Properties

Label 245.4.j.f.214.7
Level $245$
Weight $4$
Character 245.214
Analytic conductor $14.455$
Analytic rank $0$
Dimension $20$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [245,4,Mod(79,245)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(245, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 2]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("245.79");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 245 = 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 245.j (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(14.4554679514\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(10\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - 55 x^{18} + 2042 x^{16} - 41247 x^{14} + 600234 x^{12} - 4812047 x^{10} + 27547801 x^{8} + \cdots + 12960000 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{6}\cdot 3^{2}\cdot 7^{8} \)
Twist minimal: no (minimal twist has level 35)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 214.7
Root \(2.31676 + 1.33758i\) of defining polynomial
Character \(\chi\) \(=\) 245.214
Dual form 245.4.j.f.79.7

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.45073 - 0.837581i) q^{2} +(-2.15983 - 1.24698i) q^{3} +(-2.59692 + 4.49799i) q^{4} +(-4.78866 + 10.1029i) q^{5} -4.17779 q^{6} +22.1018i q^{8} +(-10.3901 - 17.9961i) q^{9} +(1.51494 + 18.6675i) q^{10} +(28.7940 - 49.8727i) q^{11} +(11.2178 - 6.47661i) q^{12} +45.5159i q^{13} +(22.9408 - 15.8492i) q^{15} +(-2.26327 - 3.92011i) q^{16} +(-79.6787 - 46.0025i) q^{17} +(-30.1465 - 17.4051i) q^{18} +(-62.5885 - 108.407i) q^{19} +(-33.0070 - 47.7757i) q^{20} -96.4692i q^{22} +(137.262 - 79.2481i) q^{23} +(27.5605 - 47.7362i) q^{24} +(-79.1375 - 96.7588i) q^{25} +(38.1233 + 66.0315i) q^{26} +119.162i q^{27} +40.1708 q^{29} +(20.0060 - 42.2078i) q^{30} +(24.7795 - 42.9194i) q^{31} +(-159.693 - 92.1986i) q^{32} +(-124.381 + 71.8111i) q^{33} -154.123 q^{34} +107.929 q^{36} +(-200.318 + 115.654i) q^{37} +(-181.598 - 104.846i) q^{38} +(56.7575 - 98.3069i) q^{39} +(-223.293 - 105.838i) q^{40} -169.556 q^{41} -147.428i q^{43} +(149.551 + 259.030i) q^{44} +(231.568 - 18.7926i) q^{45} +(132.753 - 229.936i) q^{46} +(-58.0520 + 33.5164i) q^{47} +11.2890i q^{48} +(-195.851 - 74.0870i) q^{50} +(114.729 + 198.716i) q^{51} +(-204.730 - 118.201i) q^{52} +(-232.655 - 134.323i) q^{53} +(99.8077 + 172.872i) q^{54} +(365.974 + 529.726i) q^{55} +312.187i q^{57} +(58.2771 - 33.6463i) q^{58} +(120.421 - 208.576i) q^{59} +(11.7143 + 144.347i) q^{60} +(45.2290 + 78.3389i) q^{61} -83.0194i q^{62} -272.683 q^{64} +(-459.843 - 217.960i) q^{65} +(-120.295 + 208.358i) q^{66} +(-352.038 - 203.249i) q^{67} +(413.838 - 238.929i) q^{68} -395.283 q^{69} +330.782 q^{71} +(397.747 - 229.640i) q^{72} +(473.071 + 273.127i) q^{73} +(-193.739 + 335.565i) q^{74} +(50.2676 + 307.666i) q^{75} +650.149 q^{76} -190.156i q^{78} +(-12.6543 - 21.9179i) q^{79} +(50.4425 - 4.09360i) q^{80} +(-131.940 + 228.526i) q^{81} +(-245.981 + 142.017i) q^{82} -376.255i q^{83} +(846.314 - 584.697i) q^{85} +(-123.483 - 213.878i) q^{86} +(-86.7623 - 50.0922i) q^{87} +(1102.28 + 636.399i) q^{88} +(-513.219 - 888.921i) q^{89} +(320.203 - 221.220i) q^{90} +823.203i q^{92} +(-107.039 + 61.7992i) q^{93} +(-56.1453 + 97.2466i) q^{94} +(1394.94 - 113.204i) q^{95} +(229.940 + 398.267i) q^{96} -942.660i q^{97} -1196.69 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 36 q^{4} + 6 q^{5} - 24 q^{6} + 46 q^{9} - 16 q^{10} - 84 q^{11} + 16 q^{15} - 148 q^{16} + 72 q^{19} + 136 q^{20} + 72 q^{24} + 362 q^{25} - 620 q^{26} + 176 q^{29} - 52 q^{30} + 120 q^{31} - 1928 q^{34}+ \cdots - 10608 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/245\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(197\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.45073 0.837581i 0.512912 0.296130i −0.221118 0.975247i \(-0.570971\pi\)
0.734030 + 0.679117i \(0.237637\pi\)
\(3\) −2.15983 1.24698i −0.415660 0.239982i 0.277559 0.960709i \(-0.410475\pi\)
−0.693219 + 0.720727i \(0.743808\pi\)
\(4\) −2.59692 + 4.49799i −0.324615 + 0.562249i
\(5\) −4.78866 + 10.1029i −0.428311 + 0.903632i
\(6\) −4.17779 −0.284263
\(7\) 0 0
\(8\) 22.1018i 0.976771i
\(9\) −10.3901 17.9961i −0.384818 0.666524i
\(10\) 1.51494 + 18.6675i 0.0479066 + 0.590319i
\(11\) 28.7940 49.8727i 0.789247 1.36702i −0.137182 0.990546i \(-0.543804\pi\)
0.926429 0.376470i \(-0.122862\pi\)
\(12\) 11.2178 6.47661i 0.269859 0.155803i
\(13\) 45.5159i 0.971066i 0.874218 + 0.485533i \(0.161374\pi\)
−0.874218 + 0.485533i \(0.838626\pi\)
\(14\) 0 0
\(15\) 22.9408 15.8492i 0.394887 0.272817i
\(16\) −2.26327 3.92011i −0.0353637 0.0612517i
\(17\) −79.6787 46.0025i −1.13676 0.656309i −0.191134 0.981564i \(-0.561217\pi\)
−0.945626 + 0.325255i \(0.894550\pi\)
\(18\) −30.1465 17.4051i −0.394755 0.227912i
\(19\) −62.5885 108.407i −0.755726 1.30896i −0.945013 0.327034i \(-0.893951\pi\)
0.189286 0.981922i \(-0.439383\pi\)
\(20\) −33.0070 47.7757i −0.369030 0.534149i
\(21\) 0 0
\(22\) 96.4692i 0.934878i
\(23\) 137.262 79.2481i 1.24439 0.718451i 0.274408 0.961613i \(-0.411518\pi\)
0.969986 + 0.243162i \(0.0781848\pi\)
\(24\) 27.5605 47.7362i 0.234407 0.406005i
\(25\) −79.1375 96.7588i −0.633100 0.774070i
\(26\) 38.1233 + 66.0315i 0.287561 + 0.498071i
\(27\) 119.162i 0.849360i
\(28\) 0 0
\(29\) 40.1708 0.257225 0.128613 0.991695i \(-0.458948\pi\)
0.128613 + 0.991695i \(0.458948\pi\)
\(30\) 20.0060 42.2078i 0.121753 0.256869i
\(31\) 24.7795 42.9194i 0.143566 0.248663i −0.785271 0.619152i \(-0.787477\pi\)
0.928837 + 0.370489i \(0.120810\pi\)
\(32\) −159.693 92.1986i −0.882185 0.509330i
\(33\) −124.381 + 71.8111i −0.656117 + 0.378809i
\(34\) −154.123 −0.777410
\(35\) 0 0
\(36\) 107.929 0.499670
\(37\) −200.318 + 115.654i −0.890056 + 0.513874i −0.873961 0.485997i \(-0.838457\pi\)
−0.0160950 + 0.999870i \(0.505123\pi\)
\(38\) −181.598 104.846i −0.775241 0.447586i
\(39\) 56.7575 98.3069i 0.233038 0.403633i
\(40\) −223.293 105.838i −0.882641 0.418361i
\(41\) −169.556 −0.645859 −0.322929 0.946423i \(-0.604668\pi\)
−0.322929 + 0.946423i \(0.604668\pi\)
\(42\) 0 0
\(43\) 147.428i 0.522849i −0.965224 0.261425i \(-0.915808\pi\)
0.965224 0.261425i \(-0.0841923\pi\)
\(44\) 149.551 + 259.030i 0.512402 + 0.887507i
\(45\) 231.568 18.7926i 0.767114 0.0622542i
\(46\) 132.753 229.936i 0.425509 0.737004i
\(47\) −58.0520 + 33.5164i −0.180165 + 0.104018i −0.587370 0.809318i \(-0.699837\pi\)
0.407205 + 0.913337i \(0.366503\pi\)
\(48\) 11.2890i 0.0339465i
\(49\) 0 0
\(50\) −195.851 74.0870i −0.553949 0.209550i
\(51\) 114.729 + 198.716i 0.315004 + 0.545603i
\(52\) −204.730 118.201i −0.545980 0.315222i
\(53\) −232.655 134.323i −0.602974 0.348127i 0.167237 0.985917i \(-0.446516\pi\)
−0.770211 + 0.637790i \(0.779849\pi\)
\(54\) 99.8077 + 172.872i 0.251521 + 0.435646i
\(55\) 365.974 + 529.726i 0.897236 + 1.29870i
\(56\) 0 0
\(57\) 312.187i 0.725441i
\(58\) 58.2771 33.6463i 0.131934 0.0761720i
\(59\) 120.421 208.576i 0.265721 0.460242i −0.702031 0.712146i \(-0.747723\pi\)
0.967752 + 0.251904i \(0.0810567\pi\)
\(60\) 11.7143 + 144.347i 0.0252052 + 0.310585i
\(61\) 45.2290 + 78.3389i 0.0949340 + 0.164431i 0.909581 0.415527i \(-0.136403\pi\)
−0.814647 + 0.579957i \(0.803069\pi\)
\(62\) 83.0194i 0.170056i
\(63\) 0 0
\(64\) −272.683 −0.532583
\(65\) −459.843 217.960i −0.877485 0.415918i
\(66\) −120.295 + 208.358i −0.224353 + 0.388592i
\(67\) −352.038 203.249i −0.641914 0.370609i 0.143437 0.989659i \(-0.454184\pi\)
−0.785351 + 0.619050i \(0.787518\pi\)
\(68\) 413.838 238.929i 0.738018 0.426095i
\(69\) −395.283 −0.689660
\(70\) 0 0
\(71\) 330.782 0.552910 0.276455 0.961027i \(-0.410840\pi\)
0.276455 + 0.961027i \(0.410840\pi\)
\(72\) 397.747 229.640i 0.651041 0.375879i
\(73\) 473.071 + 273.127i 0.758476 + 0.437906i 0.828748 0.559622i \(-0.189054\pi\)
−0.0702724 + 0.997528i \(0.522387\pi\)
\(74\) −193.739 + 335.565i −0.304347 + 0.527144i
\(75\) 50.2676 + 307.666i 0.0773920 + 0.473682i
\(76\) 650.149 0.981279
\(77\) 0 0
\(78\) 190.156i 0.276038i
\(79\) −12.6543 21.9179i −0.0180218 0.0312147i 0.856874 0.515526i \(-0.172403\pi\)
−0.874896 + 0.484311i \(0.839070\pi\)
\(80\) 50.4425 4.09360i 0.0704956 0.00572098i
\(81\) −131.940 + 228.526i −0.180987 + 0.313479i
\(82\) −245.981 + 142.017i −0.331268 + 0.191258i
\(83\) 376.255i 0.497582i −0.968557 0.248791i \(-0.919967\pi\)
0.968557 0.248791i \(-0.0800333\pi\)
\(84\) 0 0
\(85\) 846.314 584.697i 1.07995 0.746109i
\(86\) −123.483 213.878i −0.154831 0.268175i
\(87\) −86.7623 50.0922i −0.106918 0.0617293i
\(88\) 1102.28 + 636.399i 1.33526 + 0.770914i
\(89\) −513.219 888.921i −0.611248 1.05871i −0.991030 0.133637i \(-0.957334\pi\)
0.379782 0.925076i \(-0.375999\pi\)
\(90\) 320.203 221.220i 0.375026 0.259096i
\(91\) 0 0
\(92\) 823.203i 0.932878i
\(93\) −107.039 + 61.7992i −0.119349 + 0.0689062i
\(94\) −56.1453 + 97.2466i −0.0616058 + 0.106704i
\(95\) 1394.94 113.204i 1.50650 0.122258i
\(96\) 229.940 + 398.267i 0.244460 + 0.423416i
\(97\) 942.660i 0.986728i −0.869823 0.493364i \(-0.835767\pi\)
0.869823 0.493364i \(-0.164233\pi\)
\(98\) 0 0
\(99\) −1196.69 −1.21487
\(100\) 640.733 104.685i 0.640733 0.104685i
\(101\) −302.308 + 523.613i −0.297830 + 0.515856i −0.975639 0.219381i \(-0.929596\pi\)
0.677809 + 0.735238i \(0.262929\pi\)
\(102\) 332.881 + 192.189i 0.323139 + 0.186564i
\(103\) 260.645 150.484i 0.249341 0.143957i −0.370121 0.928983i \(-0.620684\pi\)
0.619463 + 0.785026i \(0.287351\pi\)
\(104\) −1005.98 −0.948509
\(105\) 0 0
\(106\) −450.027 −0.412363
\(107\) −1309.14 + 755.830i −1.18279 + 0.682886i −0.956659 0.291210i \(-0.905942\pi\)
−0.226135 + 0.974096i \(0.572609\pi\)
\(108\) −535.989 309.453i −0.477551 0.275714i
\(109\) −883.545 + 1530.34i −0.776406 + 1.34477i 0.157595 + 0.987504i \(0.449626\pi\)
−0.934001 + 0.357270i \(0.883707\pi\)
\(110\) 974.620 + 461.958i 0.844785 + 0.400418i
\(111\) 576.871 0.493281
\(112\) 0 0
\(113\) 1045.27i 0.870182i 0.900387 + 0.435091i \(0.143284\pi\)
−0.900387 + 0.435091i \(0.856716\pi\)
\(114\) 261.482 + 452.900i 0.214825 + 0.372087i
\(115\) 143.337 + 1766.23i 0.116228 + 1.43219i
\(116\) −104.320 + 180.688i −0.0834991 + 0.144625i
\(117\) 819.111 472.914i 0.647238 0.373683i
\(118\) 403.451i 0.314751i
\(119\) 0 0
\(120\) 350.297 + 507.034i 0.266480 + 0.385714i
\(121\) −992.689 1719.39i −0.745822 1.29180i
\(122\) 131.230 + 75.7658i 0.0973855 + 0.0562255i
\(123\) 366.213 + 211.433i 0.268458 + 0.154994i
\(124\) 128.701 + 222.916i 0.0932070 + 0.161439i
\(125\) 1356.51 336.174i 0.970638 0.240547i
\(126\) 0 0
\(127\) 260.727i 0.182171i −0.995843 0.0910857i \(-0.970966\pi\)
0.995843 0.0910857i \(-0.0290337\pi\)
\(128\) 881.951 509.195i 0.609017 0.351616i
\(129\) −183.840 + 318.419i −0.125474 + 0.217328i
\(130\) −849.669 + 68.9539i −0.573238 + 0.0465205i
\(131\) −361.761 626.588i −0.241276 0.417903i 0.719802 0.694180i \(-0.244233\pi\)
−0.961078 + 0.276277i \(0.910899\pi\)
\(132\) 745.950i 0.491868i
\(133\) 0 0
\(134\) −680.950 −0.438993
\(135\) −1203.88 570.625i −0.767508 0.363790i
\(136\) 1016.74 1761.04i 0.641064 1.11036i
\(137\) 670.038 + 386.847i 0.417848 + 0.241245i 0.694156 0.719824i \(-0.255778\pi\)
−0.276308 + 0.961069i \(0.589111\pi\)
\(138\) −573.451 + 331.082i −0.353735 + 0.204229i
\(139\) −2952.97 −1.80192 −0.900961 0.433899i \(-0.857137\pi\)
−0.900961 + 0.433899i \(0.857137\pi\)
\(140\) 0 0
\(141\) 167.177 0.0998499
\(142\) 479.876 277.057i 0.283594 0.163733i
\(143\) 2270.00 + 1310.59i 1.32746 + 0.766411i
\(144\) −47.0312 + 81.4604i −0.0272171 + 0.0471414i
\(145\) −192.364 + 405.842i −0.110172 + 0.232437i
\(146\) 915.066 0.518708
\(147\) 0 0
\(148\) 1201.37i 0.667244i
\(149\) 1257.00 + 2177.19i 0.691124 + 1.19706i 0.971470 + 0.237163i \(0.0762177\pi\)
−0.280345 + 0.959899i \(0.590449\pi\)
\(150\) 330.620 + 404.238i 0.179967 + 0.220039i
\(151\) −50.5262 + 87.5140i −0.0272302 + 0.0471642i −0.879319 0.476233i \(-0.842002\pi\)
0.852089 + 0.523397i \(0.175335\pi\)
\(152\) 2395.98 1383.32i 1.27855 0.738171i
\(153\) 1911.88i 1.01024i
\(154\) 0 0
\(155\) 314.950 + 455.872i 0.163209 + 0.236235i
\(156\) 294.789 + 510.589i 0.151295 + 0.262050i
\(157\) −2025.07 1169.17i −1.02941 0.594333i −0.112597 0.993641i \(-0.535917\pi\)
−0.916817 + 0.399308i \(0.869250\pi\)
\(158\) −36.7161 21.1980i −0.0184872 0.0106736i
\(159\) 334.997 + 580.233i 0.167088 + 0.289405i
\(160\) 1696.19 1171.85i 0.838096 0.579019i
\(161\) 0 0
\(162\) 442.040i 0.214383i
\(163\) −1147.66 + 662.602i −0.551483 + 0.318399i −0.749720 0.661755i \(-0.769812\pi\)
0.198237 + 0.980154i \(0.436478\pi\)
\(164\) 440.323 762.662i 0.209655 0.363133i
\(165\) −129.885 1600.48i −0.0612822 0.755136i
\(166\) −315.144 545.845i −0.147349 0.255216i
\(167\) 2086.20i 0.966675i 0.875434 + 0.483338i \(0.160576\pi\)
−0.875434 + 0.483338i \(0.839424\pi\)
\(168\) 0 0
\(169\) 125.299 0.0570317
\(170\) 738.044 1557.09i 0.332973 0.702493i
\(171\) −1300.60 + 2252.70i −0.581634 + 1.00742i
\(172\) 663.129 + 382.858i 0.293971 + 0.169724i
\(173\) −1661.20 + 959.095i −0.730051 + 0.421495i −0.818441 0.574591i \(-0.805161\pi\)
0.0883897 + 0.996086i \(0.471828\pi\)
\(174\) −167.825 −0.0731195
\(175\) 0 0
\(176\) −260.675 −0.111643
\(177\) −520.180 + 300.326i −0.220899 + 0.127536i
\(178\) −1489.09 859.725i −0.627032 0.362017i
\(179\) 314.523 544.770i 0.131333 0.227475i −0.792858 0.609407i \(-0.791408\pi\)
0.924191 + 0.381932i \(0.124741\pi\)
\(180\) −516.833 + 1090.39i −0.214014 + 0.451517i
\(181\) 2800.85 1.15020 0.575099 0.818084i \(-0.304964\pi\)
0.575099 + 0.818084i \(0.304964\pi\)
\(182\) 0 0
\(183\) 225.599i 0.0911296i
\(184\) 1751.53 + 3033.73i 0.701762 + 1.21549i
\(185\) −209.184 2577.62i −0.0831324 1.02438i
\(186\) −103.524 + 179.308i −0.0408103 + 0.0706856i
\(187\) −4588.54 + 2649.19i −1.79437 + 1.03598i
\(188\) 348.157i 0.135063i
\(189\) 0 0
\(190\) 1928.86 1332.60i 0.736497 0.508827i
\(191\) −370.127 641.080i −0.140217 0.242863i 0.787361 0.616492i \(-0.211447\pi\)
−0.927578 + 0.373629i \(0.878113\pi\)
\(192\) 588.949 + 340.030i 0.221374 + 0.127810i
\(193\) −3535.61 2041.29i −1.31865 0.761321i −0.335136 0.942170i \(-0.608782\pi\)
−0.983511 + 0.180849i \(0.942116\pi\)
\(194\) −789.554 1367.55i −0.292199 0.506104i
\(195\) 721.393 + 1044.17i 0.264923 + 0.383461i
\(196\) 0 0
\(197\) 3414.89i 1.23503i −0.786559 0.617515i \(-0.788140\pi\)
0.786559 0.617515i \(-0.211860\pi\)
\(198\) −1736.07 + 1002.32i −0.623118 + 0.359758i
\(199\) 1696.22 2937.94i 0.604231 1.04656i −0.387941 0.921684i \(-0.626814\pi\)
0.992173 0.124875i \(-0.0398529\pi\)
\(200\) 2138.54 1749.08i 0.756089 0.618394i
\(201\) 506.895 + 877.968i 0.177879 + 0.308095i
\(202\) 1012.83i 0.352785i
\(203\) 0 0
\(204\) −1191.76 −0.409020
\(205\) 811.946 1713.01i 0.276628 0.583619i
\(206\) 252.084 436.623i 0.0852600 0.147675i
\(207\) −2852.32 1646.79i −0.957729 0.552945i
\(208\) 178.427 103.015i 0.0594794 0.0343404i
\(209\) −7208.70 −2.38582
\(210\) 0 0
\(211\) 3398.04 1.10867 0.554337 0.832292i \(-0.312972\pi\)
0.554337 + 0.832292i \(0.312972\pi\)
\(212\) 1208.37 697.653i 0.391468 0.226014i
\(213\) −714.434 412.479i −0.229823 0.132688i
\(214\) −1266.14 + 2193.02i −0.404446 + 0.700521i
\(215\) 1489.45 + 705.981i 0.472463 + 0.223942i
\(216\) −2633.69 −0.829630
\(217\) 0 0
\(218\) 2960.16i 0.919667i
\(219\) −681.169 1179.82i −0.210179 0.364040i
\(220\) −3333.11 + 270.495i −1.02145 + 0.0828943i
\(221\) 2093.85 3626.65i 0.637319 1.10387i
\(222\) 836.886 483.176i 0.253010 0.146075i
\(223\) 182.611i 0.0548365i −0.999624 0.0274183i \(-0.991271\pi\)
0.999624 0.0274183i \(-0.00872860\pi\)
\(224\) 0 0
\(225\) −919.040 + 2429.50i −0.272308 + 0.719852i
\(226\) 875.496 + 1516.40i 0.257687 + 0.446326i
\(227\) 2730.00 + 1576.17i 0.798222 + 0.460854i 0.842849 0.538150i \(-0.180877\pi\)
−0.0446271 + 0.999004i \(0.514210\pi\)
\(228\) −1404.21 810.723i −0.407878 0.235489i
\(229\) −3006.18 5206.85i −0.867483 1.50253i −0.864560 0.502529i \(-0.832403\pi\)
−0.00292326 0.999996i \(-0.500931\pi\)
\(230\) 1687.31 + 2442.28i 0.483730 + 0.700170i
\(231\) 0 0
\(232\) 887.848i 0.251250i
\(233\) −814.635 + 470.330i −0.229050 + 0.132242i −0.610133 0.792299i \(-0.708884\pi\)
0.381084 + 0.924540i \(0.375551\pi\)
\(234\) 792.208 1372.14i 0.221317 0.383333i
\(235\) −60.6213 746.993i −0.0168277 0.207355i
\(236\) 625.448 + 1083.31i 0.172514 + 0.298802i
\(237\) 63.1188i 0.0172996i
\(238\) 0 0
\(239\) −5158.82 −1.39622 −0.698109 0.715991i \(-0.745975\pi\)
−0.698109 + 0.715991i \(0.745975\pi\)
\(240\) −114.052 54.0593i −0.0306751 0.0145396i
\(241\) −231.918 + 401.694i −0.0619882 + 0.107367i −0.895354 0.445355i \(-0.853077\pi\)
0.833366 + 0.552722i \(0.186411\pi\)
\(242\) −2880.25 1662.92i −0.765081 0.441720i
\(243\) 3356.26 1937.74i 0.886025 0.511547i
\(244\) −469.823 −0.123268
\(245\) 0 0
\(246\) 708.370 0.183594
\(247\) 4934.23 2848.78i 1.27108 0.733860i
\(248\) 948.596 + 547.672i 0.242887 + 0.140231i
\(249\) −469.183 + 812.648i −0.119411 + 0.206825i
\(250\) 1686.36 1623.88i 0.426618 0.410814i
\(251\) −2290.25 −0.575934 −0.287967 0.957640i \(-0.592979\pi\)
−0.287967 + 0.957640i \(0.592979\pi\)
\(252\) 0 0
\(253\) 9127.48i 2.26814i
\(254\) −218.380 378.245i −0.0539463 0.0934378i
\(255\) −2557.00 + 207.511i −0.627944 + 0.0509601i
\(256\) 1943.71 3366.61i 0.474540 0.821927i
\(257\) −694.727 + 401.101i −0.168622 + 0.0973541i −0.581936 0.813235i \(-0.697705\pi\)
0.413314 + 0.910589i \(0.364371\pi\)
\(258\) 615.922i 0.148627i
\(259\) 0 0
\(260\) 2174.56 1502.35i 0.518694 0.358352i
\(261\) −417.378 722.920i −0.0989849 0.171447i
\(262\) −1049.64 606.008i −0.247507 0.142898i
\(263\) 248.530 + 143.489i 0.0582701 + 0.0336423i 0.528852 0.848714i \(-0.322623\pi\)
−0.470582 + 0.882356i \(0.655956\pi\)
\(264\) −1587.16 2749.03i −0.370010 0.640876i
\(265\) 2471.16 1707.26i 0.572839 0.395760i
\(266\) 0 0
\(267\) 2559.90i 0.586753i
\(268\) 1828.42 1055.64i 0.416749 0.240610i
\(269\) −1780.61 + 3084.11i −0.403590 + 0.699039i −0.994156 0.107951i \(-0.965571\pi\)
0.590566 + 0.806989i \(0.298905\pi\)
\(270\) −2224.46 + 180.523i −0.501393 + 0.0406899i
\(271\) 964.403 + 1670.39i 0.216175 + 0.374425i 0.953635 0.300965i \(-0.0973086\pi\)
−0.737461 + 0.675390i \(0.763975\pi\)
\(272\) 416.466i 0.0928380i
\(273\) 0 0
\(274\) 1296.06 0.285759
\(275\) −7104.30 + 1160.73i −1.55784 + 0.254525i
\(276\) 1026.52 1777.98i 0.223874 0.387760i
\(277\) 5705.97 + 3294.34i 1.23768 + 0.714578i 0.968620 0.248545i \(-0.0799523\pi\)
0.269064 + 0.963122i \(0.413286\pi\)
\(278\) −4283.96 + 2473.35i −0.924227 + 0.533603i
\(279\) −1029.84 −0.220986
\(280\) 0 0
\(281\) 815.552 0.173138 0.0865689 0.996246i \(-0.472410\pi\)
0.0865689 + 0.996246i \(0.472410\pi\)
\(282\) 242.529 140.024i 0.0512142 0.0295685i
\(283\) −5640.85 3256.75i −1.18485 0.684076i −0.227722 0.973726i \(-0.573128\pi\)
−0.957132 + 0.289651i \(0.906461\pi\)
\(284\) −859.013 + 1487.85i −0.179483 + 0.310873i
\(285\) −3153.99 1494.96i −0.655532 0.310714i
\(286\) 4390.89 0.907828
\(287\) 0 0
\(288\) 3831.80i 0.783997i
\(289\) 1775.97 + 3076.07i 0.361483 + 0.626108i
\(290\) 60.8564 + 749.889i 0.0123228 + 0.151845i
\(291\) −1175.48 + 2035.99i −0.236796 + 0.410143i
\(292\) −2457.05 + 1418.58i −0.492425 + 0.284301i
\(293\) 435.520i 0.0868373i −0.999057 0.0434186i \(-0.986175\pi\)
0.999057 0.0434186i \(-0.0138249\pi\)
\(294\) 0 0
\(295\) 1530.57 + 2215.40i 0.302078 + 0.437240i
\(296\) −2556.15 4427.39i −0.501937 0.869381i
\(297\) 5942.92 + 3431.15i 1.16109 + 0.670355i
\(298\) 3647.15 + 2105.68i 0.708971 + 0.409325i
\(299\) 3607.05 + 6247.60i 0.697663 + 1.20839i
\(300\) −1514.42 572.879i −0.291450 0.110251i
\(301\) 0 0
\(302\) 169.279i 0.0322547i
\(303\) 1305.87 753.945i 0.247592 0.142947i
\(304\) −283.310 + 490.707i −0.0534505 + 0.0925789i
\(305\) −1008.04 + 81.8060i −0.189246 + 0.0153580i
\(306\) 1601.35 + 2773.63i 0.299161 + 0.518163i
\(307\) 4915.99i 0.913910i −0.889490 0.456955i \(-0.848940\pi\)
0.889490 0.456955i \(-0.151060\pi\)
\(308\) 0 0
\(309\) −750.601 −0.138188
\(310\) 838.738 + 397.552i 0.153668 + 0.0728368i
\(311\) −915.556 + 1585.79i −0.166934 + 0.289138i −0.937340 0.348415i \(-0.886720\pi\)
0.770407 + 0.637553i \(0.220053\pi\)
\(312\) 2172.76 + 1254.44i 0.394257 + 0.227625i
\(313\) 2115.66 1221.48i 0.382059 0.220582i −0.296655 0.954985i \(-0.595871\pi\)
0.678714 + 0.734403i \(0.262538\pi\)
\(314\) −3917.11 −0.703998
\(315\) 0 0
\(316\) 131.449 0.0234006
\(317\) −1442.97 + 833.096i −0.255662 + 0.147607i −0.622354 0.782736i \(-0.713824\pi\)
0.366692 + 0.930342i \(0.380490\pi\)
\(318\) 971.983 + 561.175i 0.171403 + 0.0989595i
\(319\) 1156.68 2003.43i 0.203014 0.351631i
\(320\) 1305.78 2754.89i 0.228111 0.481259i
\(321\) 3770.02 0.655521
\(322\) 0 0
\(323\) 11516.9i 1.98396i
\(324\) −685.272 1186.93i −0.117502 0.203520i
\(325\) 4404.07 3602.02i 0.751673 0.614782i
\(326\) −1109.97 + 1922.52i −0.188575 + 0.326621i
\(327\) 3816.62 2203.53i 0.645442 0.372646i
\(328\) 3747.50i 0.630856i
\(329\) 0 0
\(330\) −1528.96 2213.09i −0.255051 0.369171i
\(331\) 2733.19 + 4734.02i 0.453866 + 0.786119i 0.998622 0.0524753i \(-0.0167111\pi\)
−0.544756 + 0.838595i \(0.683378\pi\)
\(332\) 1692.39 + 977.102i 0.279765 + 0.161522i
\(333\) 4162.64 + 2403.30i 0.685018 + 0.395496i
\(334\) 1747.36 + 3026.51i 0.286261 + 0.495819i
\(335\) 3739.19 2583.31i 0.609833 0.421318i
\(336\) 0 0
\(337\) 10650.5i 1.72157i −0.508970 0.860784i \(-0.669973\pi\)
0.508970 0.860784i \(-0.330027\pi\)
\(338\) 181.775 104.948i 0.0292522 0.0168888i
\(339\) 1303.43 2257.60i 0.208828 0.361700i
\(340\) 432.154 + 5325.12i 0.0689319 + 0.849397i
\(341\) −1427.00 2471.64i −0.226617 0.392513i
\(342\) 4357.43i 0.688956i
\(343\) 0 0
\(344\) 3258.42 0.510704
\(345\) 1892.88 3993.51i 0.295389 0.623198i
\(346\) −1606.64 + 2782.78i −0.249634 + 0.432380i
\(347\) 3480.67 + 2009.57i 0.538479 + 0.310891i 0.744462 0.667664i \(-0.232706\pi\)
−0.205983 + 0.978556i \(0.566039\pi\)
\(348\) 450.629 260.171i 0.0694145 0.0400765i
\(349\) 10544.9 1.61735 0.808674 0.588256i \(-0.200185\pi\)
0.808674 + 0.588256i \(0.200185\pi\)
\(350\) 0 0
\(351\) −5423.76 −0.824784
\(352\) −9196.38 + 5309.53i −1.39252 + 0.803974i
\(353\) 2563.42 + 1479.99i 0.386507 + 0.223150i 0.680646 0.732613i \(-0.261699\pi\)
−0.294138 + 0.955763i \(0.595033\pi\)
\(354\) −503.095 + 871.386i −0.0755345 + 0.130830i
\(355\) −1584.00 + 3341.86i −0.236817 + 0.499627i
\(356\) 5331.14 0.793680
\(357\) 0 0
\(358\) 1053.75i 0.155566i
\(359\) 1085.08 + 1879.42i 0.159523 + 0.276301i 0.934697 0.355447i \(-0.115671\pi\)
−0.775174 + 0.631748i \(0.782338\pi\)
\(360\) 415.351 + 5118.07i 0.0608081 + 0.749294i
\(361\) −4405.15 + 7629.94i −0.642244 + 1.11240i
\(362\) 4063.29 2345.94i 0.589949 0.340607i
\(363\) 4951.46i 0.715934i
\(364\) 0 0
\(365\) −5024.76 + 3471.48i −0.720569 + 0.497823i
\(366\) −188.957 327.283i −0.0269862 0.0467414i
\(367\) 1084.44 + 626.101i 0.154243 + 0.0890523i 0.575135 0.818058i \(-0.304950\pi\)
−0.420892 + 0.907111i \(0.638283\pi\)
\(368\) −621.322 358.720i −0.0880126 0.0508141i
\(369\) 1761.70 + 3051.36i 0.248538 + 0.430480i
\(370\) −2462.43 3564.23i −0.345989 0.500798i
\(371\) 0 0
\(372\) 641.949i 0.0894718i
\(373\) 4023.57 2323.01i 0.558533 0.322469i −0.194024 0.980997i \(-0.562154\pi\)
0.752556 + 0.658528i \(0.228821\pi\)
\(374\) −4437.83 + 7686.55i −0.613569 + 1.06273i
\(375\) −3349.03 965.458i −0.461182 0.132949i
\(376\) −740.772 1283.05i −0.101602 0.175980i
\(377\) 1828.41i 0.249783i
\(378\) 0 0
\(379\) −1434.84 −0.194466 −0.0972331 0.995262i \(-0.530999\pi\)
−0.0972331 + 0.995262i \(0.530999\pi\)
\(380\) −3113.34 + 6568.39i −0.420292 + 0.886714i
\(381\) −325.121 + 563.126i −0.0437178 + 0.0757214i
\(382\) −1073.91 620.023i −0.143838 0.0830449i
\(383\) 11446.0 6608.36i 1.52706 0.881649i 0.527578 0.849507i \(-0.323100\pi\)
0.999483 0.0321425i \(-0.0102330\pi\)
\(384\) −2539.82 −0.337526
\(385\) 0 0
\(386\) −6838.97 −0.901799
\(387\) −2653.13 + 1531.79i −0.348492 + 0.201202i
\(388\) 4240.07 + 2448.01i 0.554787 + 0.320306i
\(389\) −3877.50 + 6716.03i −0.505391 + 0.875363i 0.494589 + 0.869127i \(0.335319\pi\)
−0.999981 + 0.00623657i \(0.998015\pi\)
\(390\) 1921.13 + 910.592i 0.249436 + 0.118230i
\(391\) −14582.5 −1.88610
\(392\) 0 0
\(393\) 1804.44i 0.231607i
\(394\) −2860.25 4954.09i −0.365729 0.633461i
\(395\) 282.032 22.8880i 0.0359255 0.00291549i
\(396\) 3107.70 5382.69i 0.394363 0.683056i
\(397\) −3083.77 + 1780.41i −0.389848 + 0.225079i −0.682094 0.731264i \(-0.738931\pi\)
0.292246 + 0.956343i \(0.405597\pi\)
\(398\) 5682.89i 0.715723i
\(399\) 0 0
\(400\) −200.195 + 529.219i −0.0250243 + 0.0661524i
\(401\) 2715.30 + 4703.04i 0.338144 + 0.585683i 0.984084 0.177706i \(-0.0568675\pi\)
−0.645940 + 0.763389i \(0.723534\pi\)
\(402\) 1470.74 + 849.132i 0.182472 + 0.105350i
\(403\) 1953.52 + 1127.86i 0.241468 + 0.139412i
\(404\) −1570.14 2719.56i −0.193360 0.334909i
\(405\) −1676.96 2427.31i −0.205751 0.297812i
\(406\) 0 0
\(407\) 13320.5i 1.62229i
\(408\) −4391.98 + 2535.71i −0.532929 + 0.307687i
\(409\) 4849.39 8399.40i 0.586277 1.01546i −0.408438 0.912786i \(-0.633927\pi\)
0.994715 0.102675i \(-0.0327402\pi\)
\(410\) −256.867 3165.19i −0.0309409 0.381262i
\(411\) −964.780 1671.05i −0.115789 0.200552i
\(412\) 1563.17i 0.186922i
\(413\) 0 0
\(414\) −5517.27 −0.654974
\(415\) 3801.27 + 1801.76i 0.449631 + 0.213120i
\(416\) 4196.51 7268.56i 0.494593 0.856660i
\(417\) 6377.91 + 3682.29i 0.748988 + 0.432428i
\(418\) −10457.9 + 6037.87i −1.22371 + 0.706511i
\(419\) 13830.9 1.61261 0.806307 0.591498i \(-0.201463\pi\)
0.806307 + 0.591498i \(0.201463\pi\)
\(420\) 0 0
\(421\) 16703.0 1.93362 0.966810 0.255498i \(-0.0822393\pi\)
0.966810 + 0.255498i \(0.0822393\pi\)
\(422\) 4929.64 2846.13i 0.568652 0.328311i
\(423\) 1206.33 + 696.475i 0.138661 + 0.0800562i
\(424\) 2968.79 5142.10i 0.340041 0.588968i
\(425\) 1854.43 + 11350.1i 0.211654 + 1.29544i
\(426\) −1381.94 −0.157172
\(427\) 0 0
\(428\) 7851.31i 0.886699i
\(429\) −3268.55 5661.30i −0.367849 0.637133i
\(430\) 2752.11 223.344i 0.308648 0.0250479i
\(431\) −4087.04 + 7078.95i −0.456765 + 0.791140i −0.998788 0.0492238i \(-0.984325\pi\)
0.542023 + 0.840364i \(0.317659\pi\)
\(432\) 467.127 269.696i 0.0520247 0.0300365i
\(433\) 14222.8i 1.57853i −0.614051 0.789267i \(-0.710461\pi\)
0.614051 0.789267i \(-0.289539\pi\)
\(434\) 0 0
\(435\) 921.552 636.677i 0.101575 0.0701755i
\(436\) −4588.98 7948.35i −0.504065 0.873066i
\(437\) −17182.0 9920.05i −1.88084 1.08590i
\(438\) −1976.39 1141.07i −0.215606 0.124480i
\(439\) −2768.69 4795.52i −0.301008 0.521361i 0.675357 0.737491i \(-0.263990\pi\)
−0.976365 + 0.216130i \(0.930656\pi\)
\(440\) −11707.9 + 8088.70i −1.26853 + 0.876394i
\(441\) 0 0
\(442\) 7015.07i 0.754916i
\(443\) 3441.66 1987.04i 0.369116 0.213109i −0.303956 0.952686i \(-0.598308\pi\)
0.673072 + 0.739577i \(0.264974\pi\)
\(444\) −1498.09 + 2594.76i −0.160126 + 0.277347i
\(445\) 11438.3 928.263i 1.21849 0.0988852i
\(446\) −152.952 264.920i −0.0162387 0.0281263i
\(447\) 6269.82i 0.663428i
\(448\) 0 0
\(449\) 15243.1 1.60216 0.801078 0.598559i \(-0.204260\pi\)
0.801078 + 0.598559i \(0.204260\pi\)
\(450\) 701.623 + 4294.33i 0.0734996 + 0.449859i
\(451\) −4882.20 + 8456.22i −0.509742 + 0.882900i
\(452\) −4701.60 2714.47i −0.489259 0.282474i
\(453\) 218.257 126.010i 0.0226371 0.0130695i
\(454\) 5280.67 0.545890
\(455\) 0 0
\(456\) −6899.89 −0.708590
\(457\) 9326.11 5384.43i 0.954611 0.551145i 0.0601005 0.998192i \(-0.480858\pi\)
0.894510 + 0.447048i \(0.147525\pi\)
\(458\) −8722.32 5035.83i −0.889884 0.513775i
\(459\) 5481.75 9494.67i 0.557443 0.965519i
\(460\) −8316.74 3942.04i −0.842978 0.399562i
\(461\) 332.605 0.0336029 0.0168015 0.999859i \(-0.494652\pi\)
0.0168015 + 0.999859i \(0.494652\pi\)
\(462\) 0 0
\(463\) 8205.35i 0.823618i −0.911270 0.411809i \(-0.864897\pi\)
0.911270 0.411809i \(-0.135103\pi\)
\(464\) −90.9176 157.474i −0.00909643 0.0157555i
\(465\) −111.777 1377.34i −0.0111474 0.137361i
\(466\) −787.879 + 1364.65i −0.0783214 + 0.135657i
\(467\) −145.170 + 83.8138i −0.0143847 + 0.00830501i −0.507175 0.861843i \(-0.669310\pi\)
0.492790 + 0.870148i \(0.335977\pi\)
\(468\) 4912.47i 0.485212i
\(469\) 0 0
\(470\) −713.612 1032.91i −0.0700351 0.101372i
\(471\) 2915.87 + 5050.44i 0.285258 + 0.494081i
\(472\) 4609.90 + 2661.53i 0.449551 + 0.259548i
\(473\) −7352.62 4245.04i −0.714744 0.412657i
\(474\) 52.8671 + 91.5685i 0.00512293 + 0.00887317i
\(475\) −5536.18 + 14635.0i −0.534773 + 1.41368i
\(476\) 0 0
\(477\) 5582.52i 0.535862i
\(478\) −7484.07 + 4320.93i −0.716137 + 0.413462i
\(479\) −3314.29 + 5740.52i −0.316146 + 0.547581i −0.979680 0.200565i \(-0.935722\pi\)
0.663535 + 0.748146i \(0.269056\pi\)
\(480\) −5124.76 + 415.894i −0.487317 + 0.0395476i
\(481\) −5264.08 9117.66i −0.499005 0.864302i
\(482\) 777.001i 0.0734262i
\(483\) 0 0
\(484\) 10311.7 0.968419
\(485\) 9523.60 + 4514.08i 0.891638 + 0.422626i
\(486\) 3246.02 5622.28i 0.302968 0.524757i
\(487\) −17876.1 10320.8i −1.66334 0.960327i −0.971105 0.238651i \(-0.923295\pi\)
−0.692231 0.721676i \(-0.743372\pi\)
\(488\) −1731.43 + 999.642i −0.160611 + 0.0927288i
\(489\) 3305.01 0.305640
\(490\) 0 0
\(491\) −16710.8 −1.53594 −0.767972 0.640484i \(-0.778734\pi\)
−0.767972 + 0.640484i \(0.778734\pi\)
\(492\) −1902.05 + 1098.15i −0.174291 + 0.100627i
\(493\) −3200.76 1847.96i −0.292404 0.168819i
\(494\) 4772.16 8265.63i 0.434635 0.752810i
\(495\) 5730.53 12090.0i 0.520340 1.09779i
\(496\) −224.331 −0.0203080
\(497\) 0 0
\(498\) 1571.91i 0.141444i
\(499\) −6864.35 11889.4i −0.615812 1.06662i −0.990241 0.139363i \(-0.955495\pi\)
0.374429 0.927256i \(-0.377839\pi\)
\(500\) −2010.63 + 6974.57i −0.179836 + 0.623825i
\(501\) 2601.45 4505.84i 0.231984 0.401809i
\(502\) −3322.54 + 1918.27i −0.295403 + 0.170551i
\(503\) 19523.7i 1.73065i 0.501209 + 0.865326i \(0.332889\pi\)
−0.501209 + 0.865326i \(0.667111\pi\)
\(504\) 0 0
\(505\) −3842.37 5561.60i −0.338580 0.490075i
\(506\) −7645.00 13241.5i −0.671664 1.16336i
\(507\) −270.624 156.245i −0.0237058 0.0136866i
\(508\) 1172.75 + 677.086i 0.102426 + 0.0591355i
\(509\) 4344.08 + 7524.17i 0.378287 + 0.655212i 0.990813 0.135238i \(-0.0431799\pi\)
−0.612526 + 0.790450i \(0.709847\pi\)
\(510\) −3535.72 + 2442.74i −0.306989 + 0.212091i
\(511\) 0 0
\(512\) 1635.04i 0.141131i
\(513\) 12917.9 7458.17i 1.11177 0.641883i
\(514\) −671.909 + 1163.78i −0.0576588 + 0.0998680i
\(515\) 272.181 + 3353.89i 0.0232888 + 0.286971i
\(516\) −954.832 1653.82i −0.0814615 0.141095i
\(517\) 3860.28i 0.328385i
\(518\) 0 0
\(519\) 4783.89 0.404604
\(520\) 4817.32 10163.4i 0.406256 0.857102i
\(521\) 3385.68 5864.17i 0.284701 0.493117i −0.687835 0.725867i \(-0.741439\pi\)
0.972537 + 0.232750i \(0.0747723\pi\)
\(522\) −1211.01 699.176i −0.101541 0.0586247i
\(523\) 1182.90 682.947i 0.0988998 0.0570998i −0.449734 0.893162i \(-0.648481\pi\)
0.548634 + 0.836063i \(0.315148\pi\)
\(524\) 3757.85 0.313287
\(525\) 0 0
\(526\) 480.735 0.0398499
\(527\) −3948.80 + 2279.84i −0.326400 + 0.188447i
\(528\) 563.014 + 325.057i 0.0464054 + 0.0267922i
\(529\) 6477.02 11218.5i 0.532344 0.922046i
\(530\) 2155.03 4546.58i 0.176619 0.372624i
\(531\) −5004.75 −0.409016
\(532\) 0 0
\(533\) 7717.51i 0.627171i
\(534\) 2144.12 + 3713.72i 0.173755 + 0.300952i
\(535\) −1367.08 16845.5i −0.110474 1.36130i
\(536\) 4492.17 7780.67i 0.362000 0.627003i
\(537\) −1358.63 + 784.408i −0.109180 + 0.0630348i
\(538\) 5965.62i 0.478060i
\(539\) 0 0
\(540\) 5693.05 3933.18i 0.453685 0.313439i
\(541\) 11625.0 + 20135.2i 0.923844 + 1.60014i 0.793410 + 0.608687i \(0.208303\pi\)
0.130433 + 0.991457i \(0.458363\pi\)
\(542\) 2798.18 + 1615.53i 0.221757 + 0.128031i
\(543\) −6049.37 3492.61i −0.478091 0.276026i
\(544\) 8482.74 + 14692.5i 0.668556 + 1.15797i
\(545\) −11229.9 16254.7i −0.882638 1.27757i
\(546\) 0 0
\(547\) 11552.7i 0.903033i 0.892263 + 0.451516i \(0.149117\pi\)
−0.892263 + 0.451516i \(0.850883\pi\)
\(548\) −3480.06 + 2009.22i −0.271279 + 0.156623i
\(549\) 939.865 1627.89i 0.0730646 0.126552i
\(550\) −9334.24 + 7634.33i −0.723661 + 0.591871i
\(551\) −2514.23 4354.78i −0.194392 0.336697i
\(552\) 8736.48i 0.673640i
\(553\) 0 0
\(554\) 11037.1 0.846430
\(555\) −2762.44 + 5828.08i −0.211277 + 0.445744i
\(556\) 7668.60 13282.4i 0.584930 1.01313i
\(557\) −14208.2 8203.08i −1.08082 0.624014i −0.149706 0.988731i \(-0.547833\pi\)
−0.931119 + 0.364717i \(0.881166\pi\)
\(558\) −1494.03 + 862.578i −0.113346 + 0.0654406i
\(559\) 6710.31 0.507721
\(560\) 0 0
\(561\) 13214.0 0.994465
\(562\) 1183.15 683.091i 0.0888044 0.0512712i
\(563\) 11805.6 + 6815.95i 0.883740 + 0.510227i 0.871890 0.489702i \(-0.162895\pi\)
0.0118502 + 0.999930i \(0.496228\pi\)
\(564\) −434.145 + 751.961i −0.0324127 + 0.0561405i
\(565\) −10560.2 5005.43i −0.786324 0.372708i
\(566\) −10911.2 −0.810300
\(567\) 0 0
\(568\) 7310.88i 0.540067i
\(569\) −1543.41 2673.27i −0.113714 0.196958i 0.803551 0.595236i \(-0.202941\pi\)
−0.917265 + 0.398278i \(0.869608\pi\)
\(570\) −5827.75 + 472.944i −0.428241 + 0.0347534i
\(571\) 1629.03 2821.57i 0.119392 0.206793i −0.800135 0.599820i \(-0.795239\pi\)
0.919527 + 0.393027i \(0.128572\pi\)
\(572\) −11790.0 + 6806.96i −0.861827 + 0.497576i
\(573\) 1846.17i 0.134598i
\(574\) 0 0
\(575\) −18530.5 7009.78i −1.34396 0.508396i
\(576\) 2833.19 + 4907.24i 0.204948 + 0.354980i
\(577\) −20575.4 11879.2i −1.48451 0.857083i −0.484667 0.874699i \(-0.661059\pi\)
−0.999845 + 0.0176156i \(0.994392\pi\)
\(578\) 5152.91 + 2975.03i 0.370818 + 0.214092i
\(579\) 5090.89 + 8817.68i 0.365406 + 0.632902i
\(580\) −1325.92 1919.19i −0.0949238 0.137397i
\(581\) 0 0
\(582\) 3938.23i 0.280490i
\(583\) −13398.1 + 7735.42i −0.951791 + 0.549517i
\(584\) −6036.61 + 10455.7i −0.427734 + 0.740857i
\(585\) 855.364 + 10540.0i 0.0604529 + 0.744917i
\(586\) −364.783 631.823i −0.0257151 0.0445398i
\(587\) 596.893i 0.0419701i 0.999780 + 0.0209850i \(0.00668023\pi\)
−0.999780 + 0.0209850i \(0.993320\pi\)
\(588\) 0 0
\(589\) −6203.66 −0.433985
\(590\) 4076.02 + 1931.99i 0.284419 + 0.134811i
\(591\) −4258.30 + 7375.59i −0.296384 + 0.513353i
\(592\) 906.749 + 523.512i 0.0629513 + 0.0363449i
\(593\) −16884.3 + 9748.16i −1.16923 + 0.675058i −0.953500 0.301394i \(-0.902548\pi\)
−0.215734 + 0.976452i \(0.569215\pi\)
\(594\) 11495.5 0.794047
\(595\) 0 0
\(596\) −13057.3 −0.897396
\(597\) −7327.11 + 4230.31i −0.502310 + 0.290009i
\(598\) 10465.7 + 6042.40i 0.715679 + 0.413197i
\(599\) 1898.51 3288.31i 0.129501 0.224302i −0.793983 0.607941i \(-0.791996\pi\)
0.923483 + 0.383639i \(0.125329\pi\)
\(600\) −6799.97 + 1111.00i −0.462679 + 0.0755942i
\(601\) −5789.33 −0.392931 −0.196466 0.980511i \(-0.562946\pi\)
−0.196466 + 0.980511i \(0.562946\pi\)
\(602\) 0 0
\(603\) 8447.09i 0.570468i
\(604\) −262.425 454.533i −0.0176787 0.0306203i
\(605\) 22124.5 1795.49i 1.48676 0.120656i
\(606\) 1262.98 2187.55i 0.0846618 0.146639i
\(607\) 16053.0 9268.21i 1.07343 0.619745i 0.144313 0.989532i \(-0.453903\pi\)
0.929116 + 0.369787i \(0.120569\pi\)
\(608\) 23082.3i 1.53966i
\(609\) 0 0
\(610\) −1393.87 + 962.991i −0.0925184 + 0.0639186i
\(611\) −1525.53 2642.29i −0.101009 0.174952i
\(612\) −8599.62 4964.99i −0.568005 0.327938i
\(613\) −1873.62 1081.74i −0.123450 0.0712738i 0.437003 0.899460i \(-0.356040\pi\)
−0.560453 + 0.828186i \(0.689373\pi\)
\(614\) −4117.54 7131.79i −0.270636 0.468755i
\(615\) −3889.76 + 2687.34i −0.255041 + 0.176201i
\(616\) 0 0
\(617\) 22964.9i 1.49843i −0.662327 0.749215i \(-0.730431\pi\)
0.662327 0.749215i \(-0.269569\pi\)
\(618\) −1088.92 + 628.689i −0.0708784 + 0.0409216i
\(619\) 693.333 1200.89i 0.0450200 0.0779770i −0.842637 0.538482i \(-0.818998\pi\)
0.887657 + 0.460505i \(0.152332\pi\)
\(620\) −2868.40 + 232.782i −0.185803 + 0.0150786i
\(621\) 9443.35 + 16356.4i 0.610223 + 1.05694i
\(622\) 3067.41i 0.197736i
\(623\) 0 0
\(624\) −513.831 −0.0329643
\(625\) −3099.51 + 15314.5i −0.198369 + 0.980127i
\(626\) 2046.17 3544.08i 0.130642 0.226278i
\(627\) 15569.6 + 8989.11i 0.991690 + 0.572552i
\(628\) 10517.9 6072.49i 0.668326 0.385858i
\(629\) 21281.4 1.34904
\(630\) 0 0
\(631\) 5969.39 0.376605 0.188303 0.982111i \(-0.439701\pi\)
0.188303 + 0.982111i \(0.439701\pi\)
\(632\) 484.426 279.683i 0.0304896 0.0176032i
\(633\) −7339.19 4237.28i −0.460832 0.266062i
\(634\) −1395.57 + 2417.20i −0.0874215 + 0.151418i
\(635\) 2634.10 + 1248.53i 0.164616 + 0.0780259i
\(636\) −3479.84 −0.216957
\(637\) 0 0
\(638\) 3875.25i 0.240474i
\(639\) −3436.85 5952.80i −0.212770 0.368528i
\(640\) 920.985 + 11348.6i 0.0568830 + 0.700928i
\(641\) −15183.6 + 26298.7i −0.935592 + 1.62049i −0.162016 + 0.986788i \(0.551800\pi\)
−0.773576 + 0.633704i \(0.781534\pi\)
\(642\) 5469.29 3157.70i 0.336224 0.194119i
\(643\) 28592.2i 1.75360i −0.480851 0.876802i \(-0.659672\pi\)
0.480851 0.876802i \(-0.340328\pi\)
\(644\) 0 0
\(645\) −2336.62 3382.12i −0.142642 0.206466i
\(646\) 9646.36 + 16708.0i 0.587509 + 1.01760i
\(647\) 12564.3 + 7253.97i 0.763449 + 0.440778i 0.830533 0.556970i \(-0.188036\pi\)
−0.0670835 + 0.997747i \(0.521369\pi\)
\(648\) −5050.84 2916.10i −0.306197 0.176783i
\(649\) −6934.83 12011.5i −0.419439 0.726489i
\(650\) 3372.14 8914.33i 0.203487 0.537921i
\(651\) 0 0
\(652\) 6882.89i 0.413428i
\(653\) 6062.05 3499.93i 0.363287 0.209744i −0.307235 0.951634i \(-0.599404\pi\)
0.670522 + 0.741890i \(0.266070\pi\)
\(654\) 3691.26 6393.46i 0.220703 0.382269i
\(655\) 8062.71 654.320i 0.480971 0.0390327i
\(656\) 383.752 + 664.678i 0.0228399 + 0.0395599i
\(657\) 11351.3i 0.674056i
\(658\) 0 0
\(659\) −7308.92 −0.432041 −0.216020 0.976389i \(-0.569308\pi\)
−0.216020 + 0.976389i \(0.569308\pi\)
\(660\) 7536.26 + 3572.10i 0.444468 + 0.210672i
\(661\) −15048.6 + 26065.0i −0.885512 + 1.53375i −0.0403854 + 0.999184i \(0.512859\pi\)
−0.845126 + 0.534567i \(0.820475\pi\)
\(662\) 7930.26 + 4578.54i 0.465586 + 0.268806i
\(663\) −9044.73 + 5221.98i −0.529816 + 0.305890i
\(664\) 8315.91 0.486024
\(665\) 0 0
\(666\) 8051.83 0.468472
\(667\) 5513.92 3183.46i 0.320090 0.184804i
\(668\) −9383.70 5417.68i −0.543512 0.313797i
\(669\) −227.713 + 394.410i −0.0131598 + 0.0227934i
\(670\) 3260.84 6879.58i 0.188026 0.396688i
\(671\) 5209.29 0.299706
\(672\) 0 0
\(673\) 5400.26i 0.309309i −0.987969 0.154654i \(-0.950574\pi\)
0.987969 0.154654i \(-0.0494264\pi\)
\(674\) −8920.64 15451.0i −0.509808 0.883013i
\(675\) 11530.0 9430.17i 0.657464 0.537730i
\(676\) −325.390 + 563.593i −0.0185133 + 0.0320660i
\(677\) 5569.49 3215.55i 0.316178 0.182546i −0.333509 0.942747i \(-0.608233\pi\)
0.649688 + 0.760201i \(0.274900\pi\)
\(678\) 4366.91i 0.247360i
\(679\) 0 0
\(680\) 12922.9 + 18705.1i 0.728778 + 1.05486i
\(681\) −3930.90 6808.51i −0.221193 0.383117i
\(682\) −4140.40 2390.46i −0.232469 0.134216i
\(683\) 18070.3 + 10432.9i 1.01236 + 0.584486i 0.911881 0.410454i \(-0.134630\pi\)
0.100477 + 0.994939i \(0.467963\pi\)
\(684\) −6755.10 11700.2i −0.377613 0.654046i
\(685\) −7116.86 + 4916.86i −0.396965 + 0.274253i
\(686\) 0 0
\(687\) 14994.6i 0.832720i
\(688\) −577.933 + 333.669i −0.0320254 + 0.0184899i
\(689\) 6113.86 10589.5i 0.338054 0.585527i
\(690\) −598.831 7378.96i −0.0330393 0.407119i
\(691\) 9225.13 + 15978.4i 0.507873 + 0.879662i 0.999958 + 0.00911505i \(0.00290145\pi\)
−0.492085 + 0.870547i \(0.663765\pi\)
\(692\) 9962.76i 0.547294i
\(693\) 0 0
\(694\) 6732.70 0.368256
\(695\) 14140.7 29833.5i 0.771783 1.62827i
\(696\) 1107.13 1917.60i 0.0602954 0.104435i
\(697\) 13510.0 + 7800.01i 0.734187 + 0.423883i
\(698\) 15297.8 8832.20i 0.829557 0.478945i
\(699\) 2345.97 0.126942
\(700\) 0 0
\(701\) 12639.3 0.680996 0.340498 0.940245i \(-0.389404\pi\)
0.340498 + 0.940245i \(0.389404\pi\)
\(702\) −7868.43 + 4542.84i −0.423041 + 0.244243i
\(703\) 25075.2 + 14477.2i 1.34528 + 0.776696i
\(704\) −7851.63 + 13599.4i −0.420340 + 0.728050i
\(705\) −800.554 + 1688.97i −0.0427668 + 0.0902276i
\(706\) 4958.45 0.264325
\(707\) 0 0
\(708\) 3119.69i 0.165600i
\(709\) −11563.4 20028.4i −0.612514 1.06091i −0.990815 0.135223i \(-0.956825\pi\)
0.378301 0.925683i \(-0.376508\pi\)
\(710\) 501.115 + 6174.88i 0.0264880 + 0.326393i
\(711\) −262.959 + 455.458i −0.0138702 + 0.0240239i
\(712\) 19646.8 11343.1i 1.03412 0.597050i
\(713\) 7854.92i 0.412579i
\(714\) 0 0
\(715\) −24111.0 + 16657.7i −1.26112 + 0.871275i
\(716\) 1633.58 + 2829.44i 0.0852650 + 0.147683i
\(717\) 11142.2 + 6432.95i 0.580353 + 0.335067i
\(718\) 3148.34 + 1817.69i 0.163642 + 0.0944787i
\(719\) 12046.6 + 20865.2i 0.624841 + 1.08226i 0.988572 + 0.150752i \(0.0481695\pi\)
−0.363731 + 0.931504i \(0.618497\pi\)
\(720\) −597.771 865.238i −0.0309411 0.0447854i
\(721\) 0 0
\(722\) 14758.7i 0.760750i
\(723\) 1001.81 578.395i 0.0515321 0.0297521i
\(724\) −7273.58 + 12598.2i −0.373371 + 0.646697i
\(725\) −3179.02 3886.88i −0.162849 0.199110i
\(726\) 4147.25 + 7183.24i 0.212009 + 0.367211i
\(727\) 35983.4i 1.83570i 0.396931 + 0.917849i \(0.370075\pi\)
−0.396931 + 0.917849i \(0.629925\pi\)
\(728\) 0 0
\(729\) −2540.55 −0.129073
\(730\) −4381.94 + 9244.82i −0.222168 + 0.468721i
\(731\) −6782.05 + 11746.9i −0.343151 + 0.594355i
\(732\) 1014.74 + 585.861i 0.0512375 + 0.0295820i
\(733\) 1257.04 725.752i 0.0633422 0.0365706i −0.467994 0.883731i \(-0.655023\pi\)
0.531337 + 0.847161i \(0.321690\pi\)
\(734\) 2097.64 0.105484
\(735\) 0 0
\(736\) −29226.3 −1.46371
\(737\) −20273.1 + 11704.7i −1.01326 + 0.585005i
\(738\) 5111.52 + 2951.14i 0.254956 + 0.147199i
\(739\) −2945.83 + 5102.33i −0.146636 + 0.253982i −0.929982 0.367604i \(-0.880178\pi\)
0.783346 + 0.621586i \(0.213511\pi\)
\(740\) 12137.3 + 5752.95i 0.602942 + 0.285788i
\(741\) −14209.5 −0.704451
\(742\) 0 0
\(743\) 7438.65i 0.367292i 0.982992 + 0.183646i \(0.0587900\pi\)
−0.982992 + 0.183646i \(0.941210\pi\)
\(744\) −1365.87 2365.76i −0.0673056 0.116577i
\(745\) −28015.3 + 2273.55i −1.37772 + 0.111807i
\(746\) 3891.42 6740.13i 0.190985 0.330796i
\(747\) −6771.14 + 3909.32i −0.331651 + 0.191479i
\(748\) 27518.9i 1.34518i
\(749\) 0 0
\(750\) −5667.20 + 1404.47i −0.275916 + 0.0683784i
\(751\) −10136.2 17556.4i −0.492509 0.853051i 0.507454 0.861679i \(-0.330587\pi\)
−0.999963 + 0.00862831i \(0.997253\pi\)
\(752\) 262.775 + 151.713i 0.0127426 + 0.00735694i
\(753\) 4946.56 + 2855.90i 0.239393 + 0.138213i
\(754\) 1531.44 + 2652.54i 0.0739680 + 0.128116i
\(755\) −642.193 929.537i −0.0309560 0.0448070i
\(756\) 0 0
\(757\) 10193.8i 0.489432i 0.969595 + 0.244716i \(0.0786947\pi\)
−0.969595 + 0.244716i \(0.921305\pi\)
\(758\) −2081.57 + 1201.79i −0.0997439 + 0.0575872i
\(759\) −11381.8 + 19713.8i −0.544312 + 0.942776i
\(760\) 2502.02 + 30830.6i 0.119418 + 1.47151i
\(761\) −20558.8 35608.9i −0.979311 1.69622i −0.664906 0.746927i \(-0.731528\pi\)
−0.314405 0.949289i \(-0.601805\pi\)
\(762\) 1089.26i 0.0517845i
\(763\) 0 0
\(764\) 3844.76 0.182066
\(765\) −19315.6 9155.34i −0.912883 0.432696i
\(766\) 11070.1 19173.9i 0.522165 0.904416i
\(767\) 9493.53 + 5481.09i 0.446925 + 0.258032i
\(768\) −8396.20 + 4847.55i −0.394495 + 0.227762i
\(769\) 11486.6 0.538642 0.269321 0.963050i \(-0.413201\pi\)
0.269321 + 0.963050i \(0.413201\pi\)
\(770\) 0 0
\(771\) 2000.66 0.0934527
\(772\) 18363.4 10602.1i 0.856104 0.494272i
\(773\) −18878.7