Properties

Label 245.4.j.f.79.1
Level $245$
Weight $4$
Character 245.79
Analytic conductor $14.455$
Analytic rank $0$
Dimension $20$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [245,4,Mod(79,245)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(245, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 2]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("245.79");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 245 = 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 245.j (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(14.4554679514\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(10\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - 55 x^{18} + 2042 x^{16} - 41247 x^{14} + 600234 x^{12} - 4812047 x^{10} + 27547801 x^{8} + \cdots + 12960000 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{6}\cdot 3^{2}\cdot 7^{8} \)
Twist minimal: no (minimal twist has level 35)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 79.1
Root \(-3.73574 + 2.15683i\) of defining polynomial
Character \(\chi\) \(=\) 245.79
Dual form 245.4.j.f.214.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-4.60176 - 2.65683i) q^{2} +(1.67956 - 0.969693i) q^{3} +(10.1175 + 17.5240i) q^{4} +(8.30643 + 7.48353i) q^{5} -10.3052 q^{6} -65.0123i q^{8} +(-11.6194 + 20.1254i) q^{9} +(-18.3418 - 56.5062i) q^{10} +(-12.7710 - 22.1200i) q^{11} +(33.9858 + 19.6217i) q^{12} -64.1014i q^{13} +(21.2079 + 4.51433i) q^{15} +(-91.7868 + 158.979i) q^{16} +(23.9847 - 13.8476i) q^{17} +(106.939 - 61.7415i) q^{18} +(-0.396218 + 0.686270i) q^{19} +(-47.1011 + 221.276i) q^{20} +135.721i q^{22} +(94.0560 + 54.3032i) q^{23} +(-63.0420 - 109.192i) q^{24} +(12.9936 + 124.323i) q^{25} +(-170.307 + 294.980i) q^{26} +97.4324i q^{27} +234.000 q^{29} +(-85.5997 - 77.1195i) q^{30} +(64.6019 + 111.894i) q^{31} +(394.343 - 227.674i) q^{32} +(-42.8992 - 24.7679i) q^{33} -147.163 q^{34} -470.236 q^{36} +(-33.1781 - 19.1554i) q^{37} +(3.64660 - 2.10537i) q^{38} +(-62.1587 - 107.662i) q^{39} +(486.522 - 540.021i) q^{40} +403.216 q^{41} -172.895i q^{43} +(258.420 - 447.597i) q^{44} +(-247.124 + 80.2160i) q^{45} +(-288.549 - 499.781i) q^{46} +(179.218 + 103.471i) q^{47} +356.020i q^{48} +(270.511 - 606.626i) q^{50} +(26.8558 - 46.5157i) q^{51} +(1123.31 - 648.545i) q^{52} +(-124.735 + 72.0155i) q^{53} +(258.861 - 448.361i) q^{54} +(59.4542 - 279.310i) q^{55} +1.53684i q^{57} +(-1076.81 - 621.699i) q^{58} +(339.543 + 588.105i) q^{59} +(135.461 + 417.320i) q^{60} +(-287.358 + 497.719i) q^{61} -686.544i q^{62} -950.977 q^{64} +(479.705 - 532.454i) q^{65} +(131.608 + 227.952i) q^{66} +(446.557 - 257.820i) q^{67} +(485.330 + 280.205i) q^{68} +210.630 q^{69} +556.612 q^{71} +(1308.40 + 755.404i) q^{72} +(-150.033 + 86.6217i) q^{73} +(101.785 + 176.297i) q^{74} +(142.379 + 196.207i) q^{75} -16.0349 q^{76} +660.580i q^{78} +(39.6645 - 68.7010i) q^{79} +(-1952.15 + 633.663i) q^{80} +(-219.244 - 379.742i) q^{81} +(-1855.50 - 1071.28i) q^{82} +1043.56i q^{83} +(302.856 + 64.4663i) q^{85} +(-459.352 + 795.620i) q^{86} +(393.017 - 226.909i) q^{87} +(-1438.07 + 830.271i) q^{88} +(-326.030 + 564.700i) q^{89} +(1350.33 + 287.432i) q^{90} +2197.65i q^{92} +(217.005 + 125.288i) q^{93} +(-549.812 - 952.302i) q^{94} +(-8.42688 + 2.73534i) q^{95} +(441.548 - 764.784i) q^{96} -515.714i q^{97} +593.564 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 36 q^{4} + 6 q^{5} - 24 q^{6} + 46 q^{9} - 16 q^{10} - 84 q^{11} + 16 q^{15} - 148 q^{16} + 72 q^{19} + 136 q^{20} + 72 q^{24} + 362 q^{25} - 620 q^{26} + 176 q^{29} - 52 q^{30} + 120 q^{31} - 1928 q^{34}+ \cdots - 10608 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/245\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(197\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −4.60176 2.65683i −1.62697 0.939331i −0.984991 0.172608i \(-0.944781\pi\)
−0.641978 0.766723i \(-0.721886\pi\)
\(3\) 1.67956 0.969693i 0.323231 0.186617i −0.329601 0.944120i \(-0.606914\pi\)
0.652832 + 0.757503i \(0.273581\pi\)
\(4\) 10.1175 + 17.5240i 1.26468 + 2.19050i
\(5\) 8.30643 + 7.48353i 0.742950 + 0.669347i
\(6\) −10.3052 −0.701182
\(7\) 0 0
\(8\) 65.0123i 2.87317i
\(9\) −11.6194 + 20.1254i −0.430348 + 0.745384i
\(10\) −18.3418 56.5062i −0.580018 1.78688i
\(11\) −12.7710 22.1200i −0.350054 0.606311i 0.636205 0.771520i \(-0.280503\pi\)
−0.986259 + 0.165209i \(0.947170\pi\)
\(12\) 33.9858 + 19.6217i 0.817570 + 0.472024i
\(13\) 64.1014i 1.36758i −0.729679 0.683790i \(-0.760330\pi\)
0.729679 0.683790i \(-0.239670\pi\)
\(14\) 0 0
\(15\) 21.2079 + 4.51433i 0.365056 + 0.0777063i
\(16\) −91.7868 + 158.979i −1.43417 + 2.48405i
\(17\) 23.9847 13.8476i 0.342185 0.197561i −0.319053 0.947737i \(-0.603365\pi\)
0.661238 + 0.750176i \(0.270031\pi\)
\(18\) 106.939 61.7415i 1.40032 0.808478i
\(19\) −0.396218 + 0.686270i −0.00478414 + 0.00828637i −0.868408 0.495851i \(-0.834856\pi\)
0.863623 + 0.504137i \(0.168190\pi\)
\(20\) −47.1011 + 221.276i −0.526606 + 2.47394i
\(21\) 0 0
\(22\) 135.721i 1.31527i
\(23\) 94.0560 + 54.3032i 0.852697 + 0.492305i 0.861560 0.507656i \(-0.169488\pi\)
−0.00886320 + 0.999961i \(0.502821\pi\)
\(24\) −63.0420 109.192i −0.536183 0.928696i
\(25\) 12.9936 + 124.323i 0.103949 + 0.994583i
\(26\) −170.307 + 294.980i −1.28461 + 2.22501i
\(27\) 97.4324i 0.694477i
\(28\) 0 0
\(29\) 234.000 1.49837 0.749186 0.662360i \(-0.230445\pi\)
0.749186 + 0.662360i \(0.230445\pi\)
\(30\) −85.5997 77.1195i −0.520943 0.469334i
\(31\) 64.6019 + 111.894i 0.374285 + 0.648281i 0.990220 0.139516i \(-0.0445548\pi\)
−0.615935 + 0.787797i \(0.711221\pi\)
\(32\) 394.343 227.674i 2.17846 1.25773i
\(33\) −42.8992 24.7679i −0.226297 0.130652i
\(34\) −147.163 −0.742300
\(35\) 0 0
\(36\) −470.236 −2.17702
\(37\) −33.1781 19.1554i −0.147418 0.0851116i 0.424477 0.905439i \(-0.360458\pi\)
−0.571895 + 0.820327i \(0.693791\pi\)
\(38\) 3.64660 2.10537i 0.0155673 0.00898778i
\(39\) −62.1587 107.662i −0.255214 0.442044i
\(40\) 486.522 540.021i 1.92315 2.13462i
\(41\) 403.216 1.53590 0.767949 0.640511i \(-0.221278\pi\)
0.767949 + 0.640511i \(0.221278\pi\)
\(42\) 0 0
\(43\) 172.895i 0.613167i −0.951844 0.306584i \(-0.900814\pi\)
0.951844 0.306584i \(-0.0991859\pi\)
\(44\) 258.420 447.597i 0.885416 1.53359i
\(45\) −247.124 + 80.2160i −0.818648 + 0.265731i
\(46\) −288.549 499.781i −0.924874 1.60193i
\(47\) 179.218 + 103.471i 0.556205 + 0.321125i 0.751621 0.659596i \(-0.229272\pi\)
−0.195416 + 0.980720i \(0.562606\pi\)
\(48\) 356.020i 1.07056i
\(49\) 0 0
\(50\) 270.511 606.626i 0.765120 1.71580i
\(51\) 26.8558 46.5157i 0.0737366 0.127716i
\(52\) 1123.31 648.545i 2.99568 1.72956i
\(53\) −124.735 + 72.0155i −0.323276 + 0.186643i −0.652852 0.757486i \(-0.726428\pi\)
0.329576 + 0.944129i \(0.393094\pi\)
\(54\) 258.861 448.361i 0.652343 1.12989i
\(55\) 59.4542 279.310i 0.145760 0.684767i
\(56\) 0 0
\(57\) 1.53684i 0.00357122i
\(58\) −1076.81 621.699i −2.43780 1.40747i
\(59\) 339.543 + 588.105i 0.749232 + 1.29771i 0.948191 + 0.317701i \(0.102911\pi\)
−0.198959 + 0.980008i \(0.563756\pi\)
\(60\) 135.461 + 417.320i 0.291466 + 0.897929i
\(61\) −287.358 + 497.719i −0.603155 + 1.04470i 0.389185 + 0.921160i \(0.372757\pi\)
−0.992340 + 0.123536i \(0.960577\pi\)
\(62\) 686.544i 1.40631i
\(63\) 0 0
\(64\) −950.977 −1.85738
\(65\) 479.705 532.454i 0.915386 1.01604i
\(66\) 131.608 + 227.952i 0.245452 + 0.425135i
\(67\) 446.557 257.820i 0.814263 0.470115i −0.0341709 0.999416i \(-0.510879\pi\)
0.848434 + 0.529301i \(0.177546\pi\)
\(68\) 485.330 + 280.205i 0.865513 + 0.499704i
\(69\) 210.630 0.367491
\(70\) 0 0
\(71\) 556.612 0.930391 0.465195 0.885208i \(-0.345984\pi\)
0.465195 + 0.885208i \(0.345984\pi\)
\(72\) 1308.40 + 755.404i 2.14161 + 1.23646i
\(73\) −150.033 + 86.6217i −0.240549 + 0.138881i −0.615429 0.788192i \(-0.711017\pi\)
0.374880 + 0.927073i \(0.377684\pi\)
\(74\) 101.785 + 176.297i 0.159896 + 0.276948i
\(75\) 142.379 + 196.207i 0.219206 + 0.302081i
\(76\) −16.0349 −0.0242017
\(77\) 0 0
\(78\) 660.580i 0.958923i
\(79\) 39.6645 68.7010i 0.0564887 0.0978413i −0.836398 0.548122i \(-0.815343\pi\)
0.892887 + 0.450281i \(0.148676\pi\)
\(80\) −1952.15 + 633.663i −2.72821 + 0.885570i
\(81\) −219.244 379.742i −0.300746 0.520908i
\(82\) −1855.50 1071.28i −2.49886 1.44272i
\(83\) 1043.56i 1.38007i 0.723777 + 0.690034i \(0.242404\pi\)
−0.723777 + 0.690034i \(0.757596\pi\)
\(84\) 0 0
\(85\) 302.856 + 64.4663i 0.386463 + 0.0822630i
\(86\) −459.352 + 795.620i −0.575967 + 0.997604i
\(87\) 393.017 226.909i 0.484320 0.279622i
\(88\) −1438.07 + 830.271i −1.74203 + 1.00576i
\(89\) −326.030 + 564.700i −0.388304 + 0.672563i −0.992222 0.124484i \(-0.960272\pi\)
0.603917 + 0.797047i \(0.293606\pi\)
\(90\) 1350.33 + 287.432i 1.58152 + 0.336645i
\(91\) 0 0
\(92\) 2197.65i 2.49044i
\(93\) 217.005 + 125.288i 0.241961 + 0.139696i
\(94\) −549.812 952.302i −0.603285 1.04492i
\(95\) −8.42688 + 2.73534i −0.00910083 + 0.00295411i
\(96\) 441.548 764.784i 0.469431 0.813078i
\(97\) 515.714i 0.539823i −0.962885 0.269912i \(-0.913005\pi\)
0.962885 0.269912i \(-0.0869945\pi\)
\(98\) 0 0
\(99\) 593.564 0.602580
\(100\) −2047.17 + 1485.53i −2.04717 + 1.48553i
\(101\) −268.170 464.484i −0.264197 0.457602i 0.703156 0.711036i \(-0.251774\pi\)
−0.967353 + 0.253433i \(0.918440\pi\)
\(102\) −247.168 + 142.703i −0.239934 + 0.138526i
\(103\) −330.556 190.846i −0.316220 0.182570i 0.333487 0.942755i \(-0.391775\pi\)
−0.649706 + 0.760185i \(0.725108\pi\)
\(104\) −4167.38 −3.92928
\(105\) 0 0
\(106\) 765.332 0.701279
\(107\) 1196.08 + 690.560i 1.08065 + 0.623915i 0.931072 0.364835i \(-0.118874\pi\)
0.149580 + 0.988750i \(0.452208\pi\)
\(108\) −1707.40 + 985.770i −1.52125 + 0.878294i
\(109\) −195.291 338.254i −0.171610 0.297237i 0.767373 0.641201i \(-0.221564\pi\)
−0.938983 + 0.343964i \(0.888230\pi\)
\(110\) −1015.67 + 1127.36i −0.880369 + 0.977177i
\(111\) −74.2995 −0.0635333
\(112\) 0 0
\(113\) 1643.15i 1.36792i −0.729521 0.683958i \(-0.760257\pi\)
0.729521 0.683958i \(-0.239743\pi\)
\(114\) 4.08312 7.07217i 0.00335455 0.00581026i
\(115\) 374.890 + 1154.94i 0.303988 + 0.936508i
\(116\) 2367.49 + 4100.62i 1.89497 + 3.28218i
\(117\) 1290.07 + 744.820i 1.01937 + 0.588535i
\(118\) 3608.43i 2.81511i
\(119\) 0 0
\(120\) 293.487 1378.77i 0.223263 1.04887i
\(121\) 339.304 587.692i 0.254924 0.441542i
\(122\) 2644.71 1526.92i 1.96263 1.13312i
\(123\) 677.225 390.996i 0.496450 0.286625i
\(124\) −1307.22 + 2264.16i −0.946705 + 1.63974i
\(125\) −822.443 + 1129.92i −0.588492 + 0.808503i
\(126\) 0 0
\(127\) 192.032i 0.134174i −0.997747 0.0670869i \(-0.978630\pi\)
0.997747 0.0670869i \(-0.0213705\pi\)
\(128\) 1221.42 + 705.189i 0.843434 + 0.486957i
\(129\) −167.655 290.387i −0.114428 0.198195i
\(130\) −3622.13 + 1175.73i −2.44370 + 0.793221i
\(131\) 1041.45 1803.84i 0.694594 1.20307i −0.275723 0.961237i \(-0.588917\pi\)
0.970317 0.241835i \(-0.0777493\pi\)
\(132\) 1002.35i 0.660936i
\(133\) 0 0
\(134\) −2739.93 −1.76637
\(135\) −729.138 + 809.316i −0.464846 + 0.515961i
\(136\) −900.264 1559.30i −0.567625 0.983156i
\(137\) −67.6980 + 39.0855i −0.0422177 + 0.0243744i −0.520960 0.853581i \(-0.674426\pi\)
0.478743 + 0.877955i \(0.341093\pi\)
\(138\) −969.268 559.607i −0.597896 0.345195i
\(139\) 1393.67 0.850426 0.425213 0.905093i \(-0.360199\pi\)
0.425213 + 0.905093i \(0.360199\pi\)
\(140\) 0 0
\(141\) 401.342 0.239710
\(142\) −2561.40 1478.82i −1.51372 0.873945i
\(143\) −1417.92 + 818.638i −0.829179 + 0.478727i
\(144\) −2133.01 3694.49i −1.23438 2.13801i
\(145\) 1943.71 + 1751.15i 1.11322 + 1.00293i
\(146\) 920.556 0.521820
\(147\) 0 0
\(148\) 775.217i 0.430557i
\(149\) 16.2501 28.1460i 0.00893463 0.0154752i −0.861524 0.507718i \(-0.830489\pi\)
0.870458 + 0.492242i \(0.163823\pi\)
\(150\) −133.902 1281.18i −0.0728872 0.697384i
\(151\) −233.381 404.228i −0.125777 0.217852i 0.796260 0.604955i \(-0.206809\pi\)
−0.922036 + 0.387103i \(0.873476\pi\)
\(152\) 44.6160 + 25.7591i 0.0238081 + 0.0137456i
\(153\) 643.602i 0.340080i
\(154\) 0 0
\(155\) −300.749 + 1412.89i −0.155850 + 0.732167i
\(156\) 1257.78 2178.54i 0.645531 1.11809i
\(157\) −1449.30 + 836.751i −0.736729 + 0.425351i −0.820879 0.571103i \(-0.806516\pi\)
0.0841500 + 0.996453i \(0.473183\pi\)
\(158\) −365.053 + 210.764i −0.183811 + 0.106123i
\(159\) −139.666 + 241.908i −0.0696618 + 0.120658i
\(160\) 4979.39 + 1059.92i 2.46035 + 0.523712i
\(161\) 0 0
\(162\) 2329.98i 1.13000i
\(163\) 1618.91 + 934.679i 0.777932 + 0.449139i 0.835697 0.549191i \(-0.185064\pi\)
−0.0577648 + 0.998330i \(0.518397\pi\)
\(164\) 4079.53 + 7065.95i 1.94243 + 3.36438i
\(165\) −170.988 526.770i −0.0806752 0.248539i
\(166\) 2772.56 4802.22i 1.29634 2.24533i
\(167\) 46.5250i 0.0215581i −0.999942 0.0107791i \(-0.996569\pi\)
0.999942 0.0107791i \(-0.00343115\pi\)
\(168\) 0 0
\(169\) −1911.99 −0.870275
\(170\) −1222.40 1101.30i −0.551492 0.496856i
\(171\) −9.20762 15.9481i −0.00411769 0.00713204i
\(172\) 3029.80 1749.26i 1.34314 0.775463i
\(173\) −2161.84 1248.14i −0.950066 0.548521i −0.0569648 0.998376i \(-0.518142\pi\)
−0.893102 + 0.449855i \(0.851476\pi\)
\(174\) −2411.43 −1.05063
\(175\) 0 0
\(176\) 4688.83 2.00815
\(177\) 1140.56 + 658.504i 0.484350 + 0.279640i
\(178\) 3000.62 1732.41i 1.26352 0.729492i
\(179\) 1487.85 + 2577.03i 0.621269 + 1.07607i 0.989250 + 0.146236i \(0.0467158\pi\)
−0.367981 + 0.929833i \(0.619951\pi\)
\(180\) −3905.98 3519.02i −1.61741 1.45718i
\(181\) −966.273 −0.396809 −0.198405 0.980120i \(-0.563576\pi\)
−0.198405 + 0.980120i \(0.563576\pi\)
\(182\) 0 0
\(183\) 1114.60i 0.450237i
\(184\) 3530.38 6114.80i 1.41447 2.44994i
\(185\) −132.242 407.403i −0.0525547 0.161907i
\(186\) −665.737 1153.09i −0.262442 0.454563i
\(187\) −612.617 353.695i −0.239567 0.138314i
\(188\) 4187.48i 1.62449i
\(189\) 0 0
\(190\) 46.0458 + 9.80136i 0.0175817 + 0.00374245i
\(191\) 772.749 1338.44i 0.292744 0.507048i −0.681713 0.731619i \(-0.738765\pi\)
0.974458 + 0.224571i \(0.0720982\pi\)
\(192\) −1597.22 + 922.156i −0.600362 + 0.346619i
\(193\) 1995.37 1152.03i 0.744195 0.429661i −0.0793975 0.996843i \(-0.525300\pi\)
0.823593 + 0.567182i \(0.191966\pi\)
\(194\) −1370.16 + 2373.20i −0.507073 + 0.878276i
\(195\) 289.375 1359.45i 0.106270 0.499244i
\(196\) 0 0
\(197\) 222.021i 0.0802960i −0.999194 0.0401480i \(-0.987217\pi\)
0.999194 0.0401480i \(-0.0127829\pi\)
\(198\) −2731.44 1577.00i −0.980379 0.566022i
\(199\) −1790.28 3100.85i −0.637736 1.10459i −0.985928 0.167168i \(-0.946538\pi\)
0.348193 0.937423i \(-0.386795\pi\)
\(200\) 8082.52 844.747i 2.85760 0.298663i
\(201\) 500.012 866.047i 0.175463 0.303912i
\(202\) 2849.92i 0.992673i
\(203\) 0 0
\(204\) 1086.85 0.373014
\(205\) 3349.29 + 3017.48i 1.14109 + 1.02805i
\(206\) 1014.09 + 1756.46i 0.342986 + 0.594070i
\(207\) −2185.75 + 1261.94i −0.733912 + 0.423724i
\(208\) 10190.8 + 5883.67i 3.39714 + 1.96134i
\(209\) 20.2404 0.00669883
\(210\) 0 0
\(211\) −4181.04 −1.36415 −0.682073 0.731284i \(-0.738921\pi\)
−0.682073 + 0.731284i \(0.738921\pi\)
\(212\) −2524.00 1457.23i −0.817683 0.472090i
\(213\) 934.863 539.743i 0.300731 0.173627i
\(214\) −3669.40 6355.58i −1.17213 2.03018i
\(215\) 1293.86 1436.14i 0.410422 0.455553i
\(216\) 6334.31 1.99535
\(217\) 0 0
\(218\) 2075.42i 0.644794i
\(219\) −167.993 + 290.972i −0.0518352 + 0.0897812i
\(220\) 5496.15 1784.04i 1.68432 0.546726i
\(221\) −887.651 1537.46i −0.270180 0.467966i
\(222\) 341.908 + 197.401i 0.103367 + 0.0596787i
\(223\) 2361.52i 0.709145i 0.935028 + 0.354573i \(0.115374\pi\)
−0.935028 + 0.354573i \(0.884626\pi\)
\(224\) 0 0
\(225\) −2653.02 1183.05i −0.786081 0.350534i
\(226\) −4365.57 + 7561.39i −1.28493 + 2.22556i
\(227\) −508.250 + 293.438i −0.148607 + 0.0857982i −0.572460 0.819933i \(-0.694011\pi\)
0.423853 + 0.905731i \(0.360677\pi\)
\(228\) −26.9315 + 15.5489i −0.00782274 + 0.00451646i
\(229\) 2309.78 4000.65i 0.666526 1.15446i −0.312344 0.949969i \(-0.601114\pi\)
0.978869 0.204487i \(-0.0655527\pi\)
\(230\) 1343.31 6310.76i 0.385111 1.80921i
\(231\) 0 0
\(232\) 15212.9i 4.30507i
\(233\) −4434.43 2560.22i −1.24682 0.719853i −0.276347 0.961058i \(-0.589124\pi\)
−0.970474 + 0.241205i \(0.922457\pi\)
\(234\) −3957.72 6854.97i −1.10566 1.91506i
\(235\) 714.329 + 2200.66i 0.198288 + 0.610874i
\(236\) −6870.63 + 11900.3i −1.89508 + 3.28238i
\(237\) 153.850i 0.0421671i
\(238\) 0 0
\(239\) −1127.51 −0.305158 −0.152579 0.988291i \(-0.548758\pi\)
−0.152579 + 0.988291i \(0.548758\pi\)
\(240\) −2664.29 + 2957.26i −0.716579 + 0.795375i
\(241\) −1774.77 3073.98i −0.474368 0.821630i 0.525201 0.850978i \(-0.323990\pi\)
−0.999569 + 0.0293484i \(0.990657\pi\)
\(242\) −3122.80 + 1802.95i −0.829508 + 0.478917i
\(243\) −3014.70 1740.54i −0.795856 0.459487i
\(244\) −11629.4 −3.05120
\(245\) 0 0
\(246\) −4155.24 −1.07694
\(247\) 43.9909 + 25.3981i 0.0113323 + 0.00654269i
\(248\) 7274.47 4199.92i 1.86262 1.07538i
\(249\) 1011.93 + 1752.72i 0.257545 + 0.446081i
\(250\) 6786.68 3014.52i 1.71691 0.762620i
\(251\) −4717.19 −1.18624 −0.593120 0.805114i \(-0.702104\pi\)
−0.593120 + 0.805114i \(0.702104\pi\)
\(252\) 0 0
\(253\) 2774.02i 0.689333i
\(254\) −510.196 + 883.685i −0.126034 + 0.218297i
\(255\) 571.177 185.403i 0.140269 0.0455309i
\(256\) 56.7760 + 98.3390i 0.0138613 + 0.0240085i
\(257\) 5421.59 + 3130.16i 1.31591 + 0.759742i 0.983068 0.183239i \(-0.0586584\pi\)
0.332844 + 0.942982i \(0.391992\pi\)
\(258\) 1781.72i 0.429942i
\(259\) 0 0
\(260\) 14184.1 + 3019.25i 3.38331 + 0.720176i
\(261\) −2718.94 + 4709.35i −0.644821 + 1.11686i
\(262\) −9585.00 + 5533.90i −2.26017 + 1.30491i
\(263\) 4982.28 2876.52i 1.16814 0.674425i 0.214897 0.976637i \(-0.431058\pi\)
0.953241 + 0.302212i \(0.0977251\pi\)
\(264\) −1610.22 + 2788.98i −0.375386 + 0.650188i
\(265\) −1575.03 335.262i −0.365107 0.0777170i
\(266\) 0 0
\(267\) 1264.60i 0.289858i
\(268\) 9036.06 + 5216.97i 2.05957 + 1.18909i
\(269\) 3529.60 + 6113.45i 0.800014 + 1.38566i 0.919606 + 0.392841i \(0.128508\pi\)
−0.119593 + 0.992823i \(0.538159\pi\)
\(270\) 5505.53 1787.08i 1.24095 0.402809i
\(271\) −4267.26 + 7391.11i −0.956523 + 1.65675i −0.225678 + 0.974202i \(0.572460\pi\)
−0.730844 + 0.682544i \(0.760874\pi\)
\(272\) 5084.11i 1.13334i
\(273\) 0 0
\(274\) 415.373 0.0915826
\(275\) 2584.08 1875.14i 0.566639 0.411183i
\(276\) 2131.04 + 3691.07i 0.464760 + 0.804987i
\(277\) −1137.91 + 656.972i −0.246824 + 0.142504i −0.618309 0.785935i \(-0.712182\pi\)
0.371485 + 0.928439i \(0.378849\pi\)
\(278\) −6413.32 3702.73i −1.38362 0.798832i
\(279\) −3002.54 −0.644291
\(280\) 0 0
\(281\) −247.229 −0.0524856 −0.0262428 0.999656i \(-0.508354\pi\)
−0.0262428 + 0.999656i \(0.508354\pi\)
\(282\) −1846.88 1066.30i −0.390001 0.225167i
\(283\) −7859.10 + 4537.45i −1.65079 + 0.953087i −0.674049 + 0.738687i \(0.735446\pi\)
−0.976746 + 0.214400i \(0.931221\pi\)
\(284\) 5631.51 + 9754.07i 1.17665 + 2.03802i
\(285\) −11.5010 + 12.7657i −0.00239038 + 0.00265323i
\(286\) 8699.92 1.79873
\(287\) 0 0
\(288\) 10581.7i 2.16505i
\(289\) −2072.99 + 3590.52i −0.421939 + 0.730820i
\(290\) −4291.98 13222.5i −0.869083 2.67741i
\(291\) −500.085 866.172i −0.100740 0.174488i
\(292\) −3035.91 1752.79i −0.608436 0.351281i
\(293\) 2740.72i 0.546466i −0.961948 0.273233i \(-0.911907\pi\)
0.961948 0.273233i \(-0.0880930\pi\)
\(294\) 0 0
\(295\) −1580.71 + 7426.04i −0.311975 + 1.46563i
\(296\) −1245.34 + 2156.99i −0.244540 + 0.423555i
\(297\) 2155.20 1244.31i 0.421069 0.243104i
\(298\) −149.558 + 86.3475i −0.0290727 + 0.0167851i
\(299\) 3480.91 6029.12i 0.673266 1.16613i
\(300\) −1997.83 + 4480.16i −0.384482 + 0.862208i
\(301\) 0 0
\(302\) 2480.21i 0.472584i
\(303\) −900.813 520.085i −0.170793 0.0986075i
\(304\) −72.7352 125.981i −0.0137225 0.0237681i
\(305\) −6111.62 + 1983.82i −1.14738 + 0.372436i
\(306\) 1709.94 2961.71i 0.319447 0.553299i
\(307\) 6985.46i 1.29864i 0.760517 + 0.649318i \(0.224946\pi\)
−0.760517 + 0.649318i \(0.775054\pi\)
\(308\) 0 0
\(309\) −740.250 −0.136283
\(310\) 5137.77 5702.73i 0.941309 1.04482i
\(311\) −178.421 309.033i −0.0325315 0.0563462i 0.849301 0.527908i \(-0.177024\pi\)
−0.881833 + 0.471562i \(0.843690\pi\)
\(312\) −6999.36 + 4041.08i −1.27007 + 0.733273i
\(313\) −5741.85 3315.06i −1.03690 0.598653i −0.117944 0.993020i \(-0.537630\pi\)
−0.918953 + 0.394368i \(0.870964\pi\)
\(314\) 8892.42 1.59818
\(315\) 0 0
\(316\) 1605.22 0.285762
\(317\) −2159.91 1247.02i −0.382689 0.220946i 0.296298 0.955095i \(-0.404248\pi\)
−0.678988 + 0.734150i \(0.737581\pi\)
\(318\) 1285.42 742.137i 0.226675 0.130871i
\(319\) −2988.41 5176.08i −0.524511 0.908480i
\(320\) −7899.23 7116.66i −1.37994 1.24323i
\(321\) 2678.52 0.465734
\(322\) 0 0
\(323\) 21.9467i 0.00378063i
\(324\) 4436.39 7684.06i 0.760698 1.31757i
\(325\) 7969.27 832.911i 1.36017 0.142159i
\(326\) −4966.56 8602.34i −0.843781 1.46147i
\(327\) −656.005 378.744i −0.110939 0.0640508i
\(328\) 26214.0i 4.41289i
\(329\) 0 0
\(330\) −612.690 + 2878.35i −0.102204 + 0.480146i
\(331\) 2341.23 4055.14i 0.388779 0.673385i −0.603506 0.797358i \(-0.706230\pi\)
0.992286 + 0.123973i \(0.0395636\pi\)
\(332\) −18287.3 + 10558.2i −3.02304 + 1.74535i
\(333\) 771.020 445.148i 0.126882 0.0732552i
\(334\) −123.609 + 214.097i −0.0202502 + 0.0350744i
\(335\) 5638.70 + 1200.26i 0.919627 + 0.195753i
\(336\) 0 0
\(337\) 3596.60i 0.581363i −0.956820 0.290681i \(-0.906118\pi\)
0.956820 0.290681i \(-0.0938820\pi\)
\(338\) 8798.54 + 5079.84i 1.41591 + 0.817476i
\(339\) −1593.35 2759.77i −0.255277 0.442153i
\(340\) 1934.44 + 5959.49i 0.308557 + 0.950584i
\(341\) 1650.06 2857.98i 0.262040 0.453867i
\(342\) 97.8523i 0.0154715i
\(343\) 0 0
\(344\) −11240.3 −1.76173
\(345\) 1749.58 + 1576.25i 0.273027 + 0.245979i
\(346\) 6632.18 + 11487.3i 1.03049 + 1.78485i
\(347\) −1645.03 + 949.756i −0.254495 + 0.146932i −0.621821 0.783160i \(-0.713607\pi\)
0.367326 + 0.930092i \(0.380273\pi\)
\(348\) 7952.68 + 4591.48i 1.22502 + 0.707268i
\(349\) −1037.55 −0.159137 −0.0795683 0.996829i \(-0.525354\pi\)
−0.0795683 + 0.996829i \(0.525354\pi\)
\(350\) 0 0
\(351\) 6245.56 0.949752
\(352\) −10072.3 5815.25i −1.52516 0.880550i
\(353\) 3539.51 2043.54i 0.533681 0.308121i −0.208833 0.977951i \(-0.566967\pi\)
0.742514 + 0.669830i \(0.233633\pi\)
\(354\) −3499.07 6060.56i −0.525348 0.909930i
\(355\) 4623.46 + 4165.42i 0.691234 + 0.622754i
\(356\) −13194.4 −1.96433
\(357\) 0 0
\(358\) 15811.8i 2.33431i
\(359\) 1736.33 3007.42i 0.255265 0.442132i −0.709702 0.704502i \(-0.751171\pi\)
0.964967 + 0.262369i \(0.0845039\pi\)
\(360\) 5215.03 + 16066.1i 0.763490 + 2.35211i
\(361\) 3429.19 + 5939.52i 0.499954 + 0.865946i
\(362\) 4446.56 + 2567.22i 0.645596 + 0.372735i
\(363\) 1316.08i 0.190293i
\(364\) 0 0
\(365\) −1894.48 403.260i −0.271675 0.0578290i
\(366\) 2961.30 5129.11i 0.422922 0.732522i
\(367\) 7594.29 4384.57i 1.08016 0.623631i 0.149221 0.988804i \(-0.452323\pi\)
0.930940 + 0.365173i \(0.118990\pi\)
\(368\) −17266.2 + 9968.64i −2.44582 + 1.41210i
\(369\) −4685.13 + 8114.88i −0.660970 + 1.14483i
\(370\) −473.853 + 2226.11i −0.0665796 + 0.312784i
\(371\) 0 0
\(372\) 5070.39i 0.706687i
\(373\) −9845.73 5684.43i −1.36674 0.789085i −0.376226 0.926528i \(-0.622778\pi\)
−0.990510 + 0.137443i \(0.956112\pi\)
\(374\) 1879.41 + 3255.24i 0.259845 + 0.450065i
\(375\) −285.667 + 2695.28i −0.0393380 + 0.371156i
\(376\) 6726.92 11651.4i 0.922645 1.59807i
\(377\) 14999.8i 2.04914i
\(378\) 0 0
\(379\) 12137.4 1.64500 0.822501 0.568764i \(-0.192578\pi\)
0.822501 + 0.568764i \(0.192578\pi\)
\(380\) −133.193 119.998i −0.0179807 0.0161993i
\(381\) −186.212 322.529i −0.0250392 0.0433692i
\(382\) −7112.01 + 4106.12i −0.952571 + 0.549967i
\(383\) −8547.33 4934.80i −1.14033 0.658373i −0.193821 0.981037i \(-0.562088\pi\)
−0.946514 + 0.322664i \(0.895422\pi\)
\(384\) 2735.27 0.363499
\(385\) 0 0
\(386\) −12242.9 −1.61438
\(387\) 3479.57 + 2008.93i 0.457045 + 0.263875i
\(388\) 9037.37 5217.73i 1.18248 0.682706i
\(389\) 28.5583 + 49.4644i 0.00372227 + 0.00644716i 0.867881 0.496773i \(-0.165482\pi\)
−0.864158 + 0.503220i \(0.832148\pi\)
\(390\) −4943.47 + 5487.06i −0.641852 + 0.712431i
\(391\) 3007.88 0.389041
\(392\) 0 0
\(393\) 4039.54i 0.518494i
\(394\) −589.871 + 1021.69i −0.0754245 + 0.130639i
\(395\) 843.596 273.829i 0.107458 0.0348806i
\(396\) 6005.37 + 10401.6i 0.762073 + 1.31995i
\(397\) 6439.91 + 3718.09i 0.814131 + 0.470039i 0.848388 0.529374i \(-0.177573\pi\)
−0.0342574 + 0.999413i \(0.510907\pi\)
\(398\) 19025.8i 2.39618i
\(399\) 0 0
\(400\) −20957.4 9345.47i −2.61968 1.16818i
\(401\) 6232.49 10795.0i 0.776149 1.34433i −0.157998 0.987439i \(-0.550504\pi\)
0.934147 0.356890i \(-0.116163\pi\)
\(402\) −4601.87 + 2656.89i −0.570947 + 0.329636i
\(403\) 7172.55 4141.07i 0.886576 0.511865i
\(404\) 5426.40 9398.80i 0.668251 1.15745i
\(405\) 1020.67 4795.02i 0.125229 0.588312i
\(406\) 0 0
\(407\) 978.533i 0.119175i
\(408\) −3024.09 1745.96i −0.366948 0.211858i
\(409\) 854.358 + 1479.79i 0.103289 + 0.178902i 0.913038 0.407875i \(-0.133730\pi\)
−0.809749 + 0.586777i \(0.800397\pi\)
\(410\) −7395.70 22784.2i −0.890848 2.74447i
\(411\) −75.8018 + 131.293i −0.00909739 + 0.0157571i
\(412\) 7723.54i 0.923571i
\(413\) 0 0
\(414\) 13411.0 1.59207
\(415\) −7809.51 + 8668.26i −0.923744 + 1.02532i
\(416\) −14594.2 25278.0i −1.72005 2.97922i
\(417\) 2340.74 1351.43i 0.274884 0.158704i
\(418\) −93.1413 53.7752i −0.0108988 0.00629242i
\(419\) 10618.8 1.23810 0.619050 0.785352i \(-0.287518\pi\)
0.619050 + 0.785352i \(0.287518\pi\)
\(420\) 0 0
\(421\) 13273.5 1.53661 0.768304 0.640085i \(-0.221101\pi\)
0.768304 + 0.640085i \(0.221101\pi\)
\(422\) 19240.2 + 11108.3i 2.21942 + 1.28138i
\(423\) −4164.81 + 2404.55i −0.478723 + 0.276391i
\(424\) 4681.90 + 8109.29i 0.536257 + 0.928825i
\(425\) 2033.22 + 2801.92i 0.232060 + 0.319795i
\(426\) −5736.02 −0.652373
\(427\) 0 0
\(428\) 27946.9i 3.15622i
\(429\) −1587.65 + 2749.90i −0.178678 + 0.309479i
\(430\) −9769.62 + 3171.20i −1.09566 + 0.355648i
\(431\) −3959.10 6857.37i −0.442467 0.766375i 0.555405 0.831580i \(-0.312563\pi\)
−0.997872 + 0.0652048i \(0.979230\pi\)
\(432\) −15489.7 8943.01i −1.72512 0.995997i
\(433\) 4433.34i 0.492038i 0.969265 + 0.246019i \(0.0791226\pi\)
−0.969265 + 0.246019i \(0.920877\pi\)
\(434\) 0 0
\(435\) 4962.65 + 1056.35i 0.546990 + 0.116433i
\(436\) 3951.70 6844.55i 0.434065 0.751822i
\(437\) −74.5333 + 43.0318i −0.00815884 + 0.00471051i
\(438\) 1546.13 892.656i 0.168668 0.0973807i
\(439\) −6479.19 + 11222.3i −0.704408 + 1.22007i 0.262497 + 0.964933i \(0.415454\pi\)
−0.966905 + 0.255137i \(0.917879\pi\)
\(440\) −18158.6 3865.26i −1.96745 0.418793i
\(441\) 0 0
\(442\) 9433.34i 1.01515i
\(443\) −10427.3 6020.22i −1.11832 0.645664i −0.177351 0.984148i \(-0.556753\pi\)
−0.940972 + 0.338483i \(0.890086\pi\)
\(444\) −751.723 1302.02i −0.0803495 0.139169i
\(445\) −6934.09 + 2250.79i −0.738669 + 0.239770i
\(446\) 6274.17 10867.2i 0.666122 1.15376i
\(447\) 63.0304i 0.00666943i
\(448\) 0 0
\(449\) −11586.3 −1.21780 −0.608899 0.793247i \(-0.708389\pi\)
−0.608899 + 0.793247i \(0.708389\pi\)
\(450\) 9065.40 + 12492.8i 0.949661 + 1.30870i
\(451\) −5149.46 8919.13i −0.537647 0.931232i
\(452\) 28794.5 16624.5i 2.99642 1.72998i
\(453\) −783.954 452.616i −0.0813099 0.0469443i
\(454\) 3118.46 0.322371
\(455\) 0 0
\(456\) 99.9135 0.0102607
\(457\) −8430.18 4867.17i −0.862904 0.498198i 0.00207942 0.999998i \(-0.499338\pi\)
−0.864984 + 0.501800i \(0.832671\pi\)
\(458\) −21258.1 + 12273.4i −2.16883 + 1.25218i
\(459\) 1349.20 + 2336.89i 0.137201 + 0.237640i
\(460\) −16446.1 + 18254.6i −1.66697 + 1.85027i
\(461\) 1343.41 0.135724 0.0678621 0.997695i \(-0.478382\pi\)
0.0678621 + 0.997695i \(0.478382\pi\)
\(462\) 0 0
\(463\) 6613.72i 0.663857i 0.943305 + 0.331929i \(0.107699\pi\)
−0.943305 + 0.331929i \(0.892301\pi\)
\(464\) −21478.2 + 37201.2i −2.14892 + 3.72204i
\(465\) 864.942 + 2664.66i 0.0862597 + 0.265743i
\(466\) 13604.1 + 23563.1i 1.35236 + 2.34236i
\(467\) −12721.0 7344.47i −1.26051 0.727755i −0.287335 0.957830i \(-0.592769\pi\)
−0.973173 + 0.230076i \(0.926103\pi\)
\(468\) 30142.8i 2.97724i
\(469\) 0 0
\(470\) 2559.60 12024.8i 0.251204 1.18013i
\(471\) −1622.78 + 2810.74i −0.158756 + 0.274973i
\(472\) 38234.1 22074.5i 3.72853 2.15267i
\(473\) −3824.43 + 2208.03i −0.371770 + 0.214642i
\(474\) −408.752 + 707.979i −0.0396089 + 0.0686046i
\(475\) −90.4673 40.3418i −0.00873879 0.00389686i
\(476\) 0 0
\(477\) 3347.11i 0.321286i
\(478\) 5188.55 + 2995.61i 0.496482 + 0.286644i
\(479\) 7649.31 + 13249.0i 0.729657 + 1.26380i 0.957028 + 0.289995i \(0.0936538\pi\)
−0.227371 + 0.973808i \(0.573013\pi\)
\(480\) 9390.97 3048.29i 0.892994 0.289864i
\(481\) −1227.89 + 2126.77i −0.116397 + 0.201605i
\(482\) 18861.0i 1.78235i
\(483\) 0 0
\(484\) 13731.6 1.28960
\(485\) 3859.36 4283.75i 0.361329 0.401062i
\(486\) 9248.61 + 16019.1i 0.863221 + 1.49514i
\(487\) −8360.44 + 4826.90i −0.777921 + 0.449133i −0.835693 0.549197i \(-0.814934\pi\)
0.0577719 + 0.998330i \(0.481600\pi\)
\(488\) 32357.9 + 18681.8i 3.00158 + 1.73297i
\(489\) 3625.41 0.335269
\(490\) 0 0
\(491\) 20142.6 1.85137 0.925684 0.378297i \(-0.123490\pi\)
0.925684 + 0.378297i \(0.123490\pi\)
\(492\) 13703.6 + 7911.78i 1.25570 + 0.724981i
\(493\) 5612.44 3240.34i 0.512721 0.296020i
\(494\) −134.957 233.752i −0.0122915 0.0212895i
\(495\) 4930.40 + 4441.95i 0.447687 + 0.403335i
\(496\) −23718.4 −2.14715
\(497\) 0 0
\(498\) 10754.1i 0.967679i
\(499\) −654.645 + 1133.88i −0.0587293 + 0.101722i −0.893895 0.448276i \(-0.852038\pi\)
0.835166 + 0.549998i \(0.185372\pi\)
\(500\) −28121.7 2980.56i −2.51528 0.266589i
\(501\) −45.1149 78.1413i −0.00402313 0.00696826i
\(502\) 21707.4 + 12532.8i 1.92998 + 1.11427i
\(503\) 2186.17i 0.193791i 0.995295 + 0.0968953i \(0.0308912\pi\)
−0.995295 + 0.0968953i \(0.969109\pi\)
\(504\) 0 0
\(505\) 1248.44 5865.06i 0.110010 0.516815i
\(506\) −7370.10 + 12765.4i −0.647512 + 1.12152i
\(507\) −3211.30 + 1854.05i −0.281300 + 0.162409i
\(508\) 3365.16 1942.88i 0.293908 0.169688i
\(509\) −1795.56 + 3110.00i −0.156359 + 0.270822i −0.933553 0.358439i \(-0.883309\pi\)
0.777194 + 0.629261i \(0.216642\pi\)
\(510\) −3121.01 664.340i −0.270981 0.0576813i
\(511\) 0 0
\(512\) 11886.4i 1.02600i
\(513\) −66.8649 38.6045i −0.00575469 0.00332247i
\(514\) −16632.6 28808.5i −1.42730 2.47215i
\(515\) −1317.53 4058.98i −0.112733 0.347301i
\(516\) 3392.49 5875.96i 0.289430 0.501307i
\(517\) 5285.73i 0.449644i
\(518\) 0 0
\(519\) −4841.24 −0.409455
\(520\) −34616.1 31186.7i −2.91926 2.63005i
\(521\) −4302.67 7452.44i −0.361811 0.626674i 0.626448 0.779463i \(-0.284508\pi\)
−0.988259 + 0.152789i \(0.951175\pi\)
\(522\) 25023.9 14447.5i 2.09821 1.21140i
\(523\) −19517.1 11268.2i −1.63179 0.942113i −0.983542 0.180681i \(-0.942170\pi\)
−0.648245 0.761432i \(-0.724497\pi\)
\(524\) 42147.3 3.51377
\(525\) 0 0
\(526\) −30569.7 −2.53403
\(527\) 3098.92 + 1789.16i 0.256150 + 0.147888i
\(528\) 7875.16 4546.72i 0.649095 0.374755i
\(529\) −185.819 321.847i −0.0152723 0.0264525i
\(530\) 6357.18 + 5727.38i 0.521015 + 0.469399i
\(531\) −15781.1 −1.28972
\(532\) 0 0
\(533\) 25846.7i 2.10046i
\(534\) 3359.81 5819.37i 0.272272 0.471589i
\(535\) 4767.37 + 14687.0i 0.385255 + 1.18687i
\(536\) −16761.5 29031.7i −1.35072 2.33951i
\(537\) 4997.86 + 2885.51i 0.401627 + 0.231879i
\(538\) 37510.2i 3.00591i
\(539\) 0 0
\(540\) −21559.5 4589.17i −1.71810 0.365716i
\(541\) −4391.22 + 7605.81i −0.348971 + 0.604435i −0.986067 0.166349i \(-0.946802\pi\)
0.637096 + 0.770784i \(0.280135\pi\)
\(542\) 39273.8 22674.8i 3.11246 1.79698i
\(543\) −1622.91 + 936.988i −0.128261 + 0.0740516i
\(544\) 6305.48 10921.4i 0.496958 0.860757i
\(545\) 909.161 4271.15i 0.0714572 0.335699i
\(546\) 0 0
\(547\) 22593.0i 1.76601i 0.469366 + 0.883004i \(0.344482\pi\)
−0.469366 + 0.883004i \(0.655518\pi\)
\(548\) −1369.87 790.892i −0.106784 0.0616519i
\(549\) −6677.86 11566.4i −0.519133 0.899165i
\(550\) −16873.2 + 1763.51i −1.30814 + 0.136721i
\(551\) −92.7152 + 160.587i −0.00716842 + 0.0124161i
\(552\) 13693.5i 1.05586i
\(553\) 0 0
\(554\) 6981.84 0.535433
\(555\) −617.163 556.022i −0.0472020 0.0425258i
\(556\) 14100.4 + 24422.6i 1.07552 + 1.86286i
\(557\) −6290.92 + 3632.06i −0.478554 + 0.276294i −0.719814 0.694167i \(-0.755773\pi\)
0.241259 + 0.970461i \(0.422440\pi\)
\(558\) 13817.0 + 7977.23i 1.04824 + 0.605202i
\(559\) −11082.8 −0.838555
\(560\) 0 0
\(561\) −1371.90 −0.103247
\(562\) 1137.69 + 656.846i 0.0853924 + 0.0493013i
\(563\) 3335.43 1925.71i 0.249683 0.144154i −0.369936 0.929057i \(-0.620620\pi\)
0.619619 + 0.784903i \(0.287287\pi\)
\(564\) 4060.57 + 7033.11i 0.303158 + 0.525084i
\(565\) 12296.6 13648.7i 0.915611 1.01629i
\(566\) 48220.9 3.58105
\(567\) 0 0
\(568\) 36186.7i 2.67317i
\(569\) 8290.14 14358.9i 0.610792 1.05792i −0.380315 0.924857i \(-0.624184\pi\)
0.991107 0.133066i \(-0.0424822\pi\)
\(570\) 86.8409 28.1884i 0.00638134 0.00207137i
\(571\) −3192.93 5530.32i −0.234010 0.405318i 0.724974 0.688776i \(-0.241852\pi\)
−0.958985 + 0.283458i \(0.908518\pi\)
\(572\) −28691.6 16565.1i −2.09730 1.21088i
\(573\) 2997.32i 0.218525i
\(574\) 0 0
\(575\) −5529.00 + 12398.9i −0.401001 + 0.899252i
\(576\) 11049.8 19138.8i 0.799318 1.38446i
\(577\) 9577.44 5529.54i 0.691012 0.398956i −0.112979 0.993597i \(-0.536039\pi\)
0.803991 + 0.594641i \(0.202706\pi\)
\(578\) 19078.8 11015.1i 1.37296 0.792681i
\(579\) 2234.22 3869.79i 0.160365 0.277760i
\(580\) −11021.7 + 51778.7i −0.789052 + 3.70689i
\(581\) 0 0
\(582\) 5314.56i 0.378515i
\(583\) 3185.96 + 1839.42i 0.226328 + 0.130670i
\(584\) 5631.48 + 9754.00i 0.399028 + 0.691136i
\(585\) 5141.96 + 15841.0i 0.363409 + 1.11957i
\(586\) −7281.62 + 12612.1i −0.513312 + 0.889083i
\(587\) 7871.25i 0.553461i 0.960948 + 0.276730i \(0.0892509\pi\)
−0.960948 + 0.276730i \(0.910749\pi\)
\(588\) 0 0
\(589\) −102.386 −0.00716253
\(590\) 27003.8 29973.2i 1.88428 2.09148i
\(591\) −215.292 372.896i −0.0149846 0.0259542i
\(592\) 6090.63 3516.43i 0.422844 0.244129i
\(593\) 1747.69 + 1009.03i 0.121027 + 0.0698750i 0.559291 0.828971i \(-0.311073\pi\)
−0.438264 + 0.898846i \(0.644407\pi\)
\(594\) −13223.6 −0.913422
\(595\) 0 0
\(596\) 657.640 0.0451980
\(597\) −6013.75 3472.04i −0.412272 0.238025i
\(598\) −32036.7 + 18496.4i −2.19076 + 1.26484i
\(599\) −678.335 1174.91i −0.0462705 0.0801428i 0.841963 0.539536i \(-0.181400\pi\)
−0.888233 + 0.459393i \(0.848067\pi\)
\(600\) 12755.9 9256.36i 0.867929 0.629815i
\(601\) −11178.7 −0.758715 −0.379358 0.925250i \(-0.623855\pi\)
−0.379358 + 0.925250i \(0.623855\pi\)
\(602\) 0 0
\(603\) 11982.8i 0.809252i
\(604\) 4722.46 8179.53i 0.318136 0.551027i
\(605\) 7216.42 2342.43i 0.484941 0.157411i
\(606\) 2763.55 + 4786.61i 0.185250 + 0.320863i
\(607\) 8144.69 + 4702.34i 0.544617 + 0.314435i 0.746948 0.664882i \(-0.231518\pi\)
−0.202331 + 0.979317i \(0.564852\pi\)
\(608\) 360.835i 0.0240687i
\(609\) 0 0
\(610\) 33394.9 + 7108.47i 2.21659 + 0.471825i
\(611\) 6632.67 11488.1i 0.439164 0.760654i
\(612\) −11278.5 + 6511.63i −0.744943 + 0.430093i
\(613\) 16400.8 9468.99i 1.08062 0.623897i 0.149557 0.988753i \(-0.452215\pi\)
0.931064 + 0.364856i \(0.118882\pi\)
\(614\) 18559.2 32145.4i 1.21985 2.11284i
\(615\) 8551.35 + 1820.25i 0.560689 + 0.119349i
\(616\) 0 0
\(617\) 17716.9i 1.15600i 0.816036 + 0.578001i \(0.196167\pi\)
−0.816036 + 0.578001i \(0.803833\pi\)
\(618\) 3406.45 + 1966.72i 0.221728 + 0.128015i
\(619\) 3120.16 + 5404.28i 0.202601 + 0.350915i 0.949366 0.314173i \(-0.101727\pi\)
−0.746765 + 0.665088i \(0.768394\pi\)
\(620\) −27802.2 + 9024.54i −1.80091 + 0.584571i
\(621\) −5290.89 + 9164.10i −0.341894 + 0.592178i
\(622\) 1896.13i 0.122231i
\(623\) 0 0
\(624\) 22821.4 1.46408
\(625\) −15287.3 + 3230.81i −0.978389 + 0.206772i
\(626\) 17615.1 + 30510.2i 1.12467 + 1.94798i
\(627\) 33.9949 19.6269i 0.00216527 0.00125012i
\(628\) −29326.4 16931.6i −1.86346 1.07587i
\(629\) −1061.03 −0.0672589
\(630\) 0 0
\(631\) −25887.7 −1.63323 −0.816617 0.577179i \(-0.804153\pi\)
−0.816617 + 0.577179i \(0.804153\pi\)
\(632\) −4466.41 2578.68i −0.281114 0.162301i
\(633\) −7022.30 + 4054.33i −0.440934 + 0.254573i
\(634\) 6626.25 + 11477.0i 0.415082 + 0.718944i
\(635\) 1437.08 1595.10i 0.0898089 0.0996845i
\(636\) −5652.27 −0.352401
\(637\) 0 0
\(638\) 31758.8i 1.97076i
\(639\) −6467.50 + 11202.0i −0.400392 + 0.693499i
\(640\) 4868.37 + 14998.2i 0.300686 + 0.926335i
\(641\) −9399.22 16279.9i −0.579168 1.00315i −0.995575 0.0939701i \(-0.970044\pi\)
0.416407 0.909178i \(-0.363289\pi\)
\(642\) −12325.9 7116.38i −0.757734 0.437478i
\(643\) 2287.70i 0.140308i −0.997536 0.0701541i \(-0.977651\pi\)
0.997536 0.0701541i \(-0.0223491\pi\)
\(644\) 0 0
\(645\) 780.503 3666.73i 0.0476469 0.223841i
\(646\) 58.3085 100.993i 0.00355127 0.00615097i
\(647\) −1532.27 + 884.654i −0.0931060 + 0.0537548i −0.545830 0.837896i \(-0.683786\pi\)
0.452724 + 0.891651i \(0.350452\pi\)
\(648\) −24687.9 + 14253.6i −1.49666 + 0.864094i
\(649\) 8672.59 15021.4i 0.524544 0.908536i
\(650\) −38885.6 17340.1i −2.34649 1.04636i
\(651\) 0 0
\(652\) 37826.4i 2.27208i
\(653\) 3370.12 + 1945.74i 0.201965 + 0.116604i 0.597572 0.801816i \(-0.296132\pi\)
−0.395607 + 0.918420i \(0.629466\pi\)
\(654\) 2012.52 + 3485.78i 0.120330 + 0.208417i
\(655\) 22149.8 7189.78i 1.32132 0.428898i
\(656\) −37009.9 + 64103.1i −2.20274 + 3.81525i
\(657\) 4025.96i 0.239068i
\(658\) 0 0
\(659\) −20097.6 −1.18800 −0.594001 0.804465i \(-0.702452\pi\)
−0.594001 + 0.804465i \(0.702452\pi\)
\(660\) 7501.13 8325.97i 0.442396 0.491043i
\(661\) −13584.0 23528.1i −0.799326 1.38447i −0.920056 0.391788i \(-0.871857\pi\)
0.120730 0.992685i \(-0.461477\pi\)
\(662\) −21547.6 + 12440.5i −1.26506 + 0.730384i
\(663\) −2981.72 1721.50i −0.174661 0.100841i
\(664\) 67844.3 3.96516
\(665\) 0 0
\(666\) −4730.73 −0.275243
\(667\) 22009.1 + 12707.0i 1.27766 + 0.737655i
\(668\) 815.303 470.715i 0.0472231 0.0272642i
\(669\) 2289.95 + 3966.32i 0.132339 + 0.229218i
\(670\) −22759.1 20504.4i −1.31233 1.18232i
\(671\) 14679.4 0.844548
\(672\) 0 0
\(673\) 25909.7i 1.48402i −0.670389 0.742010i \(-0.733873\pi\)
0.670389 0.742010i \(-0.266127\pi\)
\(674\) −9555.55 + 16550.7i −0.546092 + 0.945859i
\(675\) −12113.1 + 1266.00i −0.690714 + 0.0721902i
\(676\) −19344.6 33505.7i −1.10062 1.90634i
\(677\) 3775.19 + 2179.61i 0.214317 + 0.123736i 0.603316 0.797502i \(-0.293846\pi\)
−0.388999 + 0.921238i \(0.627179\pi\)
\(678\) 16933.0i 0.959159i
\(679\) 0 0
\(680\) 4191.11 19689.4i 0.236355 1.11037i
\(681\) −569.090 + 985.693i −0.0320229 + 0.0554653i
\(682\) −15186.3 + 8767.84i −0.852662 + 0.492284i
\(683\) −25739.9 + 14860.9i −1.44203 + 0.832559i −0.997985 0.0634439i \(-0.979792\pi\)
−0.444049 + 0.896003i \(0.646458\pi\)
\(684\) 186.316 322.708i 0.0104152 0.0180396i
\(685\) −854.826 181.959i −0.0476806 0.0101493i
\(686\) 0 0
\(687\) 8959.10i 0.497541i
\(688\) 27486.7 + 15869.5i 1.52314 + 0.879386i
\(689\) 4616.30 + 7995.67i 0.255250 + 0.442105i
\(690\) −3863.32 11901.9i −0.213151 0.656662i
\(691\) −2464.57 + 4268.75i −0.135682 + 0.235009i −0.925858 0.377872i \(-0.876656\pi\)
0.790176 + 0.612881i \(0.209989\pi\)
\(692\) 50512.0i 2.77482i
\(693\) 0 0
\(694\) 10093.4 0.552073
\(695\) 11576.4 + 10429.5i 0.631824 + 0.569230i
\(696\) −14751.9 25551.0i −0.803402 1.39153i
\(697\) 9671.03 5583.57i 0.525562 0.303433i
\(698\) 4774.55 + 2756.59i 0.258910 + 0.149482i
\(699\) −9930.51 −0.537348
\(700\) 0 0
\(701\) −19358.8 −1.04304 −0.521520 0.853239i \(-0.674635\pi\)
−0.521520 + 0.853239i \(0.674635\pi\)
\(702\) −28740.6 16593.4i −1.54522 0.892132i
\(703\) 26.2916 15.1794i 0.00141053 0.000814372i
\(704\) 12144.9 + 21035.6i 0.650182 + 1.12615i
\(705\) 3333.72 + 3003.46i 0.178093 + 0.160449i
\(706\) −21717.3 −1.15771
\(707\) 0 0
\(708\) 26649.6i 1.41462i
\(709\) −8593.15 + 14883.8i −0.455180 + 0.788394i −0.998699 0.0510026i \(-0.983758\pi\)
0.543519 + 0.839397i \(0.317092\pi\)
\(710\) −10209.3 31452.0i −0.539643 1.66250i
\(711\) 921.755 + 1596.53i 0.0486196 + 0.0842116i
\(712\) 36712.5 + 21196.0i 1.93239 + 1.11566i
\(713\) 14032.4i 0.737049i
\(714\) 0 0
\(715\) −17904.2 3811.10i −0.936473 0.199339i
\(716\) −30106.6 + 52146.1i −1.57142 + 2.72178i
\(717\) −1893.72 + 1093.34i −0.0986365 + 0.0569478i
\(718\) −15980.4 + 9226.28i −0.830617 + 0.479557i
\(719\) 7553.65 13083.3i 0.391799 0.678616i −0.600888 0.799333i \(-0.705186\pi\)
0.992687 + 0.120717i \(0.0385195\pi\)
\(720\) 9930.07 46650.5i 0.513989 2.41467i
\(721\) 0 0
\(722\) 36443.0i 1.87849i
\(723\) −5961.64 3441.96i −0.306661 0.177051i
\(724\) −9776.24 16932.9i −0.501839 0.869210i
\(725\) 3040.52 + 29091.6i 0.155754 + 1.49025i
\(726\) −3496.61 + 6056.31i −0.178748 + 0.309601i
\(727\) 15840.9i 0.808124i 0.914732 + 0.404062i \(0.132402\pi\)
−0.914732 + 0.404062i \(0.867598\pi\)
\(728\) 0 0
\(729\) 5088.04 0.258499
\(730\) 7646.53 + 6889.00i 0.387686 + 0.349279i
\(731\) −2394.18 4146.83i −0.121138 0.209817i
\(732\) −19532.2 + 11276.9i −0.986244 + 0.569408i
\(733\) 23936.7 + 13819.9i 1.20617 + 0.696382i 0.961920 0.273331i \(-0.0881253\pi\)
0.244249 + 0.969713i \(0.421459\pi\)
\(734\) −46596.2 −2.34318
\(735\) 0 0
\(736\) 49453.8 2.47675
\(737\) −11405.9 6585.22i −0.570072 0.329131i
\(738\) 43119.7 24895.2i 2.15075 1.24174i
\(739\) 17437.2 + 30202.1i 0.867982 + 1.50339i 0.864056 + 0.503396i \(0.167916\pi\)
0.00392555 + 0.999992i \(0.498750\pi\)
\(740\) 5801.36 6439.29i 0.288192 0.319883i
\(741\) 98.5136 0.00488392
\(742\) 0 0
\(743\) 27686.7i 1.36706i 0.729922 + 0.683530i \(0.239556\pi\)
−0.729922 + 0.683530i \(0.760444\pi\)
\(744\) 8145.26 14108.0i 0.401371 0.695194i
\(745\) 345.612 112.185i 0.0169963 0.00551696i
\(746\) 30205.1 + 52316.8i 1.48242 + 2.56763i
\(747\) −21002.0 12125.5i −1.02868 0.593909i
\(748\) 14314.0i 0.699694i
\(749\) 0 0
\(750\) 8475.46 11644.1i 0.412640 0.566908i
\(751\) −2403.42 + 4162.85i −0.116781 + 0.202270i −0.918490 0.395444i \(-0.870591\pi\)
0.801710 + 0.597714i \(0.203924\pi\)
\(752\) −32899.7 + 18994.6i −1.59538 + 0.921094i
\(753\) −7922.79 + 4574.23i −0.383430 + 0.221373i
\(754\) −39851.8 + 69025.3i −1.92482 + 3.33389i
\(755\) 1086.49 5104.21i 0.0523726 0.246041i
\(756\) 0 0
\(757\) 40166.6i 1.92851i −0.264983 0.964253i \(-0.585366\pi\)
0.264983 0.964253i \(-0.414634\pi\)
\(758\) −55853.4 32247.0i −2.67637 1.54520i
\(759\) −2689.95 4659.13i −0.128642 0.222814i
\(760\) 177.831 + 547.851i 0.00848765 + 0.0261482i
\(761\) 12956.2 22440.7i 0.617162 1.06896i −0.372839 0.927896i \(-0.621616\pi\)
0.990001 0.141060i \(-0.0450512\pi\)
\(762\) 1978.93i 0.0940803i
\(763\) 0 0
\(764\) 31273.1 1.48092
\(765\) −4816.42 + 5346.04i −0.227631 + 0.252662i
\(766\) 26221.9 + 45417.6i 1.23686 + 2.14230i
\(767\) 37698.4 21765.2i 1.77472 1.02464i
\(768\) 190.717 + 110.111i 0.00896082 + 0.00517353i
\(769\) −23231.3 −1.08939 −0.544697 0.838633i \(-0.683355\pi\)
−0.544697 + 0.838633i \(0.683355\pi\)
\(770\) 0 0
\(771\) 12141.2 0.567125
\(772\) 40376.2 + 23311.2i 1.88234 + 1.08677i
\(773\) 724.262 418.153i</