.4.j.f.79.7
Level $245$
Weight $4$
Character 245.79
Analytic conductor $14.455$
Analytic rank $0$
Dimension $20$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [245,4,Mod(79,245)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(245, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 2]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("245.79");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 245 = 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 245.j (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(14.4554679514\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(10\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - 55 x^{18} + 2042 x^{16} - 41247 x^{14} + 600234 x^{12} - 4812047 x^{10} + 27547801 x^{8} + \cdots + 12960000 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{6}\cdot 3^{2}\cdot 7^{8} \)
Twist minimal: no (minimal twist has level 35)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 79.7
Root \(2.31676 - 1.33758i\) of defining polynomial
Character \(\chi\) \(=\) 245.79
Dual form 245.4.j.f.214.7

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.45073 + 0.837581i) q^{2} +(-2.15983 + 1.24698i) q^{3} +(-2.59692 - 4.49799i) q^{4} +(-4.78866 - 10.1029i) q^{5} -4.17779 q^{6} -22.1018i q^{8} +(-10.3901 + 17.9961i) q^{9} +(1.51494 - 18.6675i) q^{10} +(28.7940 + 49.8727i) q^{11} +(11.2178 + 6.47661i) q^{12} -45.5159i q^{13} +(22.9408 + 15.8492i) q^{15} +(-2.26327 + 3.92011i) q^{16} +(-79.6787 + 46.0025i) q^{17} +(-30.1465 + 17.4051i) q^{18} +(-62.5885 + 108.407i) q^{19} +(-33.0070 + 47.7757i) q^{20} +96.4692i q^{22} +(137.262 + 79.2481i) q^{23} +(27.5605 + 47.7362i) q^{24} +(-79.1375 + 96.7588i) q^{25} +(38.1233 - 66.0315i) q^{26} -119.162i q^{27} +40.1708 q^{29} +(20.0060 + 42.2078i) q^{30} +(24.7795 + 42.9194i) q^{31} +(-159.693 + 92.1986i) q^{32} +(-124.381 - 71.8111i) q^{33} -154.123 q^{34} +107.929 q^{36} +(-200.318 - 115.654i) q^{37} +(-181.598 + 104.846i) q^{38} +(56.7575 + 98.3069i) q^{39} +(-223.293 + 105.838i) q^{40} -169.556 q^{41} +147.428i q^{43} +(149.551 - 259.030i) q^{44} +(231.568 + 18.7926i) q^{45} +(132.753 + 229.936i) q^{46} +(-58.0520 - 33.5164i) q^{47} -11.2890i q^{48} +(-195.851 + 74.0870i) q^{50} +(114.729 - 198.716i) q^{51} +(-204.730 + 118.201i) q^{52} +(-232.655 + 134.323i) q^{53} +(99.8077 - 172.872i) q^{54} +(365.974 - 529.726i) q^{55} -312.187i q^{57} +(58.2771 + 33.6463i) q^{58} +(120.421 + 208.576i) q^{59} +(11.7143 - 144.347i) q^{60} +(45.2290 - 78.3389i) q^{61} +83.0194i q^{62} -272.683 q^{64} +(-459.843 + 217.960i) q^{65} +(-120.295 - 208.358i) q^{66} +(-352.038 + 203.249i) q^{67} +(413.838 + 238.929i) q^{68} -395.283 q^{69} +330.782 q^{71} +(397.747 + 229.640i) q^{72} +(473.071 - 273.127i) q^{73} +(-193.739 - 335.565i) q^{74} +(50.2676 - 307.666i) q^{75} +650.149 q^{76} +190.156i q^{78} +(-12.6543 + 21.9179i) q^{79} +(50.4425 + 4.09360i) q^{80} +(-131.940 - 228.526i) q^{81} +(-245.981 - 142.017i) q^{82} +376.255i q^{83} +(846.314 + 584.697i) q^{85} +(-123.483 + 213.878i) q^{86} +(-86.7623 + 50.0922i) q^{87} +(1102.28 - 636.399i) q^{88} +(-513.219 + 888.921i) q^{89} +(320.203 + 221.220i) q^{90} -823.203i q^{92} +(-107.039 - 61.7992i) q^{93} +(-56.1453 - 97.2466i) q^{94} +(1394.94 + 113.204i) q^{95} +(229.940 - 398.267i) q^{96} +942.660i q^{97} -1196.69 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 36 q^{4} + 6 q^{5} - 24 q^{6} + 46 q^{9} - 16 q^{10} - 84 q^{11} + 16 q^{15} - 148 q^{16} + 72 q^{19} + 136 q^{20} + 72 q^{24} + 362 q^{25} - 620 q^{26} + 176 q^{29} - 52 q^{30} + 120 q^{31} - 1928 q^{34}+ \cdots - 10608 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/245\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(197\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.45073 + 0.837581i 0.512912 + 0.296130i 0.734030 0.679117i \(-0.237637\pi\)
−0.221118 + 0.975247i \(0.570971\pi\)
\(3\) −2.15983 + 1.24698i −0.415660 + 0.239982i −0.693219 0.720727i \(-0.743808\pi\)
0.277559 + 0.960709i \(0.410475\pi\)
\(4\) −2.59692 4.49799i −0.324615 0.562249i
\(5\) −4.78866 10.1029i −0.428311 0.903632i
\(6\) −4.17779 −0.284263
\(7\) 0 0
\(8\) 22.1018i 0.976771i
\(9\) −10.3901 + 17.9961i −0.384818 + 0.666524i
\(10\) 1.51494 18.6675i 0.0479066 0.590319i
\(11\) 28.7940 + 49.8727i 0.789247 + 1.36702i 0.926429 + 0.376470i \(0.122862\pi\)
−0.137182 + 0.990546i \(0.543804\pi\)
\(12\) 11.2178 + 6.47661i 0.269859 + 0.155803i
\(13\) 45.5159i 0.971066i −0.874218 0.485533i \(-0.838626\pi\)
0.874218 0.485533i \(-0.161374\pi\)
\(14\) 0 0
\(15\) 22.9408 + 15.8492i 0.394887 + 0.272817i
\(16\) −2.26327 + 3.92011i −0.0353637 + 0.0612517i
\(17\) −79.6787 + 46.0025i −1.13676 + 0.656309i −0.945626 0.325255i \(-0.894550\pi\)
−0.191134 + 0.981564i \(0.561217\pi\)
\(18\) −30.1465 + 17.4051i −0.394755 + 0.227912i
\(19\) −62.5885 + 108.407i −0.755726 + 1.30896i 0.189286 + 0.981922i \(0.439383\pi\)
−0.945013 + 0.327034i \(0.893951\pi\)
\(20\) −33.0070 + 47.7757i −0.369030 + 0.534149i
\(21\) 0 0
\(22\) 96.4692i 0.934878i
\(23\) 137.262 + 79.2481i 1.24439 + 0.718451i 0.969986 0.243162i \(-0.0781848\pi\)
0.274408 + 0.961613i \(0.411518\pi\)
\(24\) 27.5605 + 47.7362i 0.234407 + 0.406005i
\(25\) −79.1375 + 96.7588i −0.633100 + 0.774070i
\(26\) 38.1233 66.0315i 0.287561 0.498071i
\(27\) 119.162i 0.849360i
\(28\) 0 0
\(29\) 40.1708 0.257225 0.128613 0.991695i \(-0.458948\pi\)
0.128613 + 0.991695i \(0.458948\pi\)
\(30\) 20.0060 + 42.2078i 0.121753 + 0.256869i
\(31\) 24.7795 + 42.9194i 0.143566 + 0.248663i 0.928837 0.370489i \(-0.120810\pi\)
−0.785271 + 0.619152i \(0.787477\pi\)
\(32\) −159.693 + 92.1986i −0.882185 + 0.509330i
\(33\) −124.381 71.8111i −0.656117 0.378809i
\(34\) −154.123 −0.777410
\(35\) 0 0
\(36\) 107.929 0.499670
\(37\) −200.318 115.654i −0.890056 0.513874i −0.0160950 0.999870i \(-0.505123\pi\)
−0.873961 + 0.485997i \(0.838457\pi\)
\(38\) −181.598 + 104.846i −0.775241 + 0.447586i
\(39\) 56.7575 + 98.3069i 0.233038 + 0.403633i
\(40\) −223.293 + 105.838i −0.882641 + 0.418361i
\(41\) −169.556 −0.645859 −0.322929 0.946423i \(-0.604668\pi\)
−0.322929 + 0.946423i \(0.604668\pi\)
\(42\) 0 0
\(43\) 147.428i 0.522849i 0.965224 + 0.261425i \(0.0841923\pi\)
−0.965224 + 0.261425i \(0.915808\pi\)
\(44\) 149.551 259.030i 0.512402 0.887507i
\(45\) 231.568 + 18.7926i 0.767114 + 0.0622542i
\(46\) 132.753 + 229.936i 0.425509 + 0.737004i
\(47\) −58.0520 33.5164i −0.180165 0.104018i 0.407205 0.913337i \(-0.366503\pi\)
−0.587370 + 0.809318i \(0.699837\pi\)
\(48\) 11.2890i 0.0339465i
\(49\) 0 0
\(50\) −195.851 + 74.0870i −0.553949 + 0.209550i
\(51\) 114.729 198.716i 0.315004 0.545603i
\(52\) −204.730 + 118.201i −0.545980 + 0.315222i
\(53\) −232.655 + 134.323i −0.602974 + 0.348127i −0.770211 0.637790i \(-0.779849\pi\)
0.167237 + 0.985917i \(0.446516\pi\)
\(54\) 99.8077 172.872i 0.251521 0.435646i
\(55\) 365.974 529.726i 0.897236 1.29870i
\(56\) 0 0
\(57\) 312.187i 0.725441i
\(58\) 58.2771 + 33.6463i 0.131934 + 0.0761720i
\(59\) 120.421 + 208.576i 0.265721 + 0.460242i 0.967752 0.251904i \(-0.0810567\pi\)
−0.702031 + 0.712146i \(0.747723\pi\)
\(60\) 11.7143 144.347i 0.0252052 0.310585i
\(61\) 45.2290 78.3389i 0.0949340 0.164431i −0.814647 0.579957i \(-0.803069\pi\)
0.909581 + 0.415527i \(0.136403\pi\)
\(62\) 83.0194i 0.170056i
\(63\) 0 0
\(64\) −272.683 −0.532583
\(65\) −459.843 + 217.960i −0.877485 + 0.415918i
\(66\) −120.295 208.358i −0.224353 0.388592i
\(67\) −352.038 + 203.249i −0.641914 + 0.370609i −0.785351 0.619050i \(-0.787518\pi\)
0.143437 + 0.989659i \(0.454184\pi\)
\(68\) 413.838 + 238.929i 0.738018 + 0.426095i
\(69\) −395.283 −0.689660
\(70\) 0 0
\(71\) 330.782 0.552910 0.276455 0.961027i \(-0.410840\pi\)
0.276455 + 0.961027i \(0.410840\pi\)
\(72\) 397.747 + 229.640i 0.651041 + 0.375879i
\(73\) 473.071 273.127i 0.758476 0.437906i −0.0702724 0.997528i \(-0.522387\pi\)
0.828748 + 0.559622i \(0.189054\pi\)
\(74\) −193.739 335.565i −0.304347 0.527144i
\(75\) 50.2676 307.666i 0.0773920 0.473682i
\(76\) 650.149 0.981279
\(77\) 0 0
\(78\) 190.156i 0.276038i
\(79\) −12.6543 + 21.9179i −0.0180218 + 0.0312147i −0.874896 0.484311i \(-0.839070\pi\)
0.856874 + 0.515526i \(0.172403\pi\)
\(80\) 50.4425 + 4.09360i 0.0704956 + 0.00572098i
\(81\) −131.940 228.526i −0.180987 0.313479i
\(82\) −245.981 142.017i −0.331268 0.191258i
\(83\) 376.255i 0.497582i 0.968557 + 0.248791i \(0.0800333\pi\)
−0.968557 + 0.248791i \(0.919967\pi\)
\(84\) 0 0
\(85\) 846.314 + 584.697i 1.07995 + 0.746109i
\(86\) −123.483 + 213.878i −0.154831 + 0.268175i
\(87\) −86.7623 + 50.0922i −0.106918 + 0.0617293i
\(88\) 1102.28 636.399i 1.33526 0.770914i
\(89\) −513.219 + 888.921i −0.611248 + 1.05871i 0.379782 + 0.925076i \(0.375999\pi\)
−0.991030 + 0.133637i \(0.957334\pi\)
\(90\) 320.203 + 221.220i 0.375026 + 0.259096i
\(91\) 0 0
\(92\) 823.203i 0.932878i
\(93\) −107.039 61.7992i −0.119349 0.0689062i
\(94\) −56.1453 97.2466i −0.0616058 0.106704i
\(95\) 1394.94 + 113.204i 1.50650 + 0.122258i
\(96\) 229.940 398.267i 0.244460 0.423416i
\(97\) 942.660i 0.986728i 0.869823 + 0.493364i \(0.164233\pi\)
−0.869823 + 0.493364i \(0.835767\pi\)
\(98\) 0 0
\(99\) −1196.69 −1.21487
\(100\) 640.733 + 104.685i 0.640733 + 0.104685i
\(101\) −302.308 523.613i −0.297830 0.515856i 0.677809 0.735238i \(-0.262929\pi\)
−0.975639 + 0.219381i \(0.929596\pi\)
\(102\) 332.881 192.189i 0.323139 0.186564i
\(103\) 260.645 + 150.484i 0.249341 + 0.143957i 0.619463 0.785026i \(-0.287351\pi\)
−0.370121 + 0.928983i \(0.620684\pi\)
\(104\) −1005.98 −0.948509
\(105\) 0 0
\(106\) −450.027 −0.412363
\(107\) −1309.14 755.830i −1.18279 0.682886i −0.226135 0.974096i \(-0.572609\pi\)
−0.956659 + 0.291210i \(0.905942\pi\)
\(108\) −535.989 + 309.453i −0.477551 + 0.275714i
\(109\) −883.545 1530.34i −0.776406 1.34477i −0.934001 0.357270i \(-0.883707\pi\)
0.157595 0.987504i \(-0.449626\pi\)
\(110\) 974.620 461.958i 0.844785 0.400418i
\(111\) 576.871 0.493281
\(112\) 0 0
\(113\) 1045.27i 0.870182i −0.900387 0.435091i \(-0.856716\pi\)
0.900387 0.435091i \(-0.143284\pi\)
\(114\) 261.482 452.900i 0.214825 0.372087i
\(115\) 143.337 1766.23i 0.116228 1.43219i
\(116\) −104.320 180.688i −0.0834991 0.144625i
\(117\) 819.111 + 472.914i 0.647238 + 0.373683i
\(118\) 403.451i 0.314751i
\(119\) 0 0
\(120\) 350.297 507.034i 0.266480 0.385714i
\(121\) −992.689 + 1719.39i −0.745822 + 1.29180i
\(122\) 131.230 75.7658i 0.0973855 0.0562255i
\(123\) 366.213 211.433i 0.268458 0.154994i
\(124\) 128.701 222.916i 0.0932070 0.161439i
\(125\) 1356.51 + 336.174i 0.970638 + 0.240547i
\(126\) 0 0
\(127\) 260.727i 0.182171i 0.995843 + 0.0910857i \(0.0290337\pi\)
−0.995843 + 0.0910857i \(0.970966\pi\)
\(128\) 881.951 + 509.195i 0.609017 + 0.351616i
\(129\) −183.840 318.419i −0.125474 0.217328i
\(130\) −849.669 68.9539i −0.573238 0.0465205i
\(131\) −361.761 + 626.588i −0.241276 + 0.417903i −0.961078 0.276277i \(-0.910899\pi\)
0.719802 + 0.694180i \(0.244233\pi\)
\(132\) 745.950i 0.491868i
\(133\) 0 0
\(134\) −680.950 −0.438993
\(135\) −1203.88 + 570.625i −0.767508 + 0.363790i
\(136\) 1016.74 + 1761.04i 0.641064 + 1.11036i
\(137\) 670.038 386.847i 0.417848 0.241245i −0.276308 0.961069i \(-0.589111\pi\)
0.694156 + 0.719824i \(0.255778\pi\)
\(138\) −573.451 331.082i −0.353735 0.204229i
\(139\) −2952.97 −1.80192 −0.900961 0.433899i \(-0.857137\pi\)
−0.900961 + 0.433899i \(0.857137\pi\)
\(140\) 0 0
\(141\) 167.177 0.0998499
\(142\) 479.876 + 277.057i 0.283594 + 0.163733i
\(143\) 2270.00 1310.59i 1.32746 0.766411i
\(144\) −47.0312 81.4604i −0.0272171 0.0471414i
\(145\) −192.364 405.842i −0.110172 0.232437i
\(146\) 915.066 0.518708
\(147\) 0 0
\(148\) 1201.37i 0.667244i
\(149\) 1257.00 2177.19i 0.691124 1.19706i −0.280345 0.959899i \(-0.590449\pi\)
0.971470 0.237163i \(-0.0762177\pi\)
\(150\) 330.620 404.238i 0.179967 0.220039i
\(151\) −50.5262 87.5140i −0.0272302 0.0471642i 0.852089 0.523397i \(-0.175335\pi\)
−0.879319 + 0.476233i \(0.842002\pi\)
\(152\) 2395.98 + 1383.32i 1.27855 + 0.738171i
\(153\) 1911.88i 1.01024i
\(154\) 0 0
\(155\) 314.950 455.872i 0.163209 0.236235i
\(156\) 294.789 510.589i 0.151295 0.262050i
\(157\) −2025.07 + 1169.17i −1.02941 + 0.594333i −0.916817 0.399308i \(-0.869250\pi\)
−0.112597 + 0.993641i \(0.535917\pi\)
\(158\) −36.7161 + 21.1980i −0.0184872 + 0.0106736i
\(159\) 334.997 580.233i 0.167088 0.289405i
\(160\) 1696.19 + 1171.85i 0.838096 + 0.579019i
\(161\) 0 0
\(162\) 442.040i 0.214383i
\(163\) −1147.66 662.602i −0.551483 0.318399i 0.198237 0.980154i \(-0.436478\pi\)
−0.749720 + 0.661755i \(0.769812\pi\)
\(164\) 440.323 + 762.662i 0.209655 + 0.363133i
\(165\) −129.885 + 1600.48i −0.0612822 + 0.755136i
\(166\) −315.144 + 545.845i −0.147349 + 0.255216i
\(167\) 2086.20i 0.966675i −0.875434 0.483338i \(-0.839424\pi\)
0.875434 0.483338i \(-0.160576\pi\)
\(168\) 0 0
\(169\) 125.299 0.0570317
\(170\) 738.044 + 1557.09i 0.332973 + 0.702493i
\(171\) −1300.60 2252.70i −0.581634 1.00742i
\(172\) 663.129 382.858i 0.293971 0.169724i
\(173\) −1661.20 959.095i −0.730051 0.421495i 0.0883897 0.996086i \(-0.471828\pi\)
−0.818441 + 0.574591i \(0.805161\pi\)
\(174\) −167.825 −0.0731195
\(175\) 0 0
\(176\) −260.675 −0.111643
\(177\) −520.180 300.326i −0.220899 0.127536i
\(178\) −1489.09 + 859.725i −0.627032 + 0.362017i
\(179\) 314.523 + 544.770i 0.131333 + 0.227475i 0.924191 0.381932i \(-0.124741\pi\)
−0.792858 + 0.609407i \(0.791408\pi\)
\(180\) −516.833 1090.39i −0.214014 0.451517i
\(181\) 2800.85 1.15020 0.575099 0.818084i \(-0.304964\pi\)
0.575099 + 0.818084i \(0.304964\pi\)
\(182\) 0 0
\(183\) 225.599i 0.0911296i
\(184\) 1751.53 3033.73i 0.701762 1.21549i
\(185\) −209.184 + 2577.62i −0.0831324 + 1.02438i
\(186\) −103.524 179.308i −0.0408103 0.0706856i
\(187\) −4588.54 2649.19i −1.79437 1.03598i
\(188\) 348.157i 0.135063i
\(189\) 0 0
\(190\) 1928.86 + 1332.60i 0.736497 + 0.508827i
\(191\) −370.127 + 641.080i −0.140217 + 0.242863i −0.927578 0.373629i \(-0.878113\pi\)
0.787361 + 0.616492i \(0.211447\pi\)
\(192\) 588.949 340.030i 0.221374 0.127810i
\(193\) −3535.61 + 2041.29i −1.31865 + 0.761321i −0.983511 0.180849i \(-0.942116\pi\)
−0.335136 + 0.942170i \(0.608782\pi\)
\(194\) −789.554 + 1367.55i −0.292199 + 0.506104i
\(195\) 721.393 1044.17i 0.264923 0.383461i
\(196\) 0 0
\(197\) 3414.89i 1.23503i 0.786559 + 0.617515i \(0.211860\pi\)
−0.786559 + 0.617515i \(0.788140\pi\)
\(198\) −1736.07 1002.32i −0.623118 0.359758i
\(199\) 1696.22 + 2937.94i 0.604231 + 1.04656i 0.992173 + 0.124875i \(0.0398529\pi\)
−0.387941 + 0.921684i \(0.626814\pi\)
\(200\) 2138.54 + 1749.08i 0.756089 + 0.618394i
\(201\) 506.895 877.968i 0.177879 0.308095i
\(202\) 1012.83i 0.352785i
\(203\) 0 0
\(204\) −1191.76 −0.409020
\(205\) 811.946 + 1713.01i 0.276628 + 0.583619i
\(206\) 252.084 + 436.623i 0.0852600 + 0.147675i
\(207\) −2852.32 + 1646.79i −0.957729 + 0.552945i
\(208\) 178.427 + 103.015i 0.0594794 + 0.0343404i
\(209\) −7208.70 −2.38582
\(210\) 0 0
\(211\) 3398.04 1.10867 0.554337 0.832292i \(-0.312972\pi\)
0.554337 + 0.832292i \(0.312972\pi\)
\(212\) 1208.37 + 697.653i 0.391468 + 0.226014i
\(213\) −714.434 + 412.479i −0.229823 + 0.132688i
\(214\) −1266.14 2193.02i −0.404446 0.700521i
\(215\) 1489.45 705.981i 0.472463 0.223942i
\(216\) −2633.69 −0.829630
\(217\) 0 0
\(218\) 2960.16i 0.919667i
\(219\) −681.169 + 1179.82i −0.210179 + 0.364040i
\(220\) −3333.11 270.495i −1.02145 0.0828943i
\(221\) 2093.85 + 3626.65i 0.637319 + 1.10387i
\(222\) 836.886 + 483.176i 0.253010 + 0.146075i
\(223\) 182.611i 0.0548365i 0.999624 + 0.0274183i \(0.00872860\pi\)
−0.999624 + 0.0274183i \(0.991271\pi\)
\(224\) 0 0
\(225\) −919.040 2429.50i −0.272308 0.719852i
\(226\) 875.496 1516.40i 0.257687 0.446326i
\(227\) 2730.00 1576.17i 0.798222 0.460854i −0.0446271 0.999004i \(-0.514210\pi\)
0.842849 + 0.538150i \(0.180877\pi\)
\(228\) −1404.21 + 810.723i −0.407878 + 0.235489i
\(229\) −3006.18 + 5206.85i −0.867483 + 1.50253i −0.00292326 + 0.999996i \(0.500931\pi\)
−0.864560 + 0.502529i \(0.832403\pi\)
\(230\) 1687.31 2442.28i 0.483730 0.700170i
\(231\) 0 0
\(232\) 887.848i 0.251250i
\(233\) −814.635 470.330i −0.229050 0.132242i 0.381084 0.924540i \(-0.375551\pi\)
−0.610133 + 0.792299i \(0.708884\pi\)
\(234\) 792.208 + 1372.14i 0.221317 + 0.383333i
\(235\) −60.6213 + 746.993i −0.0168277 + 0.207355i
\(236\) 625.448 1083.31i 0.172514 0.298802i
\(237\) 63.1188i 0.0172996i
\(238\) 0 0
\(239\) −5158.82 −1.39622 −0.698109 0.715991i \(-0.745975\pi\)
−0.698109 + 0.715991i \(0.745975\pi\)
\(240\) −114.052 + 54.0593i −0.0306751 + 0.0145396i
\(241\) −231.918 401.694i −0.0619882 0.107367i 0.833366 0.552722i \(-0.186411\pi\)
−0.895354 + 0.445355i \(0.853077\pi\)
\(242\) −2880.25 + 1662.92i −0.765081 + 0.441720i
\(243\) 3356.26 + 1937.74i 0.886025 + 0.511547i
\(244\) −469.823 −0.123268
\(245\) 0 0
\(246\) 708.370 0.183594
\(247\) 4934.23 + 2848.78i 1.27108 + 0.733860i
\(248\) 948.596 547.672i 0.242887 0.140231i
\(249\) −469.183 812.648i −0.119411 0.206825i
\(250\) 1686.36 + 1623.88i 0.426618 + 0.410814i
\(251\) −2290.25 −0.575934 −0.287967 0.957640i \(-0.592979\pi\)
−0.287967 + 0.957640i \(0.592979\pi\)
\(252\) 0 0
\(253\) 9127.48i 2.26814i
\(254\) −218.380 + 378.245i −0.0539463 + 0.0934378i
\(255\) −2557.00 207.511i −0.627944 0.0509601i
\(256\) 1943.71 + 3366.61i 0.474540 + 0.821927i
\(257\) −694.727 401.101i −0.168622 0.0973541i 0.413314 0.910589i \(-0.364371\pi\)
−0.581936 + 0.813235i \(0.697705\pi\)
\(258\) 615.922i 0.148627i
\(259\) 0 0
\(260\) 2174.56 + 1502.35i 0.518694 + 0.358352i
\(261\) −417.378 + 722.920i −0.0989849 + 0.171447i
\(262\) −1049.64 + 606.008i −0.247507 + 0.142898i
\(263\) 248.530 143.489i 0.0582701 0.0336423i −0.470582 0.882356i \(-0.655956\pi\)
0.528852 + 0.848714i \(0.322623\pi\)
\(264\) −1587.16 + 2749.03i −0.370010 + 0.640876i
\(265\) 2471.16 + 1707.26i 0.572839 + 0.395760i
\(266\) 0 0
\(267\) 2559.90i 0.586753i
\(268\) 1828.42 + 1055.64i 0.416749 + 0.240610i
\(269\) −1780.61 3084.11i −0.403590 0.699039i 0.590566 0.806989i \(-0.298905\pi\)
−0.994156 + 0.107951i \(0.965571\pi\)
\(270\) −2224.46 180.523i −0.501393 0.0406899i
\(271\) 964.403 1670.39i 0.216175 0.374425i −0.737461 0.675390i \(-0.763975\pi\)
0.953635 + 0.300965i \(0.0973086\pi\)
\(272\) 416.466i 0.0928380i
\(273\) 0 0
\(274\) 1296.06 0.285759
\(275\) −7104.30 1160.73i −1.55784 0.254525i
\(276\) 1026.52 + 1777.98i 0.223874 + 0.387760i
\(277\) 5705.97 3294.34i 1.23768 0.714578i 0.269064 0.963122i \(-0.413286\pi\)
0.968620 + 0.248545i \(0.0799523\pi\)
\(278\) −4283.96 2473.35i −0.924227 0.533603i
\(279\) −1029.84 −0.220986
\(280\) 0 0
\(281\) 815.552 0.173138 0.0865689 0.996246i \(-0.472410\pi\)
0.0865689 + 0.996246i \(0.472410\pi\)
\(282\) 242.529 + 140.024i 0.0512142 + 0.0295685i
\(283\) −5640.85 + 3256.75i −1.18485 + 0.684076i −0.957132 0.289651i \(-0.906461\pi\)
−0.227722 + 0.973726i \(0.573128\pi\)
\(284\) −859.013 1487.85i −0.179483 0.310873i
\(285\) −3153.99 + 1494.96i −0.655532 + 0.310714i
\(286\) 4390.89 0.907828
\(287\) 0 0
\(288\) 3831.80i 0.783997i
\(289\) 1775.97 3076.07i 0.361483 0.626108i
\(290\) 60.8564 749.889i 0.0123228 0.151845i
\(291\) −1175.48 2035.99i −0.236796 0.410143i
\(292\) −2457.05 1418.58i −0.492425 0.284301i
\(293\) 435.520i 0.0868373i 0.999057 + 0.0434186i \(0.0138249\pi\)
−0.999057 + 0.0434186i \(0.986175\pi\)
\(294\) 0 0
\(295\) 1530.57 2215.40i 0.302078 0.437240i
\(296\) −2556.15 + 4427.39i −0.501937 + 0.869381i
\(297\) 5942.92 3431.15i 1.16109 0.670355i
\(298\) 3647.15 2105.68i 0.708971 0.409325i
\(299\) 3607.05 6247.60i 0.697663 1.20839i
\(300\) −1514.42 + 572.879i −0.291450 + 0.110251i
\(301\) 0 0
\(302\) 169.279i 0.0322547i
\(303\) 1305.87 + 753.945i 0.247592 + 0.142947i
\(304\) −283.310 490.707i −0.0534505 0.0925789i
\(305\) −1008.04 81.8060i −0.189246 0.0153580i
\(306\) 1601.35 2773.63i 0.299161 0.518163i
\(307\) 4915.99i 0.913910i 0.889490 + 0.456955i \(0.151060\pi\)
−0.889490 + 0.456955i \(0.848940\pi\)
\(308\) 0 0
\(309\) −750.601 −0.138188
\(310\) 838.738 397.552i 0.153668 0.0728368i
\(311\) −915.556 1585.79i −0.166934 0.289138i 0.770407 0.637553i \(-0.220053\pi\)
−0.937340 + 0.348415i \(0.886720\pi\)
\(312\) 2172.76 1254.44i 0.394257 0.227625i
\(313\) 2115.66 + 1221.48i 0.382059 + 0.220582i 0.678714 0.734403i \(-0.262538\pi\)
−0.296655 + 0.954985i \(0.595871\pi\)
\(314\) −3917.11 −0.703998
\(315\) 0 0
\(316\) 131.449 0.0234006
\(317\) −1442.97 833.096i −0.255662 0.147607i 0.366692 0.930342i \(-0.380490\pi\)
−0.622354 + 0.782736i \(0.713824\pi\)
\(318\) 971.983 561.175i 0.171403 0.0989595i
\(319\) 1156.68 + 2003.43i 0.203014 + 0.351631i
\(320\) 1305.78 + 2754.89i 0.228111 + 0.481259i
\(321\) 3770.02 0.655521
\(322\) 0 0
\(323\) 11516.9i 1.98396i
\(324\) −685.272 + 1186.93i −0.117502 + 0.203520i
\(325\) 4404.07 + 3602.02i 0.751673 + 0.614782i
\(326\) −1109.97 1922.52i −0.188575 0.326621i
\(327\) 3816.62 + 2203.53i 0.645442 + 0.372646i
\(328\) 3747.50i 0.630856i
\(329\) 0 0
\(330\) −1528.96 + 2213.09i −0.255051 + 0.369171i
\(331\) 2733.19 4734.02i 0.453866 0.786119i −0.544756 0.838595i \(-0.683378\pi\)
0.998622 + 0.0524753i \(0.0167111\pi\)
\(332\) 1692.39 977.102i 0.279765 0.161522i
\(333\) 4162.64 2403.30i 0.685018 0.395496i
\(334\) 1747.36 3026.51i 0.286261 0.495819i
\(335\) 3739.19 + 2583.31i 0.609833 + 0.421318i
\(336\) 0 0
\(337\) 10650.5i 1.72157i 0.508970 + 0.860784i \(0.330027\pi\)
−0.508970 + 0.860784i \(0.669973\pi\)
\(338\) 181.775 + 104.948i 0.0292522 + 0.0168888i
\(339\) 1303.43 + 2257.60i 0.208828 + 0.361700i
\(340\) 432.154 5325.12i 0.0689319 0.849397i
\(341\) −1427.00 + 2471.64i −0.226617 + 0.392513i
\(342\) 4357.43i 0.688956i
\(343\) 0 0
\(344\) 3258.42 0.510704
\(345\) 1892.88 + 3993.51i 0.295389 + 0.623198i
\(346\) −1606.64 2782.78i −0.249634 0.432380i
\(347\) 3480.67 2009.57i 0.538479 0.310891i −0.205983 0.978556i \(-0.566039\pi\)
0.744462 + 0.667664i \(0.232706\pi\)
\(348\) 450.629 + 260.171i 0.0694145 + 0.0400765i
\(349\) 10544.9 1.61735 0.808674 0.588256i \(-0.200185\pi\)
0.808674 + 0.588256i \(0.200185\pi\)
\(350\) 0 0
\(351\) −5423.76 −0.824784
\(352\) −9196.38 5309.53i −1.39252 0.803974i
\(353\) 2563.42 1479.99i 0.386507 0.223150i −0.294138 0.955763i \(-0.595033\pi\)
0.680646 + 0.732613i \(0.261699\pi\)
\(354\) −503.095 871.386i −0.0755345 0.130830i
\(355\) −1584.00 3341.86i −0.236817 0.499627i
\(356\) 5331.14 0.793680
\(357\) 0 0
\(358\) 1053.75i 0.155566i
\(359\) 1085.08 1879.42i 0.159523 0.276301i −0.775174 0.631748i \(-0.782338\pi\)
0.934697 + 0.355447i \(0.115671\pi\)
\(360\) 415.351 5118.07i 0.0608081 0.749294i
\(361\) −4405.15 7629.94i −0.642244 1.11240i
\(362\) 4063.29 + 2345.94i 0.589949 + 0.340607i
\(363\) 4951.46i 0.715934i
\(364\) 0 0
\(365\) −5024.76 3471.48i −0.720569 0.497823i
\(366\) −188.957 + 327.283i −0.0269862 + 0.0467414i
\(367\) 1084.44 626.101i 0.154243 0.0890523i −0.420892 0.907111i \(-0.638283\pi\)
0.575135 + 0.818058i \(0.304950\pi\)
\(368\) −621.322 + 358.720i −0.0880126 + 0.0508141i
\(369\) 1761.70 3051.36i 0.248538 0.430480i
\(370\) −2462.43 + 3564.23i −0.345989 + 0.500798i
\(371\) 0 0
\(372\) 641.949i 0.0894718i
\(373\) 4023.57 + 2323.01i 0.558533 + 0.322469i 0.752556 0.658528i \(-0.228821\pi\)
−0.194024 + 0.980997i \(0.562154\pi\)
\(374\) −4437.83 7686.55i −0.613569 1.06273i
\(375\) −3349.03 + 965.458i −0.461182 + 0.132949i
\(376\) −740.772 + 1283.05i −0.101602 + 0.175980i
\(377\) 1828.41i 0.249783i
\(378\) 0 0
\(379\) −1434.84 −0.194466 −0.0972331 0.995262i \(-0.530999\pi\)
−0.0972331 + 0.995262i \(0.530999\pi\)
\(380\) −3113.34 6568.39i −0.420292 0.886714i
\(381\) −325.121 563.126i −0.0437178 0.0757214i
\(382\) −1073.91 + 620.023i −0.143838 + 0.0830449i
\(383\) 11446.0 + 6608.36i 1.52706 + 0.881649i 0.999483 + 0.0321425i \(0.0102330\pi\)
0.527578 + 0.849507i \(0.323100\pi\)
\(384\) −2539.82 −0.337526
\(385\) 0 0
\(386\) −6838.97 −0.901799
\(387\) −2653.13 1531.79i −0.348492 0.201202i
\(388\) 4240.07 2448.01i 0.554787 0.320306i
\(389\) −3877.50 6716.03i −0.505391 0.875363i −0.999981 0.00623657i \(-0.998015\pi\)
0.494589 0.869127i \(-0.335319\pi\)
\(390\) 1921.13 910.592i 0.249436 0.118230i
\(391\) −14582.5 −1.88610
\(392\) 0 0
\(393\) 1804.44i 0.231607i
\(394\) −2860.25 + 4954.09i −0.365729 + 0.633461i
\(395\) 282.032 + 22.8880i 0.0359255 + 0.00291549i
\(396\) 3107.70 + 5382.69i 0.394363 + 0.683056i
\(397\) −3083.77 1780.41i −0.389848 0.225079i 0.292246 0.956343i \(-0.405597\pi\)
−0.682094 + 0.731264i \(0.738931\pi\)
\(398\) 5682.89i 0.715723i
\(399\) 0 0
\(400\) −200.195 529.219i −0.0250243 0.0661524i
\(401\) 2715.30 4703.04i 0.338144 0.585683i −0.645940 0.763389i \(-0.723534\pi\)
0.984084 + 0.177706i \(0.0568675\pi\)
\(402\) 1470.74 849.132i 0.182472 0.105350i
\(403\) 1953.52 1127.86i 0.241468 0.139412i
\(404\) −1570.14 + 2719.56i −0.193360 + 0.334909i
\(405\) −1676.96 + 2427.31i −0.205751 + 0.297812i
\(406\) 0 0
\(407\) 13320.5i 1.62229i
\(408\) −4391.98 2535.71i −0.532929 0.307687i
\(409\) 4849.39 + 8399.40i 0.586277 + 1.01546i 0.994715 + 0.102675i \(0.0327402\pi\)
−0.408438 + 0.912786i \(0.633927\pi\)
\(410\) −256.867 + 3165.19i −0.0309409 + 0.381262i
\(411\) −964.780 + 1671.05i −0.115789 + 0.200552i
\(412\) 1563.17i 0.186922i
\(413\) 0 0
\(414\) −5517.27 −0.654974
\(415\) 3801.27 1801.76i 0.449631 0.213120i
\(416\) 4196.51 + 7268.56i 0.494593 + 0.856660i
\(417\) 6377.91 3682.29i 0.748988 0.432428i
\(418\) −10457.9 6037.87i −1.22371 0.706511i
\(419\) 13830.9 1.61261 0.806307 0.591498i \(-0.201463\pi\)
0.806307 + 0.591498i \(0.201463\pi\)
\(420\) 0 0
\(421\) 16703.0 1.93362 0.966810 0.255498i \(-0.0822393\pi\)
0.966810 + 0.255498i \(0.0822393\pi\)
\(422\) 4929.64 + 2846.13i 0.568652 + 0.328311i
\(423\) 1206.33 696.475i 0.138661 0.0800562i
\(424\) 2968.79 + 5142.10i 0.340041 + 0.588968i
\(425\) 1854.43 11350.1i 0.211654 1.29544i
\(426\) −1381.94 −0.157172
\(427\) 0 0
\(428\) 7851.31i 0.886699i
\(429\) −3268.55 + 5661.30i −0.367849 + 0.637133i
\(430\) 2752.11 + 223.344i 0.308648 + 0.0250479i
\(431\) −4087.04 7078.95i −0.456765 0.791140i 0.542023 0.840364i \(-0.317659\pi\)
−0.998788 + 0.0492238i \(0.984325\pi\)
\(432\) 467.127 + 269.696i 0.0520247 + 0.0300365i
\(433\) 14222.8i 1.57853i 0.614051 + 0.789267i \(0.289539\pi\)
−0.614051 + 0.789267i \(0.710461\pi\)
\(434\) 0 0
\(435\) 921.552 + 636.677i 0.101575 + 0.0701755i
\(436\) −4588.98 + 7948.35i −0.504065 + 0.873066i
\(437\) −17182.0 + 9920.05i −1.88084 + 1.08590i
\(438\) −1976.39 + 1141.07i −0.215606 + 0.124480i
\(439\) −2768.69 + 4795.52i −0.301008 + 0.521361i −0.976365 0.216130i \(-0.930656\pi\)
0.675357 + 0.737491i \(0.263990\pi\)
\(440\) −11707.9 8088.70i −1.26853 0.876394i
\(441\) 0 0
\(442\) 7015.07i 0.754916i
\(443\) 3441.66 + 1987.04i 0.369116 + 0.213109i 0.673072 0.739577i \(-0.264974\pi\)
−0.303956 + 0.952686i \(0.598308\pi\)
\(444\) −1498.09 2594.76i −0.160126 0.277347i
\(445\) 11438.3 + 928.263i 1.21849 + 0.0988852i
\(446\) −152.952 + 264.920i −0.0162387 + 0.0281263i
\(447\) 6269.82i 0.663428i
\(448\) 0 0
\(449\) 15243.1 1.60216 0.801078 0.598559i \(-0.204260\pi\)
0.801078 + 0.598559i \(0.204260\pi\)
\(450\) 701.623 4294.33i 0.0734996 0.449859i
\(451\) −4882.20 8456.22i −0.509742 0.882900i
\(452\) −4701.60 + 2714.47i −0.489259 + 0.282474i
\(453\) 218.257 + 126.010i 0.0226371 + 0.0130695i
\(454\) 5280.67 0.545890
\(455\) 0 0
\(456\) −6899.89 −0.708590
\(457\) 9326.11 + 5384.43i 0.954611 + 0.551145i 0.894510 0.447048i \(-0.147525\pi\)
0.0601005 + 0.998192i \(0.480858\pi\)
\(458\) −8722.32 + 5035.83i −0.889884 + 0.513775i
\(459\) 5481.75 + 9494.67i 0.557443 + 0.965519i
\(460\) −8316.74 + 3942.04i −0.842978 + 0.399562i
\(461\) 332.605 0.0336029 0.0168015 0.999859i \(-0.494652\pi\)
0.0168015 + 0.999859i \(0.494652\pi\)
\(462\) 0 0
\(463\) 8205.35i 0.823618i 0.911270 + 0.411809i \(0.135103\pi\)
−0.911270 + 0.411809i \(0.864897\pi\)
\(464\) −90.9176 + 157.474i −0.00909643 + 0.0157555i
\(465\) −111.777 + 1377.34i −0.0111474 + 0.137361i
\(466\) −787.879 1364.65i −0.0783214 0.135657i
\(467\) −145.170 83.8138i −0.0143847 0.00830501i 0.492790 0.870148i \(-0.335977\pi\)
−0.507175 + 0.861843i \(0.669310\pi\)
\(468\) 4912.47i 0.485212i
\(469\) 0 0
\(470\) −713.612 + 1032.91i −0.0700351 + 0.101372i
\(471\) 2915.87 5050.44i 0.285258 0.494081i
\(472\) 4609.90 2661.53i 0.449551 0.259548i
\(473\) −7352.62 + 4245.04i −0.714744 + 0.412657i
\(474\) 52.8671 91.5685i 0.00512293 0.00887317i
\(475\) −5536.18 14635.0i −0.534773 1.41368i
\(476\) 0 0
\(477\) 5582.52i 0.535862i
\(478\) −7484.07 4320.93i −0.716137 0.413462i
\(479\) −3314.29 5740.52i −0.316146 0.547581i 0.663535 0.748146i \(-0.269056\pi\)
−0.979680 + 0.200565i \(0.935722\pi\)
\(480\) −5124.76 415.894i −0.487317 0.0395476i
\(481\) −5264.08 + 9117.66i −0.499005 + 0.864302i
\(482\) 777.001i 0.0734262i
\(483\) 0 0
\(484\) 10311.7 0.968419
\(485\) 9523.60 4514.08i 0.891638 0.422626i
\(486\) 3246.02 + 5622.28i 0.302968 + 0.524757i
\(487\) −17876.1 + 10320.8i −1.66334 + 0.960327i −0.692231 + 0.721676i \(0.743372\pi\)
−0.971105 + 0.238651i \(0.923295\pi\)
\(488\) −1731.43 999.642i −0.160611 0.0927288i
\(489\) 3305.01 0.305640
\(490\) 0 0
\(491\) −16710.8 −1.53594 −0.767972 0.640484i \(-0.778734\pi\)
−0.767972 + 0.640484i \(0.778734\pi\)
\(492\) −1902.05 1098.15i −0.174291 0.100627i
\(493\) −3200.76 + 1847.96i −0.292404 + 0.168819i
\(494\) 4772.16 + 8265.63i 0.434635 + 0.752810i
\(495\) 5730.53 + 12090.0i 0.520340 + 1.09779i
\(496\) −224.331 −0.0203080
\(497\) 0 0
\(498\) 1571.91i 0.141444i
\(499\) −6864.35 + 11889.4i −0.615812 + 1.06662i 0.374429 + 0.927256i \(0.377839\pi\)
−0.990241 + 0.139363i \(0.955495\pi\)
\(500\) −2010.63 6974.57i −0.179836 0.623825i
\(501\) 2601.45 + 4505.84i 0.231984 + 0.401809i
\(502\) −3322.54 1918.27i −0.295403 0.170551i
\(503\) 19523.7i 1.73065i −0.501209 0.865326i \(-0.667111\pi\)
0.501209 0.865326i \(-0.332889\pi\)
\(504\) 0 0
\(505\) −3842.37 + 5561.60i −0.338580 + 0.490075i
\(506\) −7645.00 + 13241.5i −0.671664 + 1.16336i
\(507\) −270.624 + 156.245i −0.0237058 + 0.0136866i
\(508\) 1172.75 677.086i 0.102426 0.0591355i
\(509\) 4344.08 7524.17i 0.378287 0.655212i −0.612526 0.790450i \(-0.709847\pi\)
0.990813 + 0.135238i \(0.0431799\pi\)
\(510\) −3535.72 2442.74i −0.306989 0.212091i
\(511\) 0 0
\(512\) 1635.04i 0.141131i
\(513\) 12917.9 + 7458.17i 1.11177 + 0.641883i
\(514\) −671.909 1163.78i −0.0576588 0.0998680i
\(515\) 272.181 3353.89i 0.0232888 0.286971i
\(516\) −954.832 + 1653.82i −0.0814615 + 0.141095i
\(517\) 3860.28i 0.328385i
\(518\) 0 0
\(519\) 4783.89 0.404604
\(520\) 4817.32 + 10163.4i 0.406256 + 0.857102i
\(521\) 3385.68 + 5864.17i 0.284701 + 0.493117i 0.972537 0.232750i \(-0.0747723\pi\)
−0.687835 + 0.725867i \(0.741439\pi\)
\(522\) −1211.01 + 699.176i −0.101541 + 0.0586247i
\(523\) 1182.90 + 682.947i 0.0988998 + 0.0570998i 0.548634 0.836063i \(-0.315148\pi\)
−0.449734 + 0.893162i \(0.648481\pi\)
\(524\) 3757.85 0.313287
\(525\) 0 0
\(526\) 480.735 0.0398499
\(527\) −3948.80 2279.84i −0.326400 0.188447i
\(528\) 563.014 325.057i 0.0464054 0.0267922i
\(529\) 6477.02 + 11218.5i 0.532344 + 0.922046i
\(530\) 2155.03 + 4546.58i 0.176619 + 0.372624i
\(531\) −5004.75 −0.409016
\(532\) 0 0
\(533\) 7717.51i 0.627171i
\(534\) 2144.12 3713.72i 0.173755 0.300952i
\(535\) −1367.08 + 16845.5i −0.110474 + 1.36130i
\(536\) 4492.17 + 7780.67i 0.362000 + 0.627003i
\(537\) −1358.63 784.408i −0.109180 0.0630348i
\(538\) 5965.62i 0.478060i
\(539\) 0 0
\(540\) 5693.05 + 3933.18i 0.453685 + 0.313439i
\(541\) 11625.0 20135.2i 0.923844 1.60014i 0.130433 0.991457i \(-0.458363\pi\)
0.793410 0.608687i \(-0.208303\pi\)
\(542\) 2798.18 1615.53i 0.221757 0.128031i
\(543\) −6049.37 + 3492.61i −0.478091 + 0.276026i
\(544\) 8482.74 14692.5i 0.668556 1.15797i
\(545\) −11229.9 + 16254.7i −0.882638 + 1.27757i
\(546\) 0 0
\(547\) 11552.7i 0.903033i −0.892263 0.451516i \(-0.850883\pi\)
0.892263 0.451516i \(-0.149117\pi\)
\(548\) −3480.06 2009.22i −0.271279 0.156623i
\(549\) 939.865 + 1627.89i 0.0730646 + 0.126552i
\(550\) −9334.24 7634.33i −0.723661 0.591871i
\(551\) −2514.23 + 4354.78i −0.194392 + 0.336697i
\(552\) 8736.48i 0.673640i
\(553\) 0 0
\(554\) 11037.1 0.846430
\(555\) −2762.44 5828.08i −0.211277 0.445744i
\(556\) 7668.60 + 13282.4i 0.584930 + 1.01313i
\(557\) −14208.2 + 8203.08i −1.08082 + 0.624014i −0.931119 0.364717i \(-0.881166\pi\)
−0.149706 + 0.988731i \(0.547833\pi\)
\(558\) −1494.03 862.578i −0.113346 0.0654406i
\(559\) 6710.31 0.507721
\(560\) 0 0
\(561\) 13214.0 0.994465
\(562\) 1183.15 + 683.091i 0.0888044 + 0.0512712i
\(563\) 11805.6 6815.95i 0.883740 0.510227i 0.0118502 0.999930i \(-0.496228\pi\)
0.871890 + 0.489702i \(0.162895\pi\)
\(564\) −434.145 751.961i −0.0324127 0.0561405i
\(565\) −10560.2 + 5005.43i −0.786324 + 0.372708i
\(566\) −10911.2 −0.810300
\(567\) 0 0
\(568\) 7310.88i 0.540067i
\(569\) −1543.41 + 2673.27i −0.113714 + 0.196958i −0.917265 0.398278i \(-0.869608\pi\)
0.803551 + 0.595236i \(0.202941\pi\)
\(570\) −5827.75 472.944i −0.428241 0.0347534i
\(571\) 1629.03 + 2821.57i 0.119392 + 0.206793i 0.919527 0.393027i \(-0.128572\pi\)
−0.800135 + 0.599820i \(0.795239\pi\)
\(572\) −11790.0 6806.96i −0.861827 0.497576i
\(573\) 1846.17i 0.134598i
\(574\) 0 0
\(575\) −18530.5 + 7009.78i −1.34396 + 0.508396i
\(576\) 2833.19 4907.24i 0.204948 0.354980i
\(577\) −20575.4 + 11879.2i −1.48451 + 0.857083i −0.999845 0.0176156i \(-0.994392\pi\)
−0.484667 + 0.874699i \(0.661059\pi\)
\(578\) 5152.91 2975.03i 0.370818 0.214092i
\(579\) 5090.89 8817.68i 0.365406 0.632902i
\(580\) −1325.92 + 1919.19i −0.0949238 + 0.137397i
\(581\) 0 0
\(582\) 3938.23i 0.280490i
\(583\) −13398.1 7735.42i −0.951791 0.549517i
\(584\) −6036.61 10455.7i −0.427734 0.740857i
\(585\) 855.364 10540.0i 0.0604529 0.744917i
\(586\) −364.783 + 631.823i −0.0257151 + 0.0445398i
\(587\) 596.893i 0.0419701i −0.999780 0.0209850i \(-0.993320\pi\)
0.999780 0.0209850i \(-0.00668023\pi\)
\(588\) 0 0
\(589\) −6203.66 −0.433985
\(590\) 4076.02 1931.99i 0.284419 0.134811i
\(591\) −4258.30 7375.59i −0.296384 0.513353i
\(592\) 906.749 523.512i 0.0629513 0.0363449i
\(593\) −16884.3 9748.16i −1.16923 0.675058i −0.215734 0.976452i \(-0.569215\pi\)
−0.953500 + 0.301394i \(0.902548\pi\)
\(594\) 11495.5 0.794047
\(595\) 0 0
\(596\) −13057.3 −0.897396
\(597\) −7327.11 4230.31i −0.502310 0.290009i
\(598\) 10465.7 6042.40i 0.715679 0.413197i
\(599\) 1898.51 + 3288.31i 0.129501 + 0.224302i 0.923483 0.383639i \(-0.125329\pi\)
−0.793983 + 0.607941i \(0.791996\pi\)
\(600\) −6799.97 1111.00i −0.462679 0.0755942i
\(601\) −5789.33 −0.392931 −0.196466 0.980511i \(-0.562946\pi\)
−0.196466 + 0.980511i \(0.562946\pi\)
\(602\) 0 0
\(603\) 8447.09i 0.570468i
\(604\) −262.425 + 454.533i −0.0176787 + 0.0306203i
\(605\) 22124.5 + 1795.49i 1.48676 + 0.120656i
\(606\) 1262.98 + 2187.55i 0.0846618 + 0.146639i
\(607\) 16053.0 + 9268.21i 1.07343 + 0.619745i 0.929116 0.369787i \(-0.120569\pi\)
0.144313 + 0.989532i \(0.453903\pi\)
\(608\) 23082.3i 1.53966i
\(609\) 0 0
\(610\) −1393.87 962.991i −0.0925184 0.0639186i
\(611\) −1525.53 + 2642.29i −0.101009 + 0.174952i
\(612\) −8599.62 + 4964.99i −0.568005 + 0.327938i
\(613\) −1873.62 + 1081.74i −0.123450 + 0.0712738i −0.560453 0.828186i \(-0.689373\pi\)
0.437003 + 0.899460i \(0.356040\pi\)
\(614\) −4117.54 + 7131.79i −0.270636 + 0.468755i
\(615\) −3889.76 2687.34i −0.255041 0.176201i
\(616\) 0 0
\(617\) 22964.9i 1.49843i 0.662327 + 0.749215i \(0.269569\pi\)
−0.662327 + 0.749215i \(0.730431\pi\)
\(618\) −1088.92 628.689i −0.0708784 0.0409216i
\(619\) 693.333 + 1200.89i 0.0450200 + 0.0779770i 0.887657 0.460505i \(-0.152332\pi\)
−0.842637 + 0.538482i \(0.818998\pi\)
\(620\) −2868.40 232.782i −0.185803 0.0150786i
\(621\) 9443.35 16356.4i 0.610223 1.05694i
\(622\) 3067.41i 0.197736i
\(623\) 0 0
\(624\) −513.831 −0.0329643
\(625\) −3099.51 15314.5i −0.198369 0.980127i
\(626\) 2046.17 + 3544.08i 0.130642 + 0.226278i
\(627\) 15569.6 8989.11i 0.991690 0.572552i
\(628\) 10517.9 + 6072.49i 0.668326 + 0.385858i
\(629\) 21281.4 1.34904
\(630\) 0 0
\(631\) 5969.39 0.376605 0.188303 0.982111i \(-0.439701\pi\)
0.188303 + 0.982111i \(0.439701\pi\)
\(632\) 484.426 + 279.683i 0.0304896 + 0.0176032i
\(633\) −7339.19 + 4237.28i −0.460832 + 0.266062i
\(634\) −1395.57 2417.20i −0.0874215 0.151418i
\(635\) 2634.10 1248.53i 0.164616 0.0780259i
\(636\) −3479.84 −0.216957
\(637\) 0 0
\(638\) 3875.25i 0.240474i
\(639\) −3436.85 + 5952.80i −0.212770 + 0.368528i
\(640\) 920.985 11348.6i 0.0568830 0.700928i
\(641\) −15183.6 26298.7i −0.935592 1.62049i −0.773576 0.633704i \(-0.781534\pi\)
−0.162016 0.986788i \(-0.551800\pi\)
\(642\) 5469.29 + 3157.70i 0.336224 + 0.194119i
\(643\) 28592.2i 1.75360i 0.480851 + 0.876802i \(0.340328\pi\)
−0.480851 + 0.876802i \(0.659672\pi\)
\(644\) 0 0
\(645\) −2336.62 + 3382.12i −0.142642 + 0.206466i
\(646\) 9646.36 16708.0i 0.587509 1.01760i
\(647\) 12564.3 7253.97i 0.763449 0.440778i −0.0670835 0.997747i \(-0.521369\pi\)
0.830533 + 0.556970i \(0.188036\pi\)
\(648\) −5050.84 + 2916.10i −0.306197 + 0.176783i
\(649\) −6934.83 + 12011.5i −0.419439 + 0.726489i
\(650\) 3372.14 + 8914.33i 0.203487 + 0.537921i
\(651\) 0 0
\(652\) 6882.89i 0.413428i
\(653\) 6062.05 + 3499.93i 0.363287 + 0.209744i 0.670522 0.741890i \(-0.266070\pi\)
−0.307235 + 0.951634i \(0.599404\pi\)
\(654\) 3691.26 + 6393.46i 0.220703 + 0.382269i
\(655\) 8062.71 + 654.320i 0.480971 + 0.0390327i
\(656\) 383.752 664.678i 0.0228399 0.0395599i
\(657\) 11351.3i 0.674056i
\(658\) 0 0
\(659\) −7308.92 −0.432041 −0.216020 0.976389i \(-0.569308\pi\)
−0.216020 + 0.976389i \(0.569308\pi\)
\(660\) 7536.26 3572.10i 0.444468 0.210672i
\(661\) −15048.6 26065.0i −0.885512 1.53375i −0.845126 0.534567i \(-0.820475\pi\)
−0.0403854 0.999184i \(-0.512859\pi\)
\(662\) 7930.26 4578.54i 0.465586 0.268806i
\(663\) −9044.73 5221.98i −0.529816 0.305890i
\(664\) 8315.91 0.486024
\(665\) 0 0
\(666\) 8051.83 0.468472
\(667\) 5513.92 + 3183.46i 0.320090 + 0.184804i
\(668\) −9383.70 + 5417.68i −0.543512 + 0.313797i
\(669\) −227.713 394.410i −0.0131598 0.0227934i
\(670\) 3260.84 + 6879.58i 0.188026 + 0.396688i
\(671\) 5209.29 0.299706
\(672\) 0 0
\(673\) 5400.26i 0.309309i 0.987969 + 0.154654i \(0.0494264\pi\)
−0.987969 + 0.154654i \(0.950574\pi\)
\(674\) −8920.64 + 15451.0i −0.509808 + 0.883013i
\(675\) 11530.0 + 9430.17i 0.657464 + 0.537730i
\(676\) −325.390 563.593i −0.0185133 0.0320660i
\(677\) 5569.49 + 3215.55i 0.316178 + 0.182546i 0.649688 0.760201i \(-0.274900\pi\)
−0.333509 + 0.942747i \(0.608233\pi\)
\(678\) 4366.91i 0.247360i
\(679\) 0 0
\(680\) 12922.9 18705.1i 0.728778 1.05486i
\(681\) −3930.90 + 6808.51i −0.221193 + 0.383117i
\(682\) −4140.40 + 2390.46i −0.232469 + 0.134216i
\(683\) 18070.3 10432.9i 1.01236 0.584486i 0.100477 0.994939i \(-0.467963\pi\)
0.911881 + 0.410454i \(0.134630\pi\)
\(684\) −6755.10 + 11700.2i −0.377613 + 0.654046i
\(685\) −7116.86 4916.86i −0.396965 0.274253i
\(686\) 0 0
\(687\) 14994.6i 0.832720i
\(688\) −577.933 333.669i −0.0320254 0.0184899i
\(689\) 6113.86 + 10589.5i 0.338054 + 0.585527i
\(690\) −598.831 + 7378.96i −0.0330393 + 0.407119i
\(691\) 9225.13 15978.4i 0.507873 0.879662i −0.492085 0.870547i \(-0.663765\pi\)
0.999958 0.00911505i \(-0.00290145\pi\)
\(692\) 9962.76i 0.547294i
\(693\) 0 0
\(694\) 6732.70 0.368256
\(695\) 14140.7 + 29833.5i 0.771783 + 1.62827i
\(696\) 1107.13 + 1917.60i 0.0602954 + 0.104435i
\(697\) 13510.0 7800.01i 0.734187 0.423883i
\(698\) 15297.8 + 8832.20i 0.829557 + 0.478945i
\(699\) 2345.97 0.126942
\(700\) 0 0
\(701\) 12639.3 0.680996 0.340498 0.940245i \(-0.389404\pi\)
0.340498 + 0.940245i \(0.389404\pi\)
\(702\) −7868.43 4542.84i −0.423041 0.244243i
\(703\) 25075.2 14477.2i 1.34528 0.776696i
\(704\) −7851.63 13599.4i −0.420340 0.728050i
\(705\) −800.554 1688.97i −0.0427668 0.0902276i
\(706\) 4958.45 0.264325
\(707\) 0 0
\(708\) 3119.69i 0.165600i
\(709\) −11563.4 + 20028.4i −0.612514 + 1.06091i 0.378301 + 0.925683i \(0.376508\pi\)
−0.990815 + 0.135223i \(0.956825\pi\)
\(710\) 501.115 6174.88i 0.0264880 0.326393i
\(711\) −262.959 455.458i −0.0138702 0.0240239i
\(712\) 19646.8 + 11343.1i 1.03412 + 0.597050i
\(713\) 7854.92i 0.412579i
\(714\) 0 0
\(715\) −24111.0 16657.7i −1.26112 0.871275i
\(716\) 1633.58 2829.44i 0.0852650 0.147683i
\(717\) 11142.2 6432.95i 0.580353 0.335067i
\(718\) 3148.34 1817.69i 0.163642 0.0944787i
\(719\) 12046.6 20865.2i 0.624841 1.08226i −0.363731 0.931504i \(-0.618497\pi\)
0.988572 0.150752i \(-0.0481695\pi\)
\(720\) −597.771 + 865.238i −0.0309411 + 0.0447854i
\(721\) 0 0
\(722\) 14758.7i 0.760750i
\(723\) 1001.81 + 578.395i 0.0515321 + 0.0297521i
\(724\) −7273.58 12598.2i −0.373371 0.646697i
\(725\) −3179.02 + 3886.88i −0.162849 + 0.199110i
\(726\) 4147.25 7183.24i 0.212009 0.367211i
\(727\) 35983.4i 1.83570i −0.396931 0.917849i \(-0.629925\pi\)
0.396931 0.917849i \(-0.370075\pi\)
\(728\) 0 0
\(729\) −2540.55 −0.129073
\(730\) −4381.94 9244.82i −0.222168 0.468721i
\(731\) −6782.05 11746.9i −0.343151 0.594355i
\(732\) 1014.74 585.861i 0.0512375 0.0295820i
\(733\) 1257.04 + 725.752i 0.0633422 + 0.0365706i 0.531337 0.847161i \(-0.321690\pi\)
−0.467994 + 0.883731i \(0.655023\pi\)
\(734\) 2097.64 0.105484
\(735\) 0 0
\(736\) −29226.3 −1.46371
\(737\) −20273.1 11704.7i −1.01326 0.585005i
\(738\) 5111.52 2951.14i 0.254956 0.147199i
\(739\) −2945.83 5102.33i −0.146636 0.253982i 0.783346 0.621586i \(-0.213511\pi\)
−0.929982 + 0.367604i \(0.880178\pi\)
\(740\) 12137.3 5752.95i 0.602942 0.285788i
\(741\) −14209.5 −0.704451
\(742\) 0 0
\(743\) 7438.65i 0.367292i −0.982992 0.183646i \(-0.941210\pi\)
0.982992 0.183646i \(-0.0587900\pi\)
\(744\) −1365.87 + 2365.76i −0.0673056 + 0.116577i
\(745\) −28015.3 2273.55i −1.37772 0.111807i
\(746\) 3891.42 + 6740.13i 0.190985 + 0.330796i
\(747\) −6771.14 3909.32i −0.331651 0.191479i
\(748\) 27518.9i 1.34518i
\(749\) 0 0
\(750\) −5667.20 1404.47i −0.275916 0.0683784i
\(751\) −10136.2 + 17556.4i −0.492509 + 0.853051i −0.999963 0.00862831i \(-0.997253\pi\)
0.507454 + 0.861679i \(0.330587\pi\)
\(752\) 262.775 151.713i 0.0127426 0.00735694i
\(753\) 4946.56 2855.90i 0.239393 0.138213i
\(754\) 1531.44 2652.54i 0.0739680 0.128116i
\(755\) −642.193 + 929.537i −0.0309560 + 0.0448070i
\(756\) 0 0
\(757\) 10193.8i 0.489432i −0.969595 0.244716i \(-0.921305\pi\)
0.969595 0.244716i \(-0.0786947\pi\)
\(758\) −2081.57 1201.79i −0.0997439 0.0575872i
\(759\) −11381.8 19713.8i −0.544312 0.942776i
\(760\) 2502.02 30830.6i 0.119418 1.47151i
\(761\) −20558.8 + 35608.9i −0.979311 + 1.69622i −0.314405 + 0.949289i \(0.601805\pi\)
−0.664906 + 0.746927i \(0.731528\pi\)
\(762\) 1089.26i 0.0517845i
\(763\) 0 0
\(764\) 3844.76 0.182066
\(765\) −19315.6 + 9155.34i −0.912883 + 0.432696i
\(766\) 11070.1 + 19173.9i 0.522165 + 0.904416i
\(767\) 9493.53 5481.09i 0.446925 0.258032i
\(768\) −8396.20 4847.55i −0.394495 0.227762i
\(769\) 11486.6 0.538642 0.269321 0.963050i \(-0.413201\pi\)
0.269321 + 0.963050i \(0.413201\pi\)
\(770\) 0 0
\(771\) 2000.66 0.0934527
\(772\) 18363.4 + 10602.1i 0.856104 + 0.494272i
\(773\) −18878.7