Properties

Label 245.4.j.f.79.3
Level $245$
Weight $4$
Character 245.79
Analytic conductor $14.455$
Analytic rank $0$
Dimension $20$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [245,4,Mod(79,245)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(245, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 2]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("245.79");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 245 = 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 245.j (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(14.4554679514\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(10\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - 55 x^{18} + 2042 x^{16} - 41247 x^{14} + 600234 x^{12} - 4812047 x^{10} + 27547801 x^{8} + \cdots + 12960000 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{6}\cdot 3^{2}\cdot 7^{8} \)
Twist minimal: no (minimal twist has level 35)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 79.3
Root \(-1.60625 + 0.927371i\) of defining polynomial
Character \(\chi\) \(=\) 245.79
Dual form 245.4.j.f.214.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.47228 - 1.42737i) q^{2} +(7.78434 - 4.49429i) q^{3} +(0.0747741 + 0.129513i) q^{4} +(-7.11340 - 8.62551i) q^{5} -25.6601 q^{6} +22.4110i q^{8} +(26.8973 - 46.5874i) q^{9} +(5.27451 + 31.4781i) q^{10} +(-18.7204 - 32.4247i) q^{11} +(1.16413 + 0.672113i) q^{12} +3.96370i q^{13} +(-94.1387 - 35.1742i) q^{15} +(32.5870 - 56.4424i) q^{16} +(-44.7544 + 25.8390i) q^{17} +(-132.995 + 76.7847i) q^{18} +(-12.9661 + 22.4580i) q^{19} +(0.585214 - 1.56624i) q^{20} +106.884i q^{22} +(-150.216 - 86.7272i) q^{23} +(100.722 + 174.455i) q^{24} +(-23.7990 + 122.714i) q^{25} +(5.65768 - 9.79938i) q^{26} -240.845i q^{27} +245.676 q^{29} +(182.530 + 221.331i) q^{30} +(-86.0372 - 149.021i) q^{31} +(-5.86031 + 3.38345i) q^{32} +(-291.452 - 168.270i) q^{33} +147.527 q^{34} +8.04488 q^{36} +(217.111 + 125.349i) q^{37} +(64.1118 - 37.0150i) q^{38} +(17.8140 + 30.8548i) q^{39} +(193.306 - 159.419i) q^{40} +48.8649 q^{41} +143.612i q^{43} +(2.79960 - 4.84905i) q^{44} +(-593.172 + 99.3925i) q^{45} +(247.584 + 428.827i) q^{46} +(-31.7325 - 18.3208i) q^{47} -585.822i q^{48} +(233.995 - 269.412i) q^{50} +(-232.256 + 402.279i) q^{51} +(-0.513350 + 0.296383i) q^{52} +(-558.834 + 322.643i) q^{53} +(-343.775 + 595.435i) q^{54} +(-146.514 + 392.123i) q^{55} +233.094i q^{57} +(-607.380 - 350.671i) q^{58} +(-197.748 - 342.509i) q^{59} +(-2.48364 - 14.8223i) q^{60} +(23.7565 - 41.1475i) q^{61} +491.228i q^{62} -502.074 q^{64} +(34.1890 - 28.1954i) q^{65} +(480.366 + 832.019i) q^{66} +(227.929 - 131.595i) q^{67} +(-6.69295 - 3.86418i) q^{68} -1559.11 q^{69} -268.177 q^{71} +(1044.07 + 602.795i) q^{72} +(172.995 - 99.8785i) q^{73} +(-357.840 - 619.797i) q^{74} +(366.251 + 1062.20i) q^{75} -3.87813 q^{76} -101.709i q^{78} +(236.820 - 410.184i) q^{79} +(-718.649 + 120.418i) q^{80} +(-356.199 - 616.955i) q^{81} +(-120.808 - 69.7484i) q^{82} -72.7028i q^{83} +(541.231 + 202.227i) q^{85} +(204.988 - 355.049i) q^{86} +(1912.43 - 1104.14i) q^{87} +(726.669 - 419.543i) q^{88} +(776.123 - 1344.28i) q^{89} +(1608.36 + 600.950i) q^{90} -25.9398i q^{92} +(-1339.48 - 773.352i) q^{93} +(52.3011 + 90.5881i) q^{94} +(285.945 - 47.9133i) q^{95} +(-30.4124 + 52.6758i) q^{96} -243.338i q^{97} -2014.11 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 36 q^{4} + 6 q^{5} - 24 q^{6} + 46 q^{9} - 16 q^{10} - 84 q^{11} + 16 q^{15} - 148 q^{16} + 72 q^{19} + 136 q^{20} + 72 q^{24} + 362 q^{25} - 620 q^{26} + 176 q^{29} - 52 q^{30} + 120 q^{31} - 1928 q^{34}+ \cdots - 10608 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/245\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(197\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.47228 1.42737i −0.874082 0.504652i −0.00537973 0.999986i \(-0.501712\pi\)
−0.868703 + 0.495334i \(0.835046\pi\)
\(3\) 7.78434 4.49429i 1.49810 0.864926i 0.498099 0.867120i \(-0.334032\pi\)
0.999998 + 0.00219412i \(0.000698411\pi\)
\(4\) 0.0747741 + 0.129513i 0.00934677 + 0.0161891i
\(5\) −7.11340 8.62551i −0.636242 0.771489i
\(6\) −25.6601 −1.74595
\(7\) 0 0
\(8\) 22.4110i 0.990436i
\(9\) 26.8973 46.5874i 0.996195 1.72546i
\(10\) 5.27451 + 31.4781i 0.166795 + 0.995426i
\(11\) −18.7204 32.4247i −0.513128 0.888764i −0.999884 0.0152260i \(-0.995153\pi\)
0.486756 0.873538i \(-0.338180\pi\)
\(12\) 1.16413 + 0.672113i 0.0280047 + 0.0161685i
\(13\) 3.96370i 0.0845641i 0.999106 + 0.0422821i \(0.0134628\pi\)
−0.999106 + 0.0422821i \(0.986537\pi\)
\(14\) 0 0
\(15\) −94.1387 35.1742i −1.62043 0.605463i
\(16\) 32.5870 56.4424i 0.509172 0.881912i
\(17\) −44.7544 + 25.8390i −0.638503 + 0.368640i −0.784038 0.620713i \(-0.786843\pi\)
0.145535 + 0.989353i \(0.453510\pi\)
\(18\) −132.995 + 76.7847i −1.74151 + 1.00546i
\(19\) −12.9661 + 22.4580i −0.156560 + 0.271170i −0.933626 0.358249i \(-0.883374\pi\)
0.777066 + 0.629419i \(0.216707\pi\)
\(20\) 0.585214 1.56624i 0.00654289 0.0175111i
\(21\) 0 0
\(22\) 106.884i 1.03580i
\(23\) −150.216 86.7272i −1.36183 0.786255i −0.371966 0.928246i \(-0.621316\pi\)
−0.989868 + 0.141991i \(0.954649\pi\)
\(24\) 100.722 + 174.455i 0.856654 + 1.48377i
\(25\) −23.7990 + 122.714i −0.190392 + 0.981708i
\(26\) 5.65768 9.79938i 0.0426754 0.0739160i
\(27\) 240.845i 1.71669i
\(28\) 0 0
\(29\) 245.676 1.57314 0.786568 0.617503i \(-0.211856\pi\)
0.786568 + 0.617503i \(0.211856\pi\)
\(30\) 182.530 + 221.331i 1.11084 + 1.34698i
\(31\) −86.0372 149.021i −0.498475 0.863385i 0.501523 0.865144i \(-0.332773\pi\)
−0.999998 + 0.00175963i \(0.999440\pi\)
\(32\) −5.86031 + 3.38345i −0.0323739 + 0.0186911i
\(33\) −291.452 168.270i −1.53743 0.887636i
\(34\) 147.527 0.744139
\(35\) 0 0
\(36\) 8.04488 0.0372448
\(37\) 217.111 + 125.349i 0.964673 + 0.556954i 0.897608 0.440795i \(-0.145303\pi\)
0.0670648 + 0.997749i \(0.478637\pi\)
\(38\) 64.1118 37.0150i 0.273692 0.158016i
\(39\) 17.8140 + 30.8548i 0.0731417 + 0.126685i
\(40\) 193.306 159.419i 0.764111 0.630157i
\(41\) 48.8649 0.186132 0.0930661 0.995660i \(-0.470333\pi\)
0.0930661 + 0.995660i \(0.470333\pi\)
\(42\) 0 0
\(43\) 143.612i 0.509317i 0.967031 + 0.254658i \(0.0819630\pi\)
−0.967031 + 0.254658i \(0.918037\pi\)
\(44\) 2.79960 4.84905i 0.00959218 0.0166141i
\(45\) −593.172 + 99.3925i −1.96500 + 0.329257i
\(46\) 247.584 + 428.827i 0.793570 + 1.37450i
\(47\) −31.7325 18.3208i −0.0984821 0.0568587i 0.449950 0.893054i \(-0.351442\pi\)
−0.548432 + 0.836195i \(0.684775\pi\)
\(48\) 585.822i 1.76159i
\(49\) 0 0
\(50\) 233.995 269.412i 0.661839 0.762012i
\(51\) −232.256 + 402.279i −0.637692 + 1.10452i
\(52\) −0.513350 + 0.296383i −0.00136902 + 0.000790401i
\(53\) −558.834 + 322.643i −1.44833 + 0.836196i −0.998382 0.0568566i \(-0.981892\pi\)
−0.449952 + 0.893053i \(0.648559\pi\)
\(54\) −343.775 + 595.435i −0.866330 + 1.50053i
\(55\) −146.514 + 392.123i −0.359198 + 0.961342i
\(56\) 0 0
\(57\) 233.094i 0.541651i
\(58\) −607.380 350.671i −1.37505 0.793886i
\(59\) −197.748 342.509i −0.436348 0.755777i 0.561056 0.827778i \(-0.310395\pi\)
−0.997405 + 0.0720003i \(0.977062\pi\)
\(60\) −2.48364 14.8223i −0.00534393 0.0318924i
\(61\) 23.7565 41.1475i 0.0498641 0.0863671i −0.840016 0.542562i \(-0.817455\pi\)
0.889880 + 0.456194i \(0.150788\pi\)
\(62\) 491.228i 1.00623i
\(63\) 0 0
\(64\) −502.074 −0.980614
\(65\) 34.1890 28.1954i 0.0652403 0.0538033i
\(66\) 480.366 + 832.019i 0.895894 + 1.55173i
\(67\) 227.929 131.595i 0.415611 0.239953i −0.277587 0.960701i \(-0.589535\pi\)
0.693198 + 0.720748i \(0.256201\pi\)
\(68\) −6.69295 3.86418i −0.0119359 0.00689118i
\(69\) −1559.11 −2.72021
\(70\) 0 0
\(71\) −268.177 −0.448264 −0.224132 0.974559i \(-0.571955\pi\)
−0.224132 + 0.974559i \(0.571955\pi\)
\(72\) 1044.07 + 602.795i 1.70896 + 0.986667i
\(73\) 172.995 99.8785i 0.277363 0.160136i −0.354866 0.934917i \(-0.615474\pi\)
0.632229 + 0.774782i \(0.282140\pi\)
\(74\) −357.840 619.797i −0.562136 0.973648i
\(75\) 366.251 + 1062.20i 0.563880 + 1.63537i
\(76\) −3.87813 −0.00585331
\(77\) 0 0
\(78\) 101.709i 0.147644i
\(79\) 236.820 410.184i 0.337270 0.584169i −0.646648 0.762788i \(-0.723830\pi\)
0.983918 + 0.178620i \(0.0571632\pi\)
\(80\) −718.649 + 120.418i −1.00434 + 0.168289i
\(81\) −356.199 616.955i −0.488614 0.846303i
\(82\) −120.808 69.7484i −0.162695 0.0939319i
\(83\) 72.7028i 0.0961466i −0.998844 0.0480733i \(-0.984692\pi\)
0.998844 0.0480733i \(-0.0153081\pi\)
\(84\) 0 0
\(85\) 541.231 + 202.227i 0.690644 + 0.258054i
\(86\) 204.988 355.049i 0.257028 0.445185i
\(87\) 1912.43 1104.14i 2.35671 1.36065i
\(88\) 726.669 419.543i 0.880264 0.508221i
\(89\) 776.123 1344.28i 0.924369 1.60105i 0.131796 0.991277i \(-0.457926\pi\)
0.792573 0.609777i \(-0.208741\pi\)
\(90\) 1608.36 + 600.950i 1.88373 + 0.703841i
\(91\) 0 0
\(92\) 25.9398i 0.0293958i
\(93\) −1339.48 773.352i −1.49353 0.862289i
\(94\) 52.3011 + 90.5881i 0.0573877 + 0.0993984i
\(95\) 285.945 47.9133i 0.308814 0.0517453i
\(96\) −30.4124 + 52.6758i −0.0323328 + 0.0560021i
\(97\) 243.338i 0.254714i −0.991857 0.127357i \(-0.959351\pi\)
0.991857 0.127357i \(-0.0406494\pi\)
\(98\) 0 0
\(99\) −2014.11 −2.04470
\(100\) −17.6725 + 6.09353i −0.0176725 + 0.00609353i
\(101\) −769.668 1333.10i −0.758265 1.31335i −0.943734 0.330704i \(-0.892714\pi\)
0.185469 0.982650i \(-0.440620\pi\)
\(102\) 1148.40 663.030i 1.11479 0.643625i
\(103\) −821.536 474.314i −0.785906 0.453743i 0.0526133 0.998615i \(-0.483245\pi\)
−0.838519 + 0.544872i \(0.816578\pi\)
\(104\) −88.8306 −0.0837554
\(105\) 0 0
\(106\) 1842.12 1.68795
\(107\) −748.231 431.992i −0.676021 0.390301i 0.122333 0.992489i \(-0.460962\pi\)
−0.798354 + 0.602188i \(0.794296\pi\)
\(108\) 31.1924 18.0089i 0.0277916 0.0160455i
\(109\) 443.159 + 767.575i 0.389422 + 0.674498i 0.992372 0.123281i \(-0.0393415\pi\)
−0.602950 + 0.797779i \(0.706008\pi\)
\(110\) 921.927 760.307i 0.799112 0.659022i
\(111\) 2253.42 1.92690
\(112\) 0 0
\(113\) 765.957i 0.637657i −0.947812 0.318828i \(-0.896711\pi\)
0.947812 0.318828i \(-0.103289\pi\)
\(114\) 332.712 576.274i 0.273345 0.473448i
\(115\) 320.480 + 1912.61i 0.259869 + 1.55089i
\(116\) 18.3702 + 31.8182i 0.0147037 + 0.0254676i
\(117\) 184.659 + 106.613i 0.145912 + 0.0842424i
\(118\) 1129.04i 0.880816i
\(119\) 0 0
\(120\) 788.289 2109.74i 0.599672 1.60494i
\(121\) −35.4058 + 61.3246i −0.0266009 + 0.0460741i
\(122\) −117.465 + 67.8187i −0.0871707 + 0.0503280i
\(123\) 380.381 219.613i 0.278844 0.160991i
\(124\) 12.8667 22.2858i 0.00931826 0.0161397i
\(125\) 1227.76 667.633i 0.878513 0.477719i
\(126\) 0 0
\(127\) 505.042i 0.352876i 0.984312 + 0.176438i \(0.0564575\pi\)
−0.984312 + 0.176438i \(0.943543\pi\)
\(128\) 1288.15 + 743.714i 0.889512 + 0.513560i
\(129\) 645.434 + 1117.92i 0.440521 + 0.763006i
\(130\) −124.770 + 20.9066i −0.0841773 + 0.0141049i
\(131\) 336.465 582.775i 0.224405 0.388682i −0.731736 0.681589i \(-0.761289\pi\)
0.956141 + 0.292907i \(0.0946227\pi\)
\(132\) 50.3289i 0.0331861i
\(133\) 0 0
\(134\) −751.337 −0.484371
\(135\) −2077.41 + 1713.23i −1.32441 + 1.09223i
\(136\) −579.078 1002.99i −0.365114 0.632396i
\(137\) 1344.31 776.141i 0.838340 0.484016i −0.0183597 0.999831i \(-0.505844\pi\)
0.856700 + 0.515816i \(0.172511\pi\)
\(138\) 3854.55 + 2225.42i 2.37769 + 1.37276i
\(139\) −1072.02 −0.654154 −0.327077 0.944998i \(-0.606064\pi\)
−0.327077 + 0.944998i \(0.606064\pi\)
\(140\) 0 0
\(141\) −329.355 −0.196714
\(142\) 663.008 + 382.788i 0.391820 + 0.226217i
\(143\) 128.522 74.2021i 0.0751576 0.0433922i
\(144\) −1753.00 3036.29i −1.01447 1.75711i
\(145\) −1747.60 2119.08i −1.00090 1.21366i
\(146\) −570.255 −0.323251
\(147\) 0 0
\(148\) 37.4915i 0.0208229i
\(149\) 322.968 559.397i 0.177574 0.307568i −0.763475 0.645838i \(-0.776508\pi\)
0.941049 + 0.338270i \(0.109842\pi\)
\(150\) 610.683 3148.84i 0.332413 1.71401i
\(151\) −121.597 210.612i −0.0655326 0.113506i 0.831398 0.555678i \(-0.187541\pi\)
−0.896930 + 0.442172i \(0.854208\pi\)
\(152\) −503.307 290.584i −0.268576 0.155063i
\(153\) 2779.99i 1.46895i
\(154\) 0 0
\(155\) −673.363 + 1802.16i −0.348941 + 0.933890i
\(156\) −2.66406 + 4.61428i −0.00136728 + 0.00236819i
\(157\) 1344.56 776.281i 0.683487 0.394611i −0.117681 0.993052i \(-0.537546\pi\)
0.801168 + 0.598440i \(0.204213\pi\)
\(158\) −1170.97 + 676.060i −0.589603 + 0.340408i
\(159\) −2900.10 + 5023.12i −1.44650 + 2.50540i
\(160\) 70.8707 + 26.4803i 0.0350176 + 0.0130841i
\(161\) 0 0
\(162\) 2033.71i 0.986319i
\(163\) 2211.53 + 1276.82i 1.06270 + 0.613550i 0.926178 0.377087i \(-0.123074\pi\)
0.136522 + 0.990637i \(0.456408\pi\)
\(164\) 3.65383 + 6.32862i 0.00173973 + 0.00301331i
\(165\) 621.801 + 3710.89i 0.293377 + 1.75086i
\(166\) −103.774 + 179.741i −0.0485205 + 0.0840400i
\(167\) 3573.14i 1.65568i −0.560966 0.827839i \(-0.689570\pi\)
0.560966 0.827839i \(-0.310430\pi\)
\(168\) 0 0
\(169\) 2181.29 0.992849
\(170\) −1049.42 1272.50i −0.473452 0.574095i
\(171\) 697.507 + 1208.12i 0.311928 + 0.540275i
\(172\) −18.5996 + 10.7385i −0.00824537 + 0.00476046i
\(173\) −1935.31 1117.35i −0.850515 0.491045i 0.0103095 0.999947i \(-0.496718\pi\)
−0.860825 + 0.508902i \(0.830052\pi\)
\(174\) −6304.07 −2.74661
\(175\) 0 0
\(176\) −2440.17 −1.04508
\(177\) −3078.67 1777.47i −1.30738 0.754818i
\(178\) −3837.58 + 2215.63i −1.61595 + 0.932969i
\(179\) −915.267 1585.29i −0.382180 0.661956i 0.609193 0.793022i \(-0.291493\pi\)
−0.991374 + 0.131066i \(0.958160\pi\)
\(180\) −57.2265 69.3912i −0.0236967 0.0287340i
\(181\) −2437.22 −1.00087 −0.500433 0.865775i \(-0.666826\pi\)
−0.500433 + 0.865775i \(0.666826\pi\)
\(182\) 0 0
\(183\) 427.075i 0.172515i
\(184\) 1943.64 3366.49i 0.778735 1.34881i
\(185\) −463.199 2764.36i −0.184081 1.09859i
\(186\) 2207.72 + 3823.88i 0.870311 + 1.50742i
\(187\) 1675.64 + 967.432i 0.655267 + 0.378319i
\(188\) 5.47968i 0.00212578i
\(189\) 0 0
\(190\) −775.327 289.695i −0.296043 0.110614i
\(191\) −2539.75 + 4398.97i −0.962145 + 1.66648i −0.245047 + 0.969511i \(0.578804\pi\)
−0.717098 + 0.696973i \(0.754530\pi\)
\(192\) −3908.32 + 2256.47i −1.46905 + 0.848159i
\(193\) 2429.28 1402.55i 0.906028 0.523095i 0.0268769 0.999639i \(-0.491444\pi\)
0.879151 + 0.476543i \(0.158110\pi\)
\(194\) −347.334 + 601.599i −0.128542 + 0.222641i
\(195\) 139.420 373.138i 0.0512004 0.137031i
\(196\) 0 0
\(197\) 3107.79i 1.12396i −0.827149 0.561982i \(-0.810039\pi\)
0.827149 0.561982i \(-0.189961\pi\)
\(198\) 4979.44 + 2874.88i 1.78724 + 1.03186i
\(199\) 1072.82 + 1858.17i 0.382161 + 0.661922i 0.991371 0.131087i \(-0.0418468\pi\)
−0.609210 + 0.793009i \(0.708513\pi\)
\(200\) −2750.13 533.359i −0.972319 0.188571i
\(201\) 1182.85 2048.75i 0.415083 0.718945i
\(202\) 4394.41i 1.53064i
\(203\) 0 0
\(204\) −69.4669 −0.0238414
\(205\) −347.596 421.485i −0.118425 0.143599i
\(206\) 1354.04 + 2345.27i 0.457964 + 0.793218i
\(207\) −8080.79 + 4665.45i −2.71330 + 1.56653i
\(208\) 223.721 + 129.165i 0.0745781 + 0.0430577i
\(209\) 970.925 0.321341
\(210\) 0 0
\(211\) 2837.45 0.925772 0.462886 0.886418i \(-0.346814\pi\)
0.462886 + 0.886418i \(0.346814\pi\)
\(212\) −83.5726 48.2507i −0.0270745 0.0156315i
\(213\) −2087.58 + 1205.26i −0.671542 + 0.387715i
\(214\) 1233.22 + 2136.01i 0.393932 + 0.682310i
\(215\) 1238.73 1021.57i 0.392932 0.324049i
\(216\) 5397.57 1.70027
\(217\) 0 0
\(218\) 2530.21i 0.786089i
\(219\) 897.766 1554.98i 0.277011 0.479797i
\(220\) −61.7403 + 10.3453i −0.0189206 + 0.00317035i
\(221\) −102.418 177.393i −0.0311737 0.0539944i
\(222\) −5571.09 3216.47i −1.68427 0.972412i
\(223\) 4741.40i 1.42380i −0.702280 0.711901i \(-0.747834\pi\)
0.702280 0.711901i \(-0.252166\pi\)
\(224\) 0 0
\(225\) 5076.78 + 4409.39i 1.50423 + 1.30649i
\(226\) −1093.31 + 1893.66i −0.321795 + 0.557365i
\(227\) 832.069 480.395i 0.243288 0.140462i −0.373399 0.927671i \(-0.621808\pi\)
0.616687 + 0.787208i \(0.288474\pi\)
\(228\) −30.1887 + 17.4294i −0.00876883 + 0.00506268i
\(229\) −372.003 + 644.328i −0.107348 + 0.185932i −0.914695 0.404145i \(-0.867569\pi\)
0.807347 + 0.590077i \(0.200903\pi\)
\(230\) 1937.69 5185.96i 0.555512 1.48675i
\(231\) 0 0
\(232\) 5505.86i 1.55809i
\(233\) 1342.82 + 775.279i 0.377559 + 0.217984i 0.676756 0.736208i \(-0.263385\pi\)
−0.299197 + 0.954191i \(0.596719\pi\)
\(234\) −304.352 527.153i −0.0850261 0.147270i
\(235\) 67.7001 + 404.032i 0.0187926 + 0.112154i
\(236\) 29.5728 51.2216i 0.00815689 0.0141281i
\(237\) 4257.35i 1.16685i
\(238\) 0 0
\(239\) −2775.00 −0.751045 −0.375523 0.926813i \(-0.622537\pi\)
−0.375523 + 0.926813i \(0.622537\pi\)
\(240\) −5053.01 + 4167.19i −1.35904 + 1.12079i
\(241\) −1275.10 2208.54i −0.340815 0.590309i 0.643769 0.765220i \(-0.277370\pi\)
−0.984584 + 0.174911i \(0.944036\pi\)
\(242\) 175.066 101.074i 0.0465028 0.0268484i
\(243\) 86.0446 + 49.6779i 0.0227151 + 0.0131146i
\(244\) 7.10549 0.00186427
\(245\) 0 0
\(246\) −1253.88 −0.324977
\(247\) −89.0169 51.3939i −0.0229312 0.0132393i
\(248\) 3339.71 1928.18i 0.855127 0.493708i
\(249\) −326.747 565.943i −0.0831597 0.144037i
\(250\) −3988.32 101.892i −1.00897 0.0257770i
\(251\) 2933.00 0.737568 0.368784 0.929515i \(-0.379774\pi\)
0.368784 + 0.929515i \(0.379774\pi\)
\(252\) 0 0
\(253\) 6494.26i 1.61380i
\(254\) 720.882 1248.60i 0.178079 0.308442i
\(255\) 5121.99 858.246i 1.25785 0.210767i
\(256\) −114.813 198.862i −0.0280306 0.0485504i
\(257\) 2360.11 + 1362.61i 0.572840 + 0.330729i 0.758283 0.651926i \(-0.226039\pi\)
−0.185443 + 0.982655i \(0.559372\pi\)
\(258\) 3685.09i 0.889240i
\(259\) 0 0
\(260\) 6.20811 + 2.31961i 0.00148081 + 0.000553294i
\(261\) 6608.02 11445.4i 1.56715 2.71438i
\(262\) −1663.67 + 960.521i −0.392298 + 0.226493i
\(263\) −2621.68 + 1513.63i −0.614676 + 0.354884i −0.774793 0.632214i \(-0.782146\pi\)
0.160117 + 0.987098i \(0.448813\pi\)
\(264\) 3771.09 6531.72i 0.879147 1.52273i
\(265\) 6758.17 + 2525.14i 1.56661 + 0.585351i
\(266\) 0 0
\(267\) 13952.5i 3.19804i
\(268\) 34.0863 + 19.6798i 0.00776923 + 0.00448557i
\(269\) 721.231 + 1249.21i 0.163473 + 0.283144i 0.936112 0.351702i \(-0.114397\pi\)
−0.772639 + 0.634846i \(0.781064\pi\)
\(270\) 7581.34 1270.34i 1.70884 0.286335i
\(271\) −3232.23 + 5598.38i −0.724516 + 1.25490i 0.234657 + 0.972078i \(0.424603\pi\)
−0.959173 + 0.282820i \(0.908730\pi\)
\(272\) 3368.06i 0.750804i
\(273\) 0 0
\(274\) −4431.36 −0.977038
\(275\) 4424.47 1525.57i 0.970202 0.334529i
\(276\) −116.581 201.924i −0.0254252 0.0440377i
\(277\) −759.170 + 438.307i −0.164672 + 0.0950733i −0.580071 0.814566i \(-0.696975\pi\)
0.415399 + 0.909639i \(0.363642\pi\)
\(278\) 2650.33 + 1530.17i 0.571784 + 0.330120i
\(279\) −9256.66 −1.98631
\(280\) 0 0
\(281\) 6252.19 1.32731 0.663655 0.748038i \(-0.269004\pi\)
0.663655 + 0.748038i \(0.269004\pi\)
\(282\) 814.258 + 470.112i 0.171945 + 0.0992722i
\(283\) −1948.62 + 1125.04i −0.409305 + 0.236312i −0.690491 0.723341i \(-0.742606\pi\)
0.281186 + 0.959653i \(0.409272\pi\)
\(284\) −20.0527 34.7323i −0.00418982 0.00725698i
\(285\) 2010.56 1658.09i 0.417878 0.344621i
\(286\) −423.655 −0.0875919
\(287\) 0 0
\(288\) 364.022i 0.0744799i
\(289\) −1121.19 + 1941.96i −0.228210 + 0.395271i
\(290\) 1295.82 + 7733.43i 0.262391 + 1.56594i
\(291\) −1093.63 1894.23i −0.220309 0.381586i
\(292\) 25.8710 + 14.9367i 0.00518489 + 0.00299350i
\(293\) 5917.86i 1.17995i 0.807422 + 0.589975i \(0.200862\pi\)
−0.807422 + 0.589975i \(0.799138\pi\)
\(294\) 0 0
\(295\) −1547.66 + 4142.08i −0.305451 + 0.817495i
\(296\) −2809.20 + 4865.69i −0.551627 + 0.955447i
\(297\) −7809.31 + 4508.70i −1.52573 + 0.880881i
\(298\) −1596.93 + 921.990i −0.310429 + 0.179226i
\(299\) 343.761 595.411i 0.0664890 0.115162i
\(300\) −110.183 + 126.859i −0.0212046 + 0.0244141i
\(301\) 0 0
\(302\) 694.256i 0.132284i
\(303\) −11982.7 6918.22i −2.27191 1.31169i
\(304\) 845.056 + 1463.68i 0.159432 + 0.276144i
\(305\) −523.908 + 87.7866i −0.0983570 + 0.0164808i
\(306\) 3968.08 6872.91i 0.741307 1.28398i
\(307\) 9458.47i 1.75838i 0.476469 + 0.879191i \(0.341916\pi\)
−0.476469 + 0.879191i \(0.658084\pi\)
\(308\) 0 0
\(309\) −8526.81 −1.56982
\(310\) 4237.09 3494.30i 0.776292 0.640203i
\(311\) −3788.39 6561.69i −0.690739 1.19640i −0.971596 0.236646i \(-0.923952\pi\)
0.280857 0.959750i \(-0.409381\pi\)
\(312\) −691.487 + 399.230i −0.125474 + 0.0724422i
\(313\) −7943.54 4586.21i −1.43449 0.828204i −0.437032 0.899446i \(-0.643970\pi\)
−0.997459 + 0.0712425i \(0.977304\pi\)
\(314\) −4432.16 −0.796565
\(315\) 0 0
\(316\) 70.8320 0.0126095
\(317\) −2665.57 1538.97i −0.472283 0.272672i 0.244912 0.969545i \(-0.421241\pi\)
−0.717195 + 0.696873i \(0.754574\pi\)
\(318\) 14339.7 8279.04i 2.52871 1.45995i
\(319\) −4599.16 7965.97i −0.807221 1.39815i
\(320\) 3571.46 + 4330.65i 0.623908 + 0.756533i
\(321\) −7765.98 −1.35033
\(322\) 0 0
\(323\) 1340.13i 0.230857i
\(324\) 53.2690 92.2646i 0.00913391 0.0158204i
\(325\) −486.400 94.3320i −0.0830173 0.0161003i
\(326\) −3645.00 6313.33i −0.619258 1.07259i
\(327\) 6899.40 + 3983.37i 1.16678 + 0.673642i
\(328\) 1095.11i 0.184352i
\(329\) 0 0
\(330\) 3759.55 10061.9i 0.627141 1.67845i
\(331\) −1617.25 + 2801.16i −0.268557 + 0.465154i −0.968489 0.249055i \(-0.919880\pi\)
0.699933 + 0.714209i \(0.253213\pi\)
\(332\) 9.41592 5.43629i 0.00155652 0.000898659i
\(333\) 11679.4 6743.11i 1.92200 1.10967i
\(334\) −5100.20 + 8833.80i −0.835540 + 1.44720i
\(335\) −2756.42 1029.92i −0.449550 0.167971i
\(336\) 0 0
\(337\) 3777.84i 0.610658i 0.952247 + 0.305329i \(0.0987665\pi\)
−0.952247 + 0.305329i \(0.901234\pi\)
\(338\) −5392.75 3113.51i −0.867832 0.501043i
\(339\) −3442.43 5962.47i −0.551526 0.955271i
\(340\) 14.2792 + 85.2176i 0.00227763 + 0.0135929i
\(341\) −3221.30 + 5579.45i −0.511563 + 0.886054i
\(342\) 3982.41i 0.629660i
\(343\) 0 0
\(344\) −3218.49 −0.504446
\(345\) 11090.6 + 13448.1i 1.73071 + 2.09861i
\(346\) 3189.75 + 5524.82i 0.495614 + 0.858428i
\(347\) 7139.58 4122.04i 1.10453 0.637702i 0.167125 0.985936i \(-0.446552\pi\)
0.937408 + 0.348234i \(0.113218\pi\)
\(348\) 286.000 + 165.122i 0.0440552 + 0.0254353i
\(349\) 7173.78 1.10030 0.550148 0.835067i \(-0.314571\pi\)
0.550148 + 0.835067i \(0.314571\pi\)
\(350\) 0 0
\(351\) 954.637 0.145170
\(352\) 219.414 + 126.679i 0.0332239 + 0.0191819i
\(353\) 3629.95 2095.76i 0.547317 0.315994i −0.200722 0.979648i \(-0.564329\pi\)
0.748039 + 0.663655i \(0.230995\pi\)
\(354\) 5074.22 + 8788.80i 0.761840 + 1.31955i
\(355\) 1907.65 + 2313.16i 0.285204 + 0.345831i
\(356\) 232.136 0.0345594
\(357\) 0 0
\(358\) 5225.70i 0.771472i
\(359\) −1568.15 + 2716.11i −0.230539 + 0.399306i −0.957967 0.286879i \(-0.907382\pi\)
0.727428 + 0.686184i \(0.240716\pi\)
\(360\) −2227.49 13293.6i −0.326108 1.94620i
\(361\) 3093.26 + 5357.68i 0.450978 + 0.781117i
\(362\) 6025.48 + 3478.81i 0.874840 + 0.505089i
\(363\) 636.496i 0.0920313i
\(364\) 0 0
\(365\) −2092.08 781.691i −0.300013 0.112098i
\(366\) −609.594 + 1055.85i −0.0870600 + 0.150792i
\(367\) 1492.42 861.649i 0.212272 0.122555i −0.390095 0.920775i \(-0.627558\pi\)
0.602367 + 0.798220i \(0.294225\pi\)
\(368\) −9790.17 + 5652.36i −1.38682 + 0.800678i
\(369\) 1314.33 2276.49i 0.185424 0.321164i
\(370\) −2800.61 + 7495.42i −0.393504 + 1.05316i
\(371\) 0 0
\(372\) 231.307i 0.0322384i
\(373\) 2440.94 + 1409.28i 0.338839 + 0.195629i 0.659759 0.751478i \(-0.270659\pi\)
−0.320919 + 0.947106i \(0.603992\pi\)
\(374\) −2761.77 4783.52i −0.381838 0.661364i
\(375\) 6556.75 10715.0i 0.902905 1.47552i
\(376\) 410.587 711.157i 0.0563149 0.0975403i
\(377\) 973.788i 0.133031i
\(378\) 0 0
\(379\) 10466.1 1.41849 0.709246 0.704961i \(-0.249036\pi\)
0.709246 + 0.704961i \(0.249036\pi\)
\(380\) 27.5867 + 33.4508i 0.00372412 + 0.00451577i
\(381\) 2269.80 + 3931.42i 0.305211 + 0.528642i
\(382\) 12557.9 7250.32i 1.68199 0.971096i
\(383\) 223.482 + 129.028i 0.0298157 + 0.0172141i 0.514834 0.857290i \(-0.327854\pi\)
−0.485018 + 0.874504i \(0.661187\pi\)
\(384\) 13369.9 1.77677
\(385\) 0 0
\(386\) −8007.81 −1.05592
\(387\) 6690.51 + 3862.77i 0.878806 + 0.507379i
\(388\) 31.5153 18.1954i 0.00412358 0.00238075i
\(389\) 2286.94 + 3961.09i 0.298078 + 0.516286i 0.975696 0.219128i \(-0.0703211\pi\)
−0.677618 + 0.735414i \(0.736988\pi\)
\(390\) −877.291 + 723.497i −0.113906 + 0.0939376i
\(391\) 8963.77 1.15938
\(392\) 0 0
\(393\) 6048.69i 0.776376i
\(394\) −4435.97 + 7683.33i −0.567211 + 0.982438i
\(395\) −5222.64 + 875.112i −0.665265 + 0.111473i
\(396\) −150.603 260.852i −0.0191114 0.0331018i
\(397\) 3138.96 + 1812.28i 0.396825 + 0.229107i 0.685113 0.728437i \(-0.259753\pi\)
−0.288288 + 0.957544i \(0.593086\pi\)
\(398\) 6125.23i 0.771432i
\(399\) 0 0
\(400\) 6150.70 + 5342.14i 0.768838 + 0.667767i
\(401\) −3179.16 + 5506.47i −0.395910 + 0.685736i −0.993217 0.116277i \(-0.962904\pi\)
0.597307 + 0.802013i \(0.296237\pi\)
\(402\) −5848.66 + 3376.73i −0.725634 + 0.418945i
\(403\) 590.674 341.026i 0.0730114 0.0421531i
\(404\) 115.102 199.363i 0.0141747 0.0245512i
\(405\) −2787.77 + 7461.05i −0.342038 + 0.915414i
\(406\) 0 0
\(407\) 9386.35i 1.14316i
\(408\) −9015.47 5205.09i −1.09395 0.631593i
\(409\) 3268.19 + 5660.68i 0.395114 + 0.684358i 0.993116 0.117137i \(-0.0373717\pi\)
−0.598002 + 0.801495i \(0.704038\pi\)
\(410\) 257.739 + 1538.18i 0.0310459 + 0.185281i
\(411\) 6976.40 12083.5i 0.837276 1.45020i
\(412\) 141.866i 0.0169641i
\(413\) 0 0
\(414\) 26637.3 3.16220
\(415\) −627.099 + 517.164i −0.0741761 + 0.0611725i
\(416\) −13.4110 23.2285i −0.00158060 0.00273767i
\(417\) −8344.95 + 4817.96i −0.979985 + 0.565795i
\(418\) −2400.40 1385.87i −0.280879 0.162165i
\(419\) 6333.56 0.738460 0.369230 0.929338i \(-0.379621\pi\)
0.369230 + 0.929338i \(0.379621\pi\)
\(420\) 0 0
\(421\) −8139.62 −0.942282 −0.471141 0.882058i \(-0.656158\pi\)
−0.471141 + 0.882058i \(0.656158\pi\)
\(422\) −7014.96 4050.09i −0.809201 0.467193i
\(423\) −1707.03 + 985.557i −0.196215 + 0.113285i
\(424\) −7230.75 12524.0i −0.828199 1.43448i
\(425\) −2105.68 6106.92i −0.240331 0.697009i
\(426\) 6881.43 0.782645
\(427\) 0 0
\(428\) 129.207i 0.0145922i
\(429\) 666.971 1155.23i 0.0750622 0.130011i
\(430\) −4520.64 + 757.483i −0.506987 + 0.0849514i
\(431\) 7183.79 + 12442.7i 0.802856 + 1.39059i 0.917729 + 0.397208i \(0.130021\pi\)
−0.114873 + 0.993380i \(0.536646\pi\)
\(432\) −13593.8 7848.41i −1.51397 0.874089i
\(433\) 8399.05i 0.932176i −0.884738 0.466088i \(-0.845663\pi\)
0.884738 0.466088i \(-0.154337\pi\)
\(434\) 0 0
\(435\) −23127.6 8641.47i −2.54916 0.952475i
\(436\) −66.2737 + 114.789i −0.00727967 + 0.0126088i
\(437\) 3895.44 2249.03i 0.426417 0.246192i
\(438\) −4439.05 + 2562.89i −0.484261 + 0.279588i
\(439\) 8930.41 15467.9i 0.970901 1.68165i 0.278053 0.960566i \(-0.410311\pi\)
0.692848 0.721084i \(-0.256356\pi\)
\(440\) −8787.87 3283.52i −0.952148 0.355763i
\(441\) 0 0
\(442\) 584.754i 0.0629274i
\(443\) 1646.80 + 950.783i 0.176619 + 0.101971i 0.585703 0.810526i \(-0.300819\pi\)
−0.409084 + 0.912497i \(0.634152\pi\)
\(444\) 168.498 + 291.847i 0.0180103 + 0.0311947i
\(445\) −17116.0 + 2867.98i −1.82332 + 0.305517i
\(446\) −6767.74 + 11722.1i −0.718524 + 1.24452i
\(447\) 5806.05i 0.614355i
\(448\) 0 0
\(449\) 5185.68 0.545050 0.272525 0.962149i \(-0.412141\pi\)
0.272525 + 0.962149i \(0.412141\pi\)
\(450\) −6257.38 18147.7i −0.655502 1.90109i
\(451\) −914.770 1584.43i −0.0955096 0.165428i
\(452\) 99.2011 57.2738i 0.0103231 0.00596003i
\(453\) −1893.10 1092.98i −0.196348 0.113362i
\(454\) −2742.81 −0.283538
\(455\) 0 0
\(456\) −5223.88 −0.536471
\(457\) 9698.45 + 5599.41i 0.992723 + 0.573149i 0.906087 0.423091i \(-0.139055\pi\)
0.0866361 + 0.996240i \(0.472388\pi\)
\(458\) 1839.39 1061.97i 0.187662 0.108347i
\(459\) 6223.18 + 10778.9i 0.632839 + 1.09611i
\(460\) −223.744 + 184.520i −0.0226785 + 0.0187028i
\(461\) −17270.7 −1.74485 −0.872427 0.488744i \(-0.837455\pi\)
−0.872427 + 0.488744i \(0.837455\pi\)
\(462\) 0 0
\(463\) 385.660i 0.0387109i −0.999813 0.0193554i \(-0.993839\pi\)
0.999813 0.0193554i \(-0.00616141\pi\)
\(464\) 8005.86 13866.6i 0.800997 1.38737i
\(465\) 2857.74 + 17054.9i 0.284999 + 1.70087i
\(466\) −2213.22 3833.41i −0.220012 0.381072i
\(467\) 4360.75 + 2517.68i 0.432101 + 0.249474i 0.700241 0.713906i \(-0.253076\pi\)
−0.268140 + 0.963380i \(0.586409\pi\)
\(468\) 31.8875i 0.00314957i
\(469\) 0 0
\(470\) 409.330 1095.51i 0.0401723 0.107515i
\(471\) 6977.66 12085.7i 0.682620 1.18233i
\(472\) 7675.97 4431.72i 0.748549 0.432175i
\(473\) 4656.57 2688.47i 0.452662 0.261345i
\(474\) −6076.81 + 10525.4i −0.588855 + 1.01993i
\(475\) −2447.32 2125.60i −0.236402 0.205324i
\(476\) 0 0
\(477\) 34712.8i 3.33206i
\(478\) 6860.57 + 3960.95i 0.656475 + 0.379016i
\(479\) 4341.00 + 7518.83i 0.414082 + 0.717211i 0.995332 0.0965145i \(-0.0307694\pi\)
−0.581250 + 0.813725i \(0.697436\pi\)
\(480\) 670.692 112.382i 0.0637766 0.0106865i
\(481\) −496.848 + 860.565i −0.0470983 + 0.0815767i
\(482\) 7280.16i 0.687972i
\(483\) 0 0
\(484\) −10.5898 −0.000994530
\(485\) −2098.92 + 1730.96i −0.196509 + 0.162060i
\(486\) −141.817 245.635i −0.0132366 0.0229264i
\(487\) 771.174 445.238i 0.0717562 0.0414284i −0.463693 0.885996i \(-0.653476\pi\)
0.535449 + 0.844568i \(0.320142\pi\)
\(488\) 922.157 + 532.407i 0.0855411 + 0.0493872i
\(489\) 22953.7 2.12270
\(490\) 0 0
\(491\) 1562.48 0.143613 0.0718063 0.997419i \(-0.477124\pi\)
0.0718063 + 0.997419i \(0.477124\pi\)
\(492\) 56.8853 + 32.8428i 0.00521258 + 0.00300948i
\(493\) −10995.1 + 6348.03i −1.00445 + 0.579921i
\(494\) 146.716 + 254.120i 0.0133625 + 0.0231446i
\(495\) 14327.2 + 17372.7i 1.30093 + 1.57747i
\(496\) −11214.8 −1.01524
\(497\) 0 0
\(498\) 1865.56i 0.167867i
\(499\) 4117.17 7131.14i 0.369358 0.639747i −0.620107 0.784517i \(-0.712911\pi\)
0.989465 + 0.144770i \(0.0462443\pi\)
\(500\) 178.271 + 109.089i 0.0159451 + 0.00975718i
\(501\) −16058.7 27814.5i −1.43204 2.48036i
\(502\) −7251.20 4186.48i −0.644695 0.372215i
\(503\) 72.5340i 0.00642969i 0.999995 + 0.00321484i \(0.00102332\pi\)
−0.999995 + 0.00321484i \(0.998977\pi\)
\(504\) 0 0
\(505\) −6023.75 + 16121.7i −0.530798 + 1.42061i
\(506\) 9269.72 16055.6i 0.814406 1.41059i
\(507\) 16979.9 9803.34i 1.48738 0.858741i
\(508\) −65.4093 + 37.7641i −0.00571273 + 0.00329825i
\(509\) −3896.72 + 6749.32i −0.339330 + 0.587737i −0.984307 0.176465i \(-0.943534\pi\)
0.644977 + 0.764202i \(0.276867\pi\)
\(510\) −13888.0 5189.15i −1.20583 0.450548i
\(511\) 0 0
\(512\) 11243.9i 0.970537i
\(513\) 5408.89 + 3122.83i 0.465514 + 0.268764i
\(514\) −3889.91 6737.51i −0.333806 0.578169i
\(515\) 1752.72 + 10460.2i 0.149969 + 0.895009i
\(516\) −96.5235 + 167.184i −0.00823490 + 0.0142633i
\(517\) 1371.89i 0.116703i
\(518\) 0 0
\(519\) −20086.8 −1.69887
\(520\) 631.888 + 766.210i 0.0532887 + 0.0646164i
\(521\) 2322.71 + 4023.05i 0.195316 + 0.338298i 0.947004 0.321221i \(-0.104093\pi\)
−0.751688 + 0.659519i \(0.770760\pi\)
\(522\) −32673.7 + 18864.2i −2.73964 + 1.58173i
\(523\) −7607.06 4391.94i −0.636011 0.367201i 0.147065 0.989127i \(-0.453017\pi\)
−0.783076 + 0.621926i \(0.786351\pi\)
\(524\) 100.636 0.00838986
\(525\) 0 0
\(526\) 8642.04 0.716371
\(527\) 7701.09 + 4446.23i 0.636556 + 0.367516i
\(528\) −18995.1 + 10966.8i −1.56563 + 0.903919i
\(529\) 8959.70 + 15518.7i 0.736394 + 1.27547i
\(530\) −13103.8 15889.3i −1.07395 1.30224i
\(531\) −21275.5 −1.73875
\(532\) 0 0
\(533\) 193.686i 0.0157401i
\(534\) −19915.4 + 34494.4i −1.61390 + 2.79535i
\(535\) 1596.32 + 9526.81i 0.129000 + 0.769869i
\(536\) 2949.17 + 5108.11i 0.237658 + 0.411636i
\(537\) −14249.5 8226.95i −1.14509 0.661116i
\(538\) 4117.86i 0.329988i
\(539\) 0 0
\(540\) −377.221 140.946i −0.0300611 0.0112321i
\(541\) 3527.07 6109.06i 0.280296 0.485488i −0.691161 0.722701i \(-0.742901\pi\)
0.971458 + 0.237213i \(0.0762339\pi\)
\(542\) 15981.9 9227.17i 1.26657 0.731256i
\(543\) −18972.1 + 10953.6i −1.49939 + 0.865676i
\(544\) 174.850 302.849i 0.0137806 0.0238686i
\(545\) 3468.35 9282.55i 0.272602 0.729579i
\(546\) 0 0
\(547\) 5776.83i 0.451553i −0.974179 0.225776i \(-0.927508\pi\)
0.974179 0.225776i \(-0.0724919\pi\)
\(548\) 201.040 + 116.070i 0.0156715 + 0.00904796i
\(549\) −1277.97 2213.51i −0.0993487 0.172077i
\(550\) −13116.1 2543.72i −1.01686 0.197208i
\(551\) −3185.47 + 5517.40i −0.246290 + 0.426587i
\(552\) 34941.2i 2.69419i
\(553\) 0 0
\(554\) 2502.51 0.191916
\(555\) −16029.5 19436.9i −1.22597 1.48658i
\(556\) −80.1592 138.840i −0.00611422 0.0105901i
\(557\) 17807.8 10281.3i 1.35465 0.782106i 0.365751 0.930713i \(-0.380812\pi\)
0.988896 + 0.148607i \(0.0474788\pi\)
\(558\) 22885.0 + 13212.7i 1.73620 + 1.00240i
\(559\) −569.235 −0.0430699
\(560\) 0 0
\(561\) 17391.7 1.30887
\(562\) −15457.2 8924.19i −1.16018 0.669830i
\(563\) −20792.8 + 12004.8i −1.55651 + 0.898650i −0.558921 + 0.829221i \(0.688784\pi\)
−0.997587 + 0.0694291i \(0.977882\pi\)
\(564\) −24.6273 42.6557i −0.00183864 0.00318462i
\(565\) −6606.78 + 5448.56i −0.491945 + 0.405704i
\(566\) 6423.37 0.477022
\(567\) 0 0
\(568\) 6010.11i 0.443977i
\(569\) −12078.7 + 20921.0i −0.889925 + 1.54140i −0.0499623 + 0.998751i \(0.515910\pi\)
−0.839963 + 0.542644i \(0.817423\pi\)
\(570\) −7337.37 + 1229.46i −0.539173 + 0.0903445i
\(571\) 353.497 + 612.274i 0.0259078 + 0.0448737i 0.878689 0.477395i \(-0.158419\pi\)
−0.852781 + 0.522269i \(0.825086\pi\)
\(572\) 19.2202 + 11.0968i 0.00140496 + 0.000811154i
\(573\) 45657.4i 3.32874i
\(574\) 0 0
\(575\) 14217.6 16369.5i 1.03115 1.18723i
\(576\) −13504.4 + 23390.4i −0.976883 + 1.69201i
\(577\) −13906.0 + 8028.62i −1.00332 + 0.579265i −0.909228 0.416299i \(-0.863327\pi\)
−0.0940886 + 0.995564i \(0.529994\pi\)
\(578\) 5543.81 3200.72i 0.398948 0.230333i
\(579\) 12606.9 21835.8i 0.904878 1.56729i
\(580\) 143.773 384.788i 0.0102929 0.0275474i
\(581\) 0 0
\(582\) 6244.07i 0.444717i
\(583\) 20923.2 + 12080.0i 1.48636 + 0.858152i
\(584\) 2238.38 + 3876.98i 0.158604 + 0.274710i
\(585\) −393.963 2351.16i −0.0278433 0.166168i
\(586\) 8446.98 14630.6i 0.595463 1.03137i
\(587\) 8605.63i 0.605098i −0.953134 0.302549i \(-0.902162\pi\)
0.953134 0.302549i \(-0.0978376\pi\)
\(588\) 0 0
\(589\) 4462.28 0.312165
\(590\) 9738.52 8031.29i 0.679540 0.560412i
\(591\) −13967.3 24192.1i −0.972147 1.68381i
\(592\) 14150.0 8169.52i 0.982369 0.567171i
\(593\) 17628.5 + 10177.8i 1.22077 + 0.704809i 0.965081 0.261951i \(-0.0843659\pi\)
0.255684 + 0.966760i \(0.417699\pi\)
\(594\) 25742.4 1.77815
\(595\) 0 0
\(596\) 96.5986 0.00663898
\(597\) 16702.3 + 9643.10i 1.14503 + 0.661082i
\(598\) −1699.75 + 981.348i −0.116234 + 0.0671076i
\(599\) 11317.8 + 19603.1i 0.772010 + 1.33716i 0.936460 + 0.350776i \(0.114082\pi\)
−0.164449 + 0.986386i \(0.552585\pi\)
\(600\) −23805.0 + 8208.05i −1.61973 + 0.558487i
\(601\) 22553.8 1.53077 0.765383 0.643575i \(-0.222550\pi\)
0.765383 + 0.643575i \(0.222550\pi\)
\(602\) 0 0
\(603\) 14158.1i 0.956159i
\(604\) 18.1846 31.4967i 0.00122504 0.00212182i
\(605\) 780.812 130.834i 0.0524703 0.00879199i
\(606\) 19749.7 + 34207.5i 1.32389 + 2.29305i
\(607\) −15185.1 8767.12i −1.01539 0.586238i −0.102628 0.994720i \(-0.532725\pi\)
−0.912767 + 0.408482i \(0.866058\pi\)
\(608\) 175.481i 0.0117051i
\(609\) 0 0
\(610\) 1420.55 + 530.778i 0.0942892 + 0.0352304i
\(611\) 72.6181 125.778i 0.00480821 0.00832806i
\(612\) −360.044 + 207.871i −0.0237809 + 0.0137299i
\(613\) 9046.07 5222.75i 0.596031 0.344119i −0.171447 0.985193i \(-0.554844\pi\)
0.767479 + 0.641074i \(0.221511\pi\)
\(614\) 13500.7 23384.0i 0.887371 1.53697i
\(615\) −4600.08 1718.78i −0.301615 0.112696i
\(616\) 0 0
\(617\) 13218.9i 0.862516i 0.902229 + 0.431258i \(0.141930\pi\)
−0.902229 + 0.431258i \(0.858070\pi\)
\(618\) 21080.7 + 12170.9i 1.37215 + 0.792211i
\(619\) −11719.4 20298.7i −0.760976 1.31805i −0.942348 0.334635i \(-0.891387\pi\)
0.181372 0.983415i \(-0.441946\pi\)
\(620\) −283.753 + 47.5459i −0.0183803 + 0.00307982i
\(621\) −20887.8 + 36178.7i −1.34975 + 2.33784i
\(622\) 21629.8i 1.39433i
\(623\) 0 0
\(624\) 2322.02 0.148967
\(625\) −14492.2 5840.91i −0.927502 0.373818i
\(626\) 13092.4 + 22676.8i 0.835909 + 1.44784i
\(627\) 7558.00 4363.62i 0.481400 0.277936i
\(628\) 201.076 + 116.092i 0.0127768 + 0.00737668i
\(629\) −12955.6 −0.821262
\(630\) 0 0
\(631\) −874.004 −0.0551403 −0.0275702 0.999620i \(-0.508777\pi\)
−0.0275702 + 0.999620i \(0.508777\pi\)
\(632\) 9192.64 + 5307.37i 0.578582 + 0.334044i
\(633\) 22087.6 12752.3i 1.38690 0.800725i
\(634\) 4393.36 + 7609.53i 0.275209 + 0.476676i
\(635\) 4356.25 3592.57i 0.272240 0.224514i
\(636\) −867.410 −0.0540802
\(637\) 0 0
\(638\) 26258.8i 1.62946i
\(639\) −7213.22 + 12493.7i −0.446558 + 0.773461i
\(640\) −2748.22 16401.3i −0.169739 1.01300i
\(641\) −11988.5 20764.7i −0.738715 1.27949i −0.953074 0.302738i \(-0.902099\pi\)
0.214359 0.976755i \(-0.431234\pi\)
\(642\) 19199.7 + 11084.9i 1.18030 + 0.681444i
\(643\) 27698.0i 1.69876i −0.527782 0.849380i \(-0.676976\pi\)
0.527782 0.849380i \(-0.323024\pi\)
\(644\) 0 0
\(645\) 5051.44 13519.4i 0.308372 0.825314i
\(646\) −1912.86 + 3313.17i −0.116502 + 0.201788i
\(647\) 9496.10 5482.57i 0.577017 0.333141i −0.182930 0.983126i \(-0.558558\pi\)
0.759947 + 0.649985i \(0.225225\pi\)
\(648\) 13826.6 7982.79i 0.838209 0.483940i
\(649\) −7403.82 + 12823.8i −0.447805 + 0.775621i
\(650\) 1067.87 + 927.488i 0.0644389 + 0.0559678i
\(651\) 0 0
\(652\) 381.894i 0.0229388i
\(653\) −10683.5 6168.10i −0.640239 0.369642i 0.144467 0.989510i \(-0.453853\pi\)
−0.784707 + 0.619867i \(0.787186\pi\)
\(654\) −11371.5 19696.0i −0.679909 1.17764i
\(655\) −7420.15 + 1243.33i −0.442640 + 0.0741692i
\(656\) 1592.36 2758.05i 0.0947733 0.164152i
\(657\) 10745.8i 0.638105i
\(658\) 0 0
\(659\) 25275.6 1.49408 0.747040 0.664779i \(-0.231474\pi\)
0.747040 + 0.664779i \(0.231474\pi\)
\(660\) −434.112 + 358.010i −0.0256027 + 0.0211144i
\(661\) −2223.96 3852.01i −0.130865 0.226666i 0.793145 0.609033i \(-0.208442\pi\)
−0.924010 + 0.382367i \(0.875109\pi\)
\(662\) 7996.60 4616.84i 0.469481 0.271055i
\(663\) −1594.51 920.593i −0.0934024 0.0539259i
\(664\) 1629.34 0.0952270
\(665\) 0 0
\(666\) −38499.7 −2.23999
\(667\) −36904.5 21306.8i −2.14235 1.23689i
\(668\) 462.767 267.179i 0.0268039 0.0154752i
\(669\) −21309.2 36908.7i −1.23148 2.13299i
\(670\) 5344.57 + 6480.67i 0.308177 + 0.373687i
\(671\) −1778.92 −0.102347
\(672\) 0 0
\(673\) 30358.9i 1.73885i −0.494061 0.869427i \(-0.664488\pi\)
0.494061 0.869427i \(-0.335512\pi\)
\(674\) 5392.37 9339.86i 0.308170 0.533766i
\(675\) 29554.9 + 5731.85i 1.68529 + 0.326843i
\(676\) 163.104 + 282.504i 0.00927993 + 0.0160733i
\(677\) 5989.85 + 3458.24i 0.340042 + 0.196324i 0.660291 0.751010i \(-0.270433\pi\)
−0.320248 + 0.947334i \(0.603766\pi\)
\(678\) 19654.5i 1.11331i
\(679\) 0 0
\(680\) −4532.11 + 12129.5i −0.255586 + 0.684039i
\(681\) 4318.07 7479.11i 0.242979 0.420852i
\(682\) 15927.9 9195.98i 0.894297 0.516323i
\(683\) −3925.45 + 2266.36i −0.219917 + 0.126969i −0.605912 0.795532i \(-0.707192\pi\)
0.385995 + 0.922501i \(0.373858\pi\)
\(684\) −104.311 + 180.672i −0.00583104 + 0.0100997i
\(685\) −16257.3 6074.40i −0.906800 0.338819i
\(686\) 0 0
\(687\) 6687.56i 0.371392i
\(688\) 8105.80 + 4679.88i 0.449172 + 0.259330i
\(689\) −1278.86 2215.05i −0.0707122 0.122477i
\(690\) −8223.53 49077.8i −0.453717 2.70777i
\(691\) 13617.6 23586.4i 0.749694 1.29851i −0.198276 0.980146i \(-0.563534\pi\)
0.947969 0.318361i \(-0.103132\pi\)
\(692\) 334.197i 0.0183587i
\(693\) 0 0
\(694\) −23534.7 −1.28727
\(695\) 7625.70 + 9246.70i 0.416200 + 0.504673i
\(696\) 24744.9 + 42859.4i 1.34763 + 2.33417i
\(697\) −2186.92 + 1262.62i −0.118846 + 0.0686157i
\(698\) −17735.6 10239.6i −0.961750 0.555267i
\(699\) 13937.3 0.754160
\(700\) 0 0
\(701\) −17144.3 −0.923726 −0.461863 0.886951i \(-0.652819\pi\)
−0.461863 + 0.886951i \(0.652819\pi\)
\(702\) −2360.13 1362.62i −0.126891 0.0732604i
\(703\) −5630.19 + 3250.59i −0.302058 + 0.174393i
\(704\) 9399.03 + 16279.6i 0.503181 + 0.871534i
\(705\) 2342.84 + 2840.86i 0.125158 + 0.151763i
\(706\) −11965.7 −0.637867
\(707\) 0 0
\(708\) 531.635i 0.0282204i
\(709\) 8362.05 14483.5i 0.442939 0.767192i −0.554967 0.831872i \(-0.687269\pi\)
0.997906 + 0.0646799i \(0.0206026\pi\)
\(710\) −1414.50 8441.71i −0.0747681 0.446214i
\(711\) −12739.6 22065.7i −0.671973 1.16389i
\(712\) 30126.8 + 17393.7i 1.58574 + 0.915528i
\(713\) 29847.0i 1.56771i
\(714\) 0 0
\(715\) −1554.26 580.737i −0.0812951 0.0303753i
\(716\) 136.877 237.077i 0.00714430 0.0123743i
\(717\) −21601.5 + 12471.7i −1.12514 + 0.649599i
\(718\) 7753.79 4476.65i 0.403021 0.232684i
\(719\) −2154.33 + 3731.41i −0.111743 + 0.193544i −0.916473 0.400097i \(-0.868977\pi\)
0.804730 + 0.593641i \(0.202310\pi\)
\(720\) −13719.7 + 36718.9i −0.710145 + 1.90060i
\(721\) 0 0
\(722\) 17660.9i 0.910347i
\(723\) −19851.6 11461.3i −1.02115 0.589560i
\(724\) −182.241 315.650i −0.00935487 0.0162031i
\(725\) −5846.84 + 30147.8i −0.299512 + 1.54436i
\(726\) 908.515 1573.59i 0.0464437 0.0804429i
\(727\) 29435.6i 1.50166i 0.660496 + 0.750830i \(0.270346\pi\)
−0.660496 + 0.750830i \(0.729654\pi\)
\(728\) 0 0
\(729\) 20127.8 1.02260
\(730\) 4056.45 + 4918.74i 0.205666 + 0.249385i
\(731\) −3710.79 6427.27i −0.187754 0.325200i
\(732\) 55.3115 31.9341i 0.00279286 0.00161246i
\(733\) 5705.11 + 3293.85i 0.287480 + 0.165977i 0.636805 0.771025i \(-0.280256\pi\)
−0.349325 + 0.937002i \(0.613589\pi\)
\(734\) −4919.57 −0.247390
\(735\) 0 0
\(736\) 1173.75 0.0587839
\(737\) −8533.82 4927.01i −0.426523 0.246253i
\(738\) −6498.79 + 3752.08i −0.324152 + 0.187149i
\(739\) 1842.23 + 3190.84i 0.0917018 + 0.158832i 0.908227 0.418477i \(-0.137436\pi\)
−0.816526 + 0.577309i \(0.804103\pi\)
\(740\) 323.384 266.693i 0.0160646 0.0132484i
\(741\) −923.917 −0.0458042
\(742\) 0 0
\(743\) 12271.9i 0.605940i −0.953000 0.302970i \(-0.902022\pi\)
0.953000 0.302970i \(-0.0979783\pi\)
\(744\) 17331.6 30019.2i 0.854042 1.47924i
\(745\) −7122.49 + 1193.45i −0.350265 + 0.0586909i
\(746\) −4023.12 6968.25i −0.197449 0.341992i
\(747\) −3387.03 1955.51i −0.165897 0.0957807i
\(748\) 289.355i 0.0141442i
\(749\) 0 0
\(750\) −31504.4 + 17131.5i −1.53384 + 0.834072i
\(751\) 15435.5 26735.1i 0.749999 1.29904i −0.197824 0.980238i \(-0.563387\pi\)
0.947823 0.318798i \(-0.103279\pi\)
\(752\) −2068.13 + 1194.04i −0.100289 + 0.0579017i
\(753\) 22831.5 13181.8i 1.10495 0.637942i
\(754\) 1389.96 2407.48i 0.0671343 0.116280i
\(755\) −951.669 + 2547.00i −0.0458739 + 0.122775i
\(756\) 0 0
\(757\) 11442.1i 0.549368i 0.961535 + 0.274684i \(0.0885732\pi\)
−0.961535 + 0.274684i \(0.911427\pi\)
\(758\) −25875.2 14939.0i −1.23988 0.715844i
\(759\) 29187.1 + 50553.5i 1.39582 + 2.41762i
\(760\) 1073.79 + 6408.32i 0.0512504 + 0.305861i
\(761\) 7211.64 12490.9i 0.343524 0.595001i −0.641560 0.767073i \(-0.721713\pi\)
0.985085 + 0.172071i \(0.0550459\pi\)
\(762\) 12959.4i 0.616102i
\(763\) 0 0
\(764\) −759.630 −0.0359718
\(765\) 23978.9 19775.2i 1.13328 0.934607i
\(766\) −368.341 637.985i −0.0173743 0.0300931i
\(767\) 1357.60 783.813i 0.0639116 0.0368994i
\(768\) −1787.49 1032.01i −0.0839850 0.0484887i
\(769\) 26772.8 1.25546 0.627731 0.778430i \(-0.283984\pi\)
0.627731 + 0.778430i \(0.283984\pi\)
\(770\) 0 0
\(771\) 24495.9 1.14423
\(772\) 363.295 + 209.748i 0.0169369 + 0.00977850i
\(773\) 23962.4