Properties

Label 245.4.j.f.214.10
Level $245$
Weight $4$
Character 245.214
Analytic conductor $14.455$
Analytic rank $0$
Dimension $20$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [245,4,Mod(79,245)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(245, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 2]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("245.79");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 245 = 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 245.j (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(14.4554679514\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(10\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - 55 x^{18} + 2042 x^{16} - 41247 x^{14} + 600234 x^{12} - 4812047 x^{10} + 27547801 x^{8} + \cdots + 12960000 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{6}\cdot 3^{2}\cdot 7^{8} \)
Twist minimal: no (minimal twist has level 35)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 214.10
Root \(3.73574 + 2.15683i\) of defining polynomial
Character \(\chi\) \(=\) 245.214
Dual form 245.4.j.f.79.10

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(4.60176 - 2.65683i) q^{2} +(-1.67956 - 0.969693i) q^{3} +(10.1175 - 17.5240i) q^{4} +(-10.6341 + 3.45182i) q^{5} -10.3052 q^{6} -65.0123i q^{8} +(-11.6194 - 20.1254i) q^{9} +(-39.7649 + 44.1375i) q^{10} +(-12.7710 + 22.1200i) q^{11} +(-33.9858 + 19.6217i) q^{12} -64.1014i q^{13} +(21.2079 + 4.51433i) q^{15} +(-91.7868 - 158.979i) q^{16} +(-23.9847 - 13.8476i) q^{17} +(-106.939 - 61.7415i) q^{18} +(-0.396218 - 0.686270i) q^{19} +(-47.1011 + 221.276i) q^{20} +135.721i q^{22} +(-94.0560 + 54.3032i) q^{23} +(-63.0420 + 109.192i) q^{24} +(101.170 - 73.4142i) q^{25} +(-170.307 - 294.980i) q^{26} +97.4324i q^{27} +234.000 q^{29} +(109.587 - 35.5718i) q^{30} +(64.6019 - 111.894i) q^{31} +(-394.343 - 227.674i) q^{32} +(42.8992 - 24.7679i) q^{33} -147.163 q^{34} -470.236 q^{36} +(33.1781 - 19.1554i) q^{37} +(-3.64660 - 2.10537i) q^{38} +(-62.1587 + 107.662i) q^{39} +(224.411 + 691.350i) q^{40} +403.216 q^{41} -172.895i q^{43} +(258.420 + 447.597i) q^{44} +(193.031 + 173.908i) q^{45} +(-288.549 + 499.781i) q^{46} +(-179.218 + 103.471i) q^{47} +356.020i q^{48} +(270.511 - 606.626i) q^{50} +(26.8558 + 46.5157i) q^{51} +(-1123.31 - 648.545i) q^{52} +(124.735 + 72.0155i) q^{53} +(258.861 + 448.361i) q^{54} +(59.4542 - 279.310i) q^{55} +1.53684i q^{57} +(1076.81 - 621.699i) q^{58} +(339.543 - 588.105i) q^{59} +(293.679 - 325.972i) q^{60} +(-287.358 - 497.719i) q^{61} -686.544i q^{62} -950.977 q^{64} +(221.266 + 681.664i) q^{65} +(131.608 - 227.952i) q^{66} +(-446.557 - 257.820i) q^{67} +(-485.330 + 280.205i) q^{68} +210.630 q^{69} +556.612 q^{71} +(-1308.40 + 755.404i) q^{72} +(150.033 + 86.6217i) q^{73} +(101.785 - 176.297i) q^{74} +(-241.110 + 25.1997i) q^{75} -16.0349 q^{76} +660.580i q^{78} +(39.6645 + 68.7010i) q^{79} +(1524.84 + 1373.78i) q^{80} +(-219.244 + 379.742i) q^{81} +(1855.50 - 1071.28i) q^{82} +1043.56i q^{83} +(302.856 + 64.4663i) q^{85} +(-459.352 - 795.620i) q^{86} +(-393.017 - 226.909i) q^{87} +(1438.07 + 830.271i) q^{88} +(-326.030 - 564.700i) q^{89} +(1350.33 + 287.432i) q^{90} +2197.65i q^{92} +(-217.005 + 125.288i) q^{93} +(-549.812 + 952.302i) q^{94} +(6.58232 + 5.93022i) q^{95} +(441.548 + 764.784i) q^{96} -515.714i q^{97} +593.564 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 36 q^{4} + 6 q^{5} - 24 q^{6} + 46 q^{9} - 16 q^{10} - 84 q^{11} + 16 q^{15} - 148 q^{16} + 72 q^{19} + 136 q^{20} + 72 q^{24} + 362 q^{25} - 620 q^{26} + 176 q^{29} - 52 q^{30} + 120 q^{31} - 1928 q^{34}+ \cdots - 10608 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/245\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(197\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 4.60176 2.65683i 1.62697 0.939331i 0.641978 0.766723i \(-0.278114\pi\)
0.984991 0.172608i \(-0.0552192\pi\)
\(3\) −1.67956 0.969693i −0.323231 0.186617i 0.329601 0.944120i \(-0.393086\pi\)
−0.652832 + 0.757503i \(0.726419\pi\)
\(4\) 10.1175 17.5240i 1.26468 2.19050i
\(5\) −10.6341 + 3.45182i −0.951146 + 0.308740i
\(6\) −10.3052 −0.701182
\(7\) 0 0
\(8\) 65.0123i 2.87317i
\(9\) −11.6194 20.1254i −0.430348 0.745384i
\(10\) −39.7649 + 44.1375i −1.25748 + 1.39575i
\(11\) −12.7710 + 22.1200i −0.350054 + 0.606311i −0.986259 0.165209i \(-0.947170\pi\)
0.636205 + 0.771520i \(0.280503\pi\)
\(12\) −33.9858 + 19.6217i −0.817570 + 0.472024i
\(13\) 64.1014i 1.36758i −0.729679 0.683790i \(-0.760330\pi\)
0.729679 0.683790i \(-0.239670\pi\)
\(14\) 0 0
\(15\) 21.2079 + 4.51433i 0.365056 + 0.0777063i
\(16\) −91.7868 158.979i −1.43417 2.48405i
\(17\) −23.9847 13.8476i −0.342185 0.197561i 0.319053 0.947737i \(-0.396635\pi\)
−0.661238 + 0.750176i \(0.729969\pi\)
\(18\) −106.939 61.7415i −1.40032 0.808478i
\(19\) −0.396218 0.686270i −0.00478414 0.00828637i 0.863623 0.504137i \(-0.168190\pi\)
−0.868408 + 0.495851i \(0.834856\pi\)
\(20\) −47.1011 + 221.276i −0.526606 + 2.47394i
\(21\) 0 0
\(22\) 135.721i 1.31527i
\(23\) −94.0560 + 54.3032i −0.852697 + 0.492305i −0.861560 0.507656i \(-0.830512\pi\)
0.00886320 + 0.999961i \(0.497179\pi\)
\(24\) −63.0420 + 109.192i −0.536183 + 0.928696i
\(25\) 101.170 73.4142i 0.809359 0.587314i
\(26\) −170.307 294.980i −1.28461 2.22501i
\(27\) 97.4324i 0.694477i
\(28\) 0 0
\(29\) 234.000 1.49837 0.749186 0.662360i \(-0.230445\pi\)
0.749186 + 0.662360i \(0.230445\pi\)
\(30\) 109.587 35.5718i 0.666927 0.216483i
\(31\) 64.6019 111.894i 0.374285 0.648281i −0.615935 0.787797i \(-0.711221\pi\)
0.990220 + 0.139516i \(0.0445548\pi\)
\(32\) −394.343 227.674i −2.17846 1.25773i
\(33\) 42.8992 24.7679i 0.226297 0.130652i
\(34\) −147.163 −0.742300
\(35\) 0 0
\(36\) −470.236 −2.17702
\(37\) 33.1781 19.1554i 0.147418 0.0851116i −0.424477 0.905439i \(-0.639542\pi\)
0.571895 + 0.820327i \(0.306209\pi\)
\(38\) −3.64660 2.10537i −0.0155673 0.00898778i
\(39\) −62.1587 + 107.662i −0.255214 + 0.442044i
\(40\) 224.411 + 691.350i 0.887061 + 2.73280i
\(41\) 403.216 1.53590 0.767949 0.640511i \(-0.221278\pi\)
0.767949 + 0.640511i \(0.221278\pi\)
\(42\) 0 0
\(43\) 172.895i 0.613167i −0.951844 0.306584i \(-0.900814\pi\)
0.951844 0.306584i \(-0.0991859\pi\)
\(44\) 258.420 + 447.597i 0.885416 + 1.53359i
\(45\) 193.031 + 173.908i 0.639454 + 0.576104i
\(46\) −288.549 + 499.781i −0.924874 + 1.60193i
\(47\) −179.218 + 103.471i −0.556205 + 0.321125i −0.751621 0.659596i \(-0.770728\pi\)
0.195416 + 0.980720i \(0.437394\pi\)
\(48\) 356.020i 1.07056i
\(49\) 0 0
\(50\) 270.511 606.626i 0.765120 1.71580i
\(51\) 26.8558 + 46.5157i 0.0737366 + 0.127716i
\(52\) −1123.31 648.545i −2.99568 1.72956i
\(53\) 124.735 + 72.0155i 0.323276 + 0.186643i 0.652852 0.757486i \(-0.273572\pi\)
−0.329576 + 0.944129i \(0.606906\pi\)
\(54\) 258.861 + 448.361i 0.652343 + 1.12989i
\(55\) 59.4542 279.310i 0.145760 0.684767i
\(56\) 0 0
\(57\) 1.53684i 0.00357122i
\(58\) 1076.81 621.699i 2.43780 1.40747i
\(59\) 339.543 588.105i 0.749232 1.29771i −0.198959 0.980008i \(-0.563756\pi\)
0.948191 0.317701i \(-0.102911\pi\)
\(60\) 293.679 325.972i 0.631896 0.701381i
\(61\) −287.358 497.719i −0.603155 1.04470i −0.992340 0.123536i \(-0.960577\pi\)
0.389185 0.921160i \(-0.372757\pi\)
\(62\) 686.544i 1.40631i
\(63\) 0 0
\(64\) −950.977 −1.85738
\(65\) 221.266 + 681.664i 0.422227 + 1.30077i
\(66\) 131.608 227.952i 0.245452 0.425135i
\(67\) −446.557 257.820i −0.814263 0.470115i 0.0341709 0.999416i \(-0.489121\pi\)
−0.848434 + 0.529301i \(0.822454\pi\)
\(68\) −485.330 + 280.205i −0.865513 + 0.499704i
\(69\) 210.630 0.367491
\(70\) 0 0
\(71\) 556.612 0.930391 0.465195 0.885208i \(-0.345984\pi\)
0.465195 + 0.885208i \(0.345984\pi\)
\(72\) −1308.40 + 755.404i −2.14161 + 1.23646i
\(73\) 150.033 + 86.6217i 0.240549 + 0.138881i 0.615429 0.788192i \(-0.288983\pi\)
−0.374880 + 0.927073i \(0.622316\pi\)
\(74\) 101.785 176.297i 0.159896 0.276948i
\(75\) −241.110 + 25.1997i −0.371213 + 0.0387974i
\(76\) −16.0349 −0.0242017
\(77\) 0 0
\(78\) 660.580i 0.958923i
\(79\) 39.6645 + 68.7010i 0.0564887 + 0.0978413i 0.892887 0.450281i \(-0.148676\pi\)
−0.836398 + 0.548122i \(0.815343\pi\)
\(80\) 1524.84 + 1373.78i 2.13103 + 1.91991i
\(81\) −219.244 + 379.742i −0.300746 + 0.520908i
\(82\) 1855.50 1071.28i 2.49886 1.44272i
\(83\) 1043.56i 1.38007i 0.723777 + 0.690034i \(0.242404\pi\)
−0.723777 + 0.690034i \(0.757596\pi\)
\(84\) 0 0
\(85\) 302.856 + 64.4663i 0.386463 + 0.0822630i
\(86\) −459.352 795.620i −0.575967 0.997604i
\(87\) −393.017 226.909i −0.484320 0.279622i
\(88\) 1438.07 + 830.271i 1.74203 + 1.00576i
\(89\) −326.030 564.700i −0.388304 0.672563i 0.603917 0.797047i \(-0.293606\pi\)
−0.992222 + 0.124484i \(0.960272\pi\)
\(90\) 1350.33 + 287.432i 1.58152 + 0.336645i
\(91\) 0 0
\(92\) 2197.65i 2.49044i
\(93\) −217.005 + 125.288i −0.241961 + 0.139696i
\(94\) −549.812 + 952.302i −0.603285 + 1.04492i
\(95\) 6.58232 + 5.93022i 0.00710875 + 0.00640450i
\(96\) 441.548 + 764.784i 0.469431 + 0.813078i
\(97\) 515.714i 0.539823i −0.962885 0.269912i \(-0.913005\pi\)
0.962885 0.269912i \(-0.0869945\pi\)
\(98\) 0 0
\(99\) 593.564 0.602580
\(100\) −262.926 2515.67i −0.262926 2.51567i
\(101\) −268.170 + 464.484i −0.264197 + 0.457602i −0.967353 0.253433i \(-0.918440\pi\)
0.703156 + 0.711036i \(0.251774\pi\)
\(102\) 247.168 + 142.703i 0.239934 + 0.138526i
\(103\) 330.556 190.846i 0.316220 0.182570i −0.333487 0.942755i \(-0.608225\pi\)
0.649706 + 0.760185i \(0.274892\pi\)
\(104\) −4167.38 −3.92928
\(105\) 0 0
\(106\) 765.332 0.701279
\(107\) −1196.08 + 690.560i −1.08065 + 0.623915i −0.931072 0.364835i \(-0.881126\pi\)
−0.149580 + 0.988750i \(0.547792\pi\)
\(108\) 1707.40 + 985.770i 1.52125 + 0.878294i
\(109\) −195.291 + 338.254i −0.171610 + 0.297237i −0.938983 0.343964i \(-0.888230\pi\)
0.767373 + 0.641201i \(0.221564\pi\)
\(110\) −468.485 1443.28i −0.406075 1.25101i
\(111\) −74.2995 −0.0635333
\(112\) 0 0
\(113\) 1643.15i 1.36792i −0.729521 0.683958i \(-0.760257\pi\)
0.729521 0.683958i \(-0.239743\pi\)
\(114\) 4.08312 + 7.07217i 0.00335455 + 0.00581026i
\(115\) 812.759 902.132i 0.659045 0.731515i
\(116\) 2367.49 4100.62i 1.89497 3.28218i
\(117\) −1290.07 + 744.820i −1.01937 + 0.588535i
\(118\) 3608.43i 2.81511i
\(119\) 0 0
\(120\) 293.487 1378.77i 0.223263 1.04887i
\(121\) 339.304 + 587.692i 0.254924 + 0.441542i
\(122\) −2644.71 1526.92i −1.96263 1.13312i
\(123\) −677.225 390.996i −0.496450 0.286625i
\(124\) −1307.22 2264.16i −0.946705 1.63974i
\(125\) −822.443 + 1129.92i −0.588492 + 0.808503i
\(126\) 0 0
\(127\) 192.032i 0.134174i −0.997747 0.0670869i \(-0.978630\pi\)
0.997747 0.0670869i \(-0.0213705\pi\)
\(128\) −1221.42 + 705.189i −0.843434 + 0.486957i
\(129\) −167.655 + 290.387i −0.114428 + 0.198195i
\(130\) 2829.28 + 2548.99i 1.90880 + 1.71970i
\(131\) 1041.45 + 1803.84i 0.694594 + 1.20307i 0.970317 + 0.241835i \(0.0777493\pi\)
−0.275723 + 0.961237i \(0.588917\pi\)
\(132\) 1002.35i 0.660936i
\(133\) 0 0
\(134\) −2739.93 −1.76637
\(135\) −336.319 1036.11i −0.214413 0.660549i
\(136\) −900.264 + 1559.30i −0.567625 + 0.983156i
\(137\) 67.6980 + 39.0855i 0.0422177 + 0.0243744i 0.520960 0.853581i \(-0.325574\pi\)
−0.478743 + 0.877955i \(0.658907\pi\)
\(138\) 969.268 559.607i 0.597896 0.345195i
\(139\) 1393.67 0.850426 0.425213 0.905093i \(-0.360199\pi\)
0.425213 + 0.905093i \(0.360199\pi\)
\(140\) 0 0
\(141\) 401.342 0.239710
\(142\) 2561.40 1478.82i 1.51372 0.873945i
\(143\) 1417.92 + 818.638i 0.829179 + 0.478727i
\(144\) −2133.01 + 3694.49i −1.23438 + 2.13801i
\(145\) −2488.39 + 807.727i −1.42517 + 0.462607i
\(146\) 920.556 0.521820
\(147\) 0 0
\(148\) 775.217i 0.430557i
\(149\) 16.2501 + 28.1460i 0.00893463 + 0.0154752i 0.870458 0.492242i \(-0.163823\pi\)
−0.861524 + 0.507718i \(0.830489\pi\)
\(150\) −1042.58 + 756.551i −0.567508 + 0.411814i
\(151\) −233.381 + 404.228i −0.125777 + 0.217852i −0.922036 0.387103i \(-0.873476\pi\)
0.796260 + 0.604955i \(0.206809\pi\)
\(152\) −44.6160 + 25.7591i −0.0238081 + 0.0137456i
\(153\) 643.602i 0.340080i
\(154\) 0 0
\(155\) −300.749 + 1412.89i −0.155850 + 0.732167i
\(156\) 1257.78 + 2178.54i 0.645531 + 1.11809i
\(157\) 1449.30 + 836.751i 0.736729 + 0.425351i 0.820879 0.571103i \(-0.193484\pi\)
−0.0841500 + 0.996453i \(0.526817\pi\)
\(158\) 365.053 + 210.764i 0.183811 + 0.106123i
\(159\) −139.666 241.908i −0.0696618 0.120658i
\(160\) 4979.39 + 1059.92i 2.46035 + 0.523712i
\(161\) 0 0
\(162\) 2329.98i 1.13000i
\(163\) −1618.91 + 934.679i −0.777932 + 0.449139i −0.835697 0.549191i \(-0.814936\pi\)
0.0577648 + 0.998330i \(0.481603\pi\)
\(164\) 4079.53 7065.95i 1.94243 3.36438i
\(165\) −370.702 + 411.465i −0.174904 + 0.194136i
\(166\) 2772.56 + 4802.22i 1.29634 + 2.24533i
\(167\) 46.5250i 0.0215581i −0.999942 0.0107791i \(-0.996569\pi\)
0.999942 0.0107791i \(-0.00343115\pi\)
\(168\) 0 0
\(169\) −1911.99 −0.870275
\(170\) 1564.95 507.979i 0.706036 0.229178i
\(171\) −9.20762 + 15.9481i −0.00411769 + 0.00713204i
\(172\) −3029.80 1749.26i −1.34314 0.775463i
\(173\) 2161.84 1248.14i 0.950066 0.548521i 0.0569648 0.998376i \(-0.481858\pi\)
0.893102 + 0.449855i \(0.148524\pi\)
\(174\) −2411.43 −1.05063
\(175\) 0 0
\(176\) 4688.83 2.00815
\(177\) −1140.56 + 658.504i −0.484350 + 0.279640i
\(178\) −3000.62 1732.41i −1.26352 0.729492i
\(179\) 1487.85 2577.03i 0.621269 1.07607i −0.367981 0.929833i \(-0.619951\pi\)
0.989250 0.146236i \(-0.0467158\pi\)
\(180\) 5000.55 1623.17i 2.07066 0.672132i
\(181\) −966.273 −0.396809 −0.198405 0.980120i \(-0.563576\pi\)
−0.198405 + 0.980120i \(0.563576\pi\)
\(182\) 0 0
\(183\) 1114.60i 0.450237i
\(184\) 3530.38 + 6114.80i 1.41447 + 2.44994i
\(185\) −286.700 + 318.226i −0.113938 + 0.126467i
\(186\) −665.737 + 1153.09i −0.262442 + 0.454563i
\(187\) 612.617 353.695i 0.239567 0.138314i
\(188\) 4187.48i 1.62449i
\(189\) 0 0
\(190\) 46.0458 + 9.80136i 0.0175817 + 0.00374245i
\(191\) 772.749 + 1338.44i 0.292744 + 0.507048i 0.974458 0.224571i \(-0.0720982\pi\)
−0.681713 + 0.731619i \(0.738765\pi\)
\(192\) 1597.22 + 922.156i 0.600362 + 0.346619i
\(193\) −1995.37 1152.03i −0.744195 0.429661i 0.0793975 0.996843i \(-0.474700\pi\)
−0.823593 + 0.567182i \(0.808034\pi\)
\(194\) −1370.16 2373.20i −0.507073 0.878276i
\(195\) 289.375 1359.45i 0.106270 0.499244i
\(196\) 0 0
\(197\) 222.021i 0.0802960i −0.999194 0.0401480i \(-0.987217\pi\)
0.999194 0.0401480i \(-0.0127829\pi\)
\(198\) 2731.44 1577.00i 0.980379 0.566022i
\(199\) −1790.28 + 3100.85i −0.637736 + 1.10459i 0.348193 + 0.937423i \(0.386795\pi\)
−0.985928 + 0.167168i \(0.946538\pi\)
\(200\) −4772.83 6577.29i −1.68745 2.32542i
\(201\) 500.012 + 866.047i 0.175463 + 0.303912i
\(202\) 2849.92i 0.992673i
\(203\) 0 0
\(204\) 1086.85 0.373014
\(205\) −4287.86 + 1391.83i −1.46086 + 0.474193i
\(206\) 1014.09 1756.46i 0.342986 0.594070i
\(207\) 2185.75 + 1261.94i 0.733912 + 0.423724i
\(208\) −10190.8 + 5883.67i −3.39714 + 1.96134i
\(209\) 20.2404 0.00669883
\(210\) 0 0
\(211\) −4181.04 −1.36415 −0.682073 0.731284i \(-0.738921\pi\)
−0.682073 + 0.731284i \(0.738921\pi\)
\(212\) 2524.00 1457.23i 0.817683 0.472090i
\(213\) −934.863 539.743i −0.300731 0.173627i
\(214\) −3669.40 + 6355.58i −1.17213 + 2.03018i
\(215\) 596.801 + 1838.59i 0.189309 + 0.583212i
\(216\) 6334.31 1.99535
\(217\) 0 0
\(218\) 2075.42i 0.644794i
\(219\) −167.993 290.972i −0.0518352 0.0897812i
\(220\) −4293.10 3867.79i −1.31564 1.18530i
\(221\) −887.651 + 1537.46i −0.270180 + 0.467966i
\(222\) −341.908 + 197.401i −0.103367 + 0.0596787i
\(223\) 2361.52i 0.709145i 0.935028 + 0.354573i \(0.115374\pi\)
−0.935028 + 0.354573i \(0.884626\pi\)
\(224\) 0 0
\(225\) −2653.02 1183.05i −0.786081 0.350534i
\(226\) −4365.57 7561.39i −1.28493 2.22556i
\(227\) 508.250 + 293.438i 0.148607 + 0.0857982i 0.572460 0.819933i \(-0.305989\pi\)
−0.423853 + 0.905731i \(0.639323\pi\)
\(228\) 26.9315 + 15.5489i 0.00782274 + 0.00451646i
\(229\) 2309.78 + 4000.65i 0.666526 + 1.15446i 0.978869 + 0.204487i \(0.0655527\pi\)
−0.312344 + 0.949969i \(0.601114\pi\)
\(230\) 1343.31 6310.76i 0.385111 1.80921i
\(231\) 0 0
\(232\) 15212.9i 4.30507i
\(233\) 4434.43 2560.22i 1.24682 0.719853i 0.276347 0.961058i \(-0.410876\pi\)
0.970474 + 0.241205i \(0.0775426\pi\)
\(234\) −3957.72 + 6854.97i −1.10566 + 1.91506i
\(235\) 1548.66 1718.96i 0.429888 0.477159i
\(236\) −6870.63 11900.3i −1.89508 3.28238i
\(237\) 153.850i 0.0421671i
\(238\) 0 0
\(239\) −1127.51 −0.305158 −0.152579 0.988291i \(-0.548758\pi\)
−0.152579 + 0.988291i \(0.548758\pi\)
\(240\) −1228.92 3785.97i −0.330526 1.01826i
\(241\) −1774.77 + 3073.98i −0.474368 + 0.821630i −0.999569 0.0293484i \(-0.990657\pi\)
0.525201 + 0.850978i \(0.323990\pi\)
\(242\) 3122.80 + 1802.95i 0.829508 + 0.478917i
\(243\) 3014.70 1740.54i 0.795856 0.459487i
\(244\) −11629.4 −3.05120
\(245\) 0 0
\(246\) −4155.24 −1.07694
\(247\) −43.9909 + 25.3981i −0.0113323 + 0.00654269i
\(248\) −7274.47 4199.92i −1.86262 1.07538i
\(249\) 1011.93 1752.72i 0.257545 0.446081i
\(250\) −782.688 + 7384.70i −0.198006 + 1.86820i
\(251\) −4717.19 −1.18624 −0.593120 0.805114i \(-0.702104\pi\)
−0.593120 + 0.805114i \(0.702104\pi\)
\(252\) 0 0
\(253\) 2774.02i 0.689333i
\(254\) −510.196 883.685i −0.126034 0.218297i
\(255\) −446.152 401.953i −0.109565 0.0987108i
\(256\) 56.7760 98.3390i 0.0138613 0.0240085i
\(257\) −5421.59 + 3130.16i −1.31591 + 0.759742i −0.983068 0.183239i \(-0.941342\pi\)
−0.332844 + 0.942982i \(0.608008\pi\)
\(258\) 1781.72i 0.429942i
\(259\) 0 0
\(260\) 14184.1 + 3019.25i 3.38331 + 0.720176i
\(261\) −2718.94 4709.35i −0.644821 1.11686i
\(262\) 9585.00 + 5533.90i 2.26017 + 1.30491i
\(263\) −4982.28 2876.52i −1.16814 0.674425i −0.214897 0.976637i \(-0.568942\pi\)
−0.953241 + 0.302212i \(0.902275\pi\)
\(264\) −1610.22 2788.98i −0.375386 0.650188i
\(265\) −1575.03 335.262i −0.365107 0.0777170i
\(266\) 0 0
\(267\) 1264.60i 0.289858i
\(268\) −9036.06 + 5216.97i −2.05957 + 1.18909i
\(269\) 3529.60 6113.45i 0.800014 1.38566i −0.119593 0.992823i \(-0.538159\pi\)
0.919606 0.392841i \(-0.128508\pi\)
\(270\) −4300.42 3874.39i −0.969317 0.873288i
\(271\) −4267.26 7391.11i −0.956523 1.65675i −0.730844 0.682544i \(-0.760874\pi\)
−0.225678 0.974202i \(-0.572460\pi\)
\(272\) 5084.11i 1.13334i
\(273\) 0 0
\(274\) 415.373 0.0915826
\(275\) 331.883 + 3175.45i 0.0727756 + 0.696315i
\(276\) 2131.04 3691.07i 0.464760 0.804987i
\(277\) 1137.91 + 656.972i 0.246824 + 0.142504i 0.618309 0.785935i \(-0.287818\pi\)
−0.371485 + 0.928439i \(0.621151\pi\)
\(278\) 6413.32 3702.73i 1.38362 0.798832i
\(279\) −3002.54 −0.644291
\(280\) 0 0
\(281\) −247.229 −0.0524856 −0.0262428 0.999656i \(-0.508354\pi\)
−0.0262428 + 0.999656i \(0.508354\pi\)
\(282\) 1846.88 1066.30i 0.390001 0.225167i
\(283\) 7859.10 + 4537.45i 1.65079 + 0.953087i 0.976746 + 0.214400i \(0.0687795\pi\)
0.674049 + 0.738687i \(0.264554\pi\)
\(284\) 5631.51 9754.07i 1.17665 2.03802i
\(285\) −5.30489 16.3430i −0.00110258 0.00339675i
\(286\) 8699.92 1.79873
\(287\) 0 0
\(288\) 10581.7i 2.16505i
\(289\) −2072.99 3590.52i −0.421939 0.730820i
\(290\) −9305.00 + 10328.2i −1.88417 + 2.09135i
\(291\) −500.085 + 866.172i −0.100740 + 0.174488i
\(292\) 3035.91 1752.79i 0.608436 0.351281i
\(293\) 2740.72i 0.546466i −0.961948 0.273233i \(-0.911907\pi\)
0.961948 0.273233i \(-0.0880930\pi\)
\(294\) 0 0
\(295\) −1580.71 + 7426.04i −0.311975 + 1.46563i
\(296\) −1245.34 2156.99i −0.244540 0.423555i
\(297\) −2155.20 1244.31i −0.421069 0.243104i
\(298\) 149.558 + 86.3475i 0.0290727 + 0.0167851i
\(299\) 3480.91 + 6029.12i 0.673266 + 1.16613i
\(300\) −1997.83 + 4480.16i −0.384482 + 0.862208i
\(301\) 0 0
\(302\) 2480.21i 0.472584i
\(303\) 900.813 520.085i 0.170793 0.0986075i
\(304\) −72.7352 + 125.981i −0.0137225 + 0.0237681i
\(305\) 4773.85 + 4300.91i 0.896228 + 0.807441i
\(306\) 1709.94 + 2961.71i 0.319447 + 0.553299i
\(307\) 6985.46i 1.29864i 0.760517 + 0.649318i \(0.224946\pi\)
−0.760517 + 0.649318i \(0.775054\pi\)
\(308\) 0 0
\(309\) −740.250 −0.136283
\(310\) 2369.83 + 7300.81i 0.434184 + 1.33761i
\(311\) −178.421 + 309.033i −0.0325315 + 0.0563462i −0.881833 0.471562i \(-0.843690\pi\)
0.849301 + 0.527908i \(0.177024\pi\)
\(312\) 6999.36 + 4041.08i 1.27007 + 0.733273i
\(313\) 5741.85 3315.06i 1.03690 0.598653i 0.117944 0.993020i \(-0.462370\pi\)
0.918953 + 0.394368i \(0.129036\pi\)
\(314\) 8892.42 1.59818
\(315\) 0 0
\(316\) 1605.22 0.285762
\(317\) 2159.91 1247.02i 0.382689 0.220946i −0.296298 0.955095i \(-0.595752\pi\)
0.678988 + 0.734150i \(0.262419\pi\)
\(318\) −1285.42 742.137i −0.226675 0.130871i
\(319\) −2988.41 + 5176.08i −0.524511 + 0.908480i
\(320\) 10112.8 3282.60i 1.76664 0.573447i
\(321\) 2678.52 0.465734
\(322\) 0 0
\(323\) 21.9467i 0.00378063i
\(324\) 4436.39 + 7684.06i 0.760698 + 1.31757i
\(325\) −4705.96 6485.14i −0.803199 1.10686i
\(326\) −4966.56 + 8602.34i −0.843781 + 1.46147i
\(327\) 656.005 378.744i 0.110939 0.0640508i
\(328\) 26214.0i 4.41289i
\(329\) 0 0
\(330\) −612.690 + 2878.35i −0.102204 + 0.480146i
\(331\) 2341.23 + 4055.14i 0.388779 + 0.673385i 0.992286 0.123973i \(-0.0395636\pi\)
−0.603506 + 0.797358i \(0.706230\pi\)
\(332\) 18287.3 + 10558.2i 3.02304 + 1.74535i
\(333\) −771.020 445.148i −0.126882 0.0732552i
\(334\) −123.609 214.097i −0.0202502 0.0350744i
\(335\) 5638.70 + 1200.26i 0.919627 + 0.195753i
\(336\) 0 0
\(337\) 3596.60i 0.581363i −0.956820 0.290681i \(-0.906118\pi\)
0.956820 0.290681i \(-0.0938820\pi\)
\(338\) −8798.54 + 5079.84i −1.41591 + 0.817476i
\(339\) −1593.35 + 2759.77i −0.255277 + 0.442153i
\(340\) 4193.85 4655.01i 0.668951 0.742511i
\(341\) 1650.06 + 2857.98i 0.262040 + 0.453867i
\(342\) 97.8523i 0.0154715i
\(343\) 0 0
\(344\) −11240.3 −1.76173
\(345\) −2239.87 + 727.056i −0.349537 + 0.113459i
\(346\) 6632.18 11487.3i 1.03049 1.78485i
\(347\) 1645.03 + 949.756i 0.254495 + 0.146932i 0.621821 0.783160i \(-0.286393\pi\)
−0.367326 + 0.930092i \(0.619727\pi\)
\(348\) −7952.68 + 4591.48i −1.22502 + 0.707268i
\(349\) −1037.55 −0.159137 −0.0795683 0.996829i \(-0.525354\pi\)
−0.0795683 + 0.996829i \(0.525354\pi\)
\(350\) 0 0
\(351\) 6245.56 0.949752
\(352\) 10072.3 5815.25i 1.52516 0.880550i
\(353\) −3539.51 2043.54i −0.533681 0.308121i 0.208833 0.977951i \(-0.433033\pi\)
−0.742514 + 0.669830i \(0.766367\pi\)
\(354\) −3499.07 + 6060.56i −0.525348 + 0.909930i
\(355\) −5919.10 + 1921.32i −0.884938 + 0.287249i
\(356\) −13194.4 −1.96433
\(357\) 0 0
\(358\) 15811.8i 2.33431i
\(359\) 1736.33 + 3007.42i 0.255265 + 0.442132i 0.964967 0.262369i \(-0.0845039\pi\)
−0.709702 + 0.704502i \(0.751171\pi\)
\(360\) 11306.2 12549.4i 1.65524 1.83726i
\(361\) 3429.19 5939.52i 0.499954 0.865946i
\(362\) −4446.56 + 2567.22i −0.645596 + 0.372735i
\(363\) 1316.08i 0.190293i
\(364\) 0 0
\(365\) −1894.48 403.260i −0.271675 0.0578290i
\(366\) 2961.30 + 5129.11i 0.422922 + 0.732522i
\(367\) −7594.29 4384.57i −1.08016 0.623631i −0.149221 0.988804i \(-0.547677\pi\)
−0.930940 + 0.365173i \(0.881010\pi\)
\(368\) 17266.2 + 9968.64i 2.44582 + 1.41210i
\(369\) −4685.13 8114.88i −0.660970 1.14483i
\(370\) −473.853 + 2226.11i −0.0665796 + 0.312784i
\(371\) 0 0
\(372\) 5070.39i 0.706687i
\(373\) 9845.73 5684.43i 1.36674 0.789085i 0.376226 0.926528i \(-0.377222\pi\)
0.990510 + 0.137443i \(0.0438883\pi\)
\(374\) 1879.41 3255.24i 0.259845 0.450065i
\(375\) 2477.01 1100.24i 0.341100 0.151510i
\(376\) 6726.92 + 11651.4i 0.922645 + 1.59807i
\(377\) 14999.8i 2.04914i
\(378\) 0 0
\(379\) 12137.4 1.64500 0.822501 0.568764i \(-0.192578\pi\)
0.822501 + 0.568764i \(0.192578\pi\)
\(380\) 170.517 55.3496i 0.0230194 0.00747203i
\(381\) −186.212 + 322.529i −0.0250392 + 0.0433692i
\(382\) 7112.01 + 4106.12i 0.952571 + 0.549967i
\(383\) 8547.33 4934.80i 1.14033 0.658373i 0.193821 0.981037i \(-0.437912\pi\)
0.946514 + 0.322664i \(0.104578\pi\)
\(384\) 2735.27 0.363499
\(385\) 0 0
\(386\) −12242.9 −1.61438
\(387\) −3479.57 + 2008.93i −0.457045 + 0.263875i
\(388\) −9037.37 5217.73i −1.18248 0.682706i
\(389\) 28.5583 49.4644i 0.00372227 0.00644716i −0.864158 0.503220i \(-0.832148\pi\)
0.867881 + 0.496773i \(0.165482\pi\)
\(390\) −2280.20 7024.70i −0.296058 0.912076i
\(391\) 3007.88 0.389041
\(392\) 0 0
\(393\) 4039.54i 0.518494i
\(394\) −589.871 1021.69i −0.0754245 0.130639i
\(395\) −658.941 593.661i −0.0839365 0.0756211i
\(396\) 6005.37 10401.6i 0.762073 1.31995i
\(397\) −6439.91 + 3718.09i −0.814131 + 0.470039i −0.848388 0.529374i \(-0.822427\pi\)
0.0342574 + 0.999413i \(0.489093\pi\)
\(398\) 19025.8i 2.39618i
\(399\) 0 0
\(400\) −20957.4 9345.47i −2.61968 1.16818i
\(401\) 6232.49 + 10795.0i 0.776149 + 1.34433i 0.934147 + 0.356890i \(0.116163\pi\)
−0.157998 + 0.987439i \(0.550504\pi\)
\(402\) 4601.87 + 2656.89i 0.570947 + 0.329636i
\(403\) −7172.55 4141.07i −0.886576 0.511865i
\(404\) 5426.40 + 9398.80i 0.668251 + 1.15745i
\(405\) 1020.67 4795.02i 0.125229 0.588312i
\(406\) 0 0
\(407\) 978.533i 0.119175i
\(408\) 3024.09 1745.96i 0.366948 0.211858i
\(409\) 854.358 1479.79i 0.103289 0.178902i −0.809749 0.586777i \(-0.800397\pi\)
0.913038 + 0.407875i \(0.133730\pi\)
\(410\) −16033.8 + 17797.0i −1.93135 + 2.14373i
\(411\) −75.8018 131.293i −0.00909739 0.0157571i
\(412\) 7723.54i 0.923571i
\(413\) 0 0
\(414\) 13411.0 1.59207
\(415\) −3602.18 11097.4i −0.426082 1.31265i
\(416\) −14594.2 + 25278.0i −1.72005 + 2.97922i
\(417\) −2340.74 1351.43i −0.274884 0.158704i
\(418\) 93.1413 53.7752i 0.0108988 0.00629242i
\(419\) 10618.8 1.23810 0.619050 0.785352i \(-0.287518\pi\)
0.619050 + 0.785352i \(0.287518\pi\)
\(420\) 0 0
\(421\) 13273.5 1.53661 0.768304 0.640085i \(-0.221101\pi\)
0.768304 + 0.640085i \(0.221101\pi\)
\(422\) −19240.2 + 11108.3i −2.21942 + 1.28138i
\(423\) 4164.81 + 2404.55i 0.478723 + 0.276391i
\(424\) 4681.90 8109.29i 0.536257 0.928825i
\(425\) −3443.14 + 359.861i −0.392981 + 0.0410725i
\(426\) −5736.02 −0.652373
\(427\) 0 0
\(428\) 27946.9i 3.15622i
\(429\) −1587.65 2749.90i −0.178678 0.309479i
\(430\) 7631.15 + 6875.14i 0.855829 + 0.771044i
\(431\) −3959.10 + 6857.37i −0.442467 + 0.766375i −0.997872 0.0652048i \(-0.979230\pi\)
0.555405 + 0.831580i \(0.312563\pi\)
\(432\) 15489.7 8943.01i 1.72512 0.995997i
\(433\) 4433.34i 0.492038i 0.969265 + 0.246019i \(0.0791226\pi\)
−0.969265 + 0.246019i \(0.920877\pi\)
\(434\) 0 0
\(435\) 4962.65 + 1056.35i 0.546990 + 0.116433i
\(436\) 3951.70 + 6844.55i 0.434065 + 0.751822i
\(437\) 74.5333 + 43.0318i 0.00815884 + 0.00471051i
\(438\) −1546.13 892.656i −0.168668 0.0973807i
\(439\) −6479.19 11222.3i −0.704408 1.22007i −0.966905 0.255137i \(-0.917879\pi\)
0.262497 0.964933i \(-0.415454\pi\)
\(440\) −18158.6 3865.26i −1.96745 0.418793i
\(441\) 0 0
\(442\) 9433.34i 1.01515i
\(443\) 10427.3 6020.22i 1.11832 0.645664i 0.177351 0.984148i \(-0.443247\pi\)
0.940972 + 0.338483i \(0.109914\pi\)
\(444\) −751.723 + 1302.02i −0.0803495 + 0.139169i
\(445\) 5416.29 + 4879.71i 0.576981 + 0.519821i
\(446\) 6274.17 + 10867.2i 0.666122 + 1.15376i
\(447\) 63.0304i 0.00666943i
\(448\) 0 0
\(449\) −11586.3 −1.21780 −0.608899 0.793247i \(-0.708389\pi\)
−0.608899 + 0.793247i \(0.708389\pi\)
\(450\) −15351.7 + 1604.49i −1.60820 + 0.168081i
\(451\) −5149.46 + 8919.13i −0.537647 + 0.931232i
\(452\) −28794.5 16624.5i −2.99642 1.72998i
\(453\) 783.954 452.616i 0.0813099 0.0469443i
\(454\) 3118.46 0.322371
\(455\) 0 0
\(456\) 99.9135 0.0102607
\(457\) 8430.18 4867.17i 0.862904 0.498198i −0.00207942 0.999998i \(-0.500662\pi\)
0.864984 + 0.501800i \(0.167329\pi\)
\(458\) 21258.1 + 12273.4i 2.16883 + 1.25218i
\(459\) 1349.20 2336.89i 0.137201 0.237640i
\(460\) −7585.87 23370.1i −0.768898 2.36877i
\(461\) 1343.41 0.135724 0.0678621 0.997695i \(-0.478382\pi\)
0.0678621 + 0.997695i \(0.478382\pi\)
\(462\) 0 0
\(463\) 6613.72i 0.663857i 0.943305 + 0.331929i \(0.107699\pi\)
−0.943305 + 0.331929i \(0.892301\pi\)
\(464\) −21478.2 37201.2i −2.14892 3.72204i
\(465\) 1875.19 2081.39i 0.187011 0.207575i
\(466\) 13604.1 23563.1i 1.35236 2.34236i
\(467\) 12721.0 7344.47i 1.26051 0.727755i 0.287335 0.957830i \(-0.407231\pi\)
0.973173 + 0.230076i \(0.0738974\pi\)
\(468\) 30142.8i 2.97724i
\(469\) 0 0
\(470\) 2559.60 12024.8i 0.251204 1.18013i
\(471\) −1622.78 2810.74i −0.158756 0.274973i
\(472\) −38234.1 22074.5i −3.72853 2.15267i
\(473\) 3824.43 + 2208.03i 0.371770 + 0.214642i
\(474\) −408.752 707.979i −0.0396089 0.0686046i
\(475\) −90.4673 40.3418i −0.00873879 0.00389686i
\(476\) 0 0
\(477\) 3347.11i 0.321286i
\(478\) −5188.55 + 2995.61i −0.496482 + 0.286644i
\(479\) 7649.31 13249.0i 0.729657 1.26380i −0.227371 0.973808i \(-0.573013\pi\)
0.957028 0.289995i \(-0.0936538\pi\)
\(480\) −7335.38 6608.68i −0.697527 0.628424i
\(481\) −1227.89 2126.77i −0.116397 0.201605i
\(482\) 18861.0i 1.78235i
\(483\) 0 0
\(484\) 13731.6 1.28960
\(485\) 1780.15 + 5484.18i 0.166665 + 0.513451i
\(486\) 9248.61 16019.1i 0.863221 1.49514i
\(487\) 8360.44 + 4826.90i 0.777921 + 0.449133i 0.835693 0.549197i \(-0.185066\pi\)
−0.0577719 + 0.998330i \(0.518400\pi\)
\(488\) −32357.9 + 18681.8i −3.00158 + 1.73297i
\(489\) 3625.41 0.335269
\(490\) 0 0
\(491\) 20142.6 1.85137 0.925684 0.378297i \(-0.123490\pi\)
0.925684 + 0.378297i \(0.123490\pi\)
\(492\) −13703.6 + 7911.78i −1.25570 + 0.724981i
\(493\) −5612.44 3240.34i −0.512721 0.296020i
\(494\) −134.957 + 233.752i −0.0122915 + 0.0212895i
\(495\) −6312.04 + 2048.87i −0.573142 + 0.186041i
\(496\) −23718.4 −2.14715
\(497\) 0 0
\(498\) 10754.1i 0.967679i
\(499\) −654.645 1133.88i −0.0587293 0.101722i 0.835166 0.549998i \(-0.185372\pi\)
−0.893895 + 0.448276i \(0.852038\pi\)
\(500\) 11479.6 + 25844.4i 1.02677 + 2.31159i
\(501\) −45.1149 + 78.1413i −0.00402313 + 0.00696826i
\(502\) −21707.4 + 12532.8i −1.92998 + 1.11427i
\(503\) 2186.17i 0.193791i 0.995295 + 0.0968953i \(0.0308912\pi\)
−0.995295 + 0.0968953i \(0.969109\pi\)
\(504\) 0 0
\(505\) 1248.44 5865.06i 0.110010 0.516815i
\(506\) −7370.10 12765.4i −0.647512 1.12152i
\(507\) 3211.30 + 1854.05i 0.281300 + 0.162409i
\(508\) −3365.16 1942.88i −0.293908 0.169688i
\(509\) −1795.56 3110.00i −0.156359 0.270822i 0.777194 0.629261i \(-0.216642\pi\)
−0.933553 + 0.358439i \(0.883309\pi\)
\(510\) −3121.01 664.340i −0.270981 0.0576813i
\(511\) 0 0
\(512\) 11886.4i 1.02600i
\(513\) 66.8649 38.6045i 0.00575469 0.00332247i
\(514\) −16632.6 + 28808.5i −1.42730 + 2.47215i
\(515\) −2856.41 + 3170.51i −0.244405 + 0.271280i
\(516\) 3392.49 + 5875.96i 0.289430 + 0.501307i
\(517\) 5285.73i 0.449644i
\(518\) 0 0
\(519\) −4841.24 −0.409455
\(520\) 44316.5 14385.0i 3.73733 1.21313i
\(521\) −4302.67 + 7452.44i −0.361811 + 0.626674i −0.988259 0.152789i \(-0.951175\pi\)
0.626448 + 0.779463i \(0.284508\pi\)
\(522\) −25023.9 14447.5i −2.09821 1.21140i
\(523\) 19517.1 11268.2i 1.63179 0.942113i 0.648245 0.761432i \(-0.275503\pi\)
0.983542 0.180681i \(-0.0578301\pi\)
\(524\) 42147.3 3.51377
\(525\) 0 0
\(526\) −30569.7 −2.53403
\(527\) −3098.92 + 1789.16i −0.256150 + 0.147888i
\(528\) −7875.16 4546.72i −0.649095 0.374755i
\(529\) −185.819 + 321.847i −0.0152723 + 0.0264525i
\(530\) −8138.65 + 2641.79i −0.667019 + 0.216513i
\(531\) −15781.1 −1.28972
\(532\) 0 0
\(533\) 25846.7i 2.10046i
\(534\) 3359.81 + 5819.37i 0.272272 + 0.471589i
\(535\) 10335.6 11472.2i 0.835231 0.927075i
\(536\) −16761.5 + 29031.7i −1.35072 + 2.33951i
\(537\) −4997.86 + 2885.51i −0.401627 + 0.231879i
\(538\) 37510.2i 3.00591i
\(539\) 0 0
\(540\) −21559.5 4589.17i −1.71810 0.365716i
\(541\) −4391.22 7605.81i −0.348971 0.604435i 0.637096 0.770784i \(-0.280135\pi\)
−0.986067 + 0.166349i \(0.946802\pi\)
\(542\) −39273.8 22674.8i −3.11246 1.79698i
\(543\) 1622.91 + 936.988i 0.128261 + 0.0740516i
\(544\) 6305.48 + 10921.4i 0.496958 + 0.860757i
\(545\) 909.161 4271.15i 0.0714572 0.335699i
\(546\) 0 0
\(547\) 22593.0i 1.76601i 0.469366 + 0.883004i \(0.344482\pi\)
−0.469366 + 0.883004i \(0.655518\pi\)
\(548\) 1369.87 790.892i 0.106784 0.0616519i
\(549\) −6677.86 + 11566.4i −0.519133 + 0.899165i
\(550\) 9963.87 + 13730.9i 0.772474 + 1.06452i
\(551\) −92.7152 160.587i −0.00716842 0.0124161i
\(552\) 13693.5i 1.05586i
\(553\) 0 0
\(554\) 6981.84 0.535433
\(555\) 790.111 256.468i 0.0604294 0.0196153i
\(556\) 14100.4 24422.6i 1.07552 1.86286i
\(557\) 6290.92 + 3632.06i 0.478554 + 0.276294i 0.719814 0.694167i \(-0.244227\pi\)
−0.241259 + 0.970461i \(0.577560\pi\)
\(558\) −13817.0 + 7977.23i −1.04824 + 0.605202i
\(559\) −11082.8 −0.838555
\(560\) 0 0
\(561\) −1371.90 −0.103247
\(562\) −1137.69 + 656.846i −0.0853924 + 0.0493013i
\(563\) −3335.43 1925.71i −0.249683 0.144154i 0.369936 0.929057i \(-0.379380\pi\)
−0.619619 + 0.784903i \(0.712713\pi\)
\(564\) 4060.57 7033.11i 0.303158 0.525084i
\(565\) 5671.86 + 17473.5i 0.422331 + 1.30109i
\(566\) 48220.9 3.58105
\(567\) 0 0
\(568\) 36186.7i 2.67317i
\(569\) 8290.14 + 14358.9i 0.610792 + 1.05792i 0.991107 + 0.133066i \(0.0424822\pi\)
−0.380315 + 0.924857i \(0.624184\pi\)
\(570\) −67.8323 61.1123i −0.00498453 0.00449072i
\(571\) −3192.93 + 5530.32i −0.234010 + 0.405318i −0.958985 0.283458i \(-0.908518\pi\)
0.724974 + 0.688776i \(0.241852\pi\)
\(572\) 28691.6 16565.1i 2.09730 1.21088i
\(573\) 2997.32i 0.218525i
\(574\) 0 0
\(575\) −5529.00 + 12398.9i −0.401001 + 0.899252i
\(576\) 11049.8 + 19138.8i 0.799318 + 1.38446i
\(577\) −9577.44 5529.54i −0.691012 0.398956i 0.112979 0.993597i \(-0.463961\pi\)
−0.803991 + 0.594641i \(0.797294\pi\)
\(578\) −19078.8 11015.1i −1.37296 0.792681i
\(579\) 2234.22 + 3869.79i 0.160365 + 0.277760i
\(580\) −11021.7 + 51778.7i −0.789052 + 3.70689i
\(581\) 0 0
\(582\) 5314.56i 0.378515i
\(583\) −3185.96 + 1839.42i −0.226328 + 0.130670i
\(584\) 5631.48 9754.00i 0.399028 0.691136i
\(585\) 11147.8 12373.6i 0.787868 0.874504i
\(586\) −7281.62 12612.1i −0.513312 0.889083i
\(587\) 7871.25i 0.553461i 0.960948 + 0.276730i \(0.0892509\pi\)
−0.960948 + 0.276730i \(0.910749\pi\)
\(588\) 0 0
\(589\) −102.386 −0.00716253
\(590\) 12455.6 + 38372.5i 0.869136 + 2.67758i
\(591\) −215.292 + 372.896i −0.0149846 + 0.0259542i
\(592\) −6090.63 3516.43i −0.422844 0.244129i
\(593\) −1747.69 + 1009.03i −0.121027 + 0.0698750i −0.559291 0.828971i \(-0.688927\pi\)
0.438264 + 0.898846i \(0.355593\pi\)
\(594\) −13223.6 −0.913422
\(595\) 0 0
\(596\) 657.640 0.0451980
\(597\) 6013.75 3472.04i 0.412272 0.238025i
\(598\) 32036.7 + 18496.4i 2.19076 + 1.26484i
\(599\) −678.335 + 1174.91i −0.0462705 + 0.0801428i −0.888233 0.459393i \(-0.848067\pi\)
0.841963 + 0.539536i \(0.181400\pi\)
\(600\) 1638.29 + 15675.1i 0.111471 + 1.06656i
\(601\) −11178.7 −0.758715 −0.379358 0.925250i \(-0.623855\pi\)
−0.379358 + 0.925250i \(0.623855\pi\)
\(602\) 0 0
\(603\) 11982.8i 0.809252i
\(604\) 4722.46 + 8179.53i 0.318136 + 0.551027i
\(605\) −5636.82 5078.39i −0.378792 0.341266i
\(606\) 2763.55 4786.61i 0.185250 0.320863i
\(607\) −8144.69 + 4702.34i −0.544617 + 0.314435i −0.746948 0.664882i \(-0.768482\pi\)
0.202331 + 0.979317i \(0.435148\pi\)
\(608\) 360.835i 0.0240687i
\(609\) 0 0
\(610\) 33394.9 + 7108.47i 2.21659 + 0.471825i
\(611\) 6632.67 + 11488.1i 0.439164 + 0.760654i
\(612\) 11278.5 + 6511.63i 0.744943 + 0.430093i
\(613\) −16400.8 9468.99i −1.08062 0.623897i −0.149557 0.988753i \(-0.547785\pi\)
−0.931064 + 0.364856i \(0.881118\pi\)
\(614\) 18559.2 + 32145.4i 1.21985 + 2.11284i
\(615\) 8551.35 + 1820.25i 0.560689 + 0.119349i
\(616\) 0 0
\(617\) 17716.9i 1.15600i 0.816036 + 0.578001i \(0.196167\pi\)
−0.816036 + 0.578001i \(0.803833\pi\)
\(618\) −3406.45 + 1966.72i −0.221728 + 0.128015i
\(619\) 3120.16 5404.28i 0.202601 0.350915i −0.746765 0.665088i \(-0.768394\pi\)
0.949366 + 0.314173i \(0.101727\pi\)
\(620\) 21716.6 + 19565.2i 1.40671 + 1.26735i
\(621\) −5290.89 9164.10i −0.341894 0.592178i
\(622\) 1896.13i 0.122231i
\(623\) 0 0
\(624\) 22821.4 1.46408
\(625\) 4845.70 14854.6i 0.310125 0.950696i
\(626\) 17615.1 30510.2i 1.12467 1.94798i
\(627\) −33.9949 19.6269i −0.00216527 0.00125012i
\(628\) 29326.4 16931.6i 1.86346 1.07587i
\(629\) −1061.03 −0.0672589
\(630\) 0 0
\(631\) −25887.7 −1.63323 −0.816617 0.577179i \(-0.804153\pi\)
−0.816617 + 0.577179i \(0.804153\pi\)
\(632\) 4466.41 2578.68i 0.281114 0.162301i
\(633\) 7022.30 + 4054.33i 0.440934 + 0.254573i
\(634\) 6626.25 11477.0i 0.415082 0.718944i
\(635\) 662.859 + 2042.10i 0.0414248 + 0.127619i
\(636\) −5652.27 −0.352401
\(637\) 0 0
\(638\) 31758.8i 1.97076i
\(639\) −6467.50 11202.0i −0.400392 0.693499i
\(640\) 10554.6 11715.2i 0.651886 0.723569i
\(641\) −9399.22 + 16279.9i −0.579168 + 1.00315i 0.416407 + 0.909178i \(0.363289\pi\)
−0.995575 + 0.0939701i \(0.970044\pi\)
\(642\) 12325.9 7116.38i 0.757734 0.437478i
\(643\) 2287.70i 0.140308i −0.997536 0.0701541i \(-0.977651\pi\)
0.997536 0.0701541i \(-0.0223491\pi\)
\(644\) 0 0
\(645\) 780.503 3666.73i 0.0476469 0.223841i
\(646\) 58.3085 + 100.993i 0.00355127 + 0.00615097i
\(647\) 1532.27 + 884.654i 0.0931060 + 0.0537548i 0.545830 0.837896i \(-0.316214\pi\)
−0.452724 + 0.891651i \(0.649548\pi\)
\(648\) 24687.9 + 14253.6i 1.49666 + 0.864094i
\(649\) 8672.59 + 15021.4i 0.524544 + 0.908536i
\(650\) −38885.6 17340.1i −2.34649 1.04636i
\(651\) 0 0
\(652\) 37826.4i 2.27208i
\(653\) −3370.12 + 1945.74i −0.201965 + 0.116604i −0.597572 0.801816i \(-0.703868\pi\)
0.395607 + 0.918420i \(0.370534\pi\)
\(654\) 2012.52 3485.78i 0.120330 0.208417i
\(655\) −17301.5 15587.4i −1.03210 0.929849i
\(656\) −37009.9 64103.1i −2.20274 3.81525i
\(657\) 4025.96i 0.239068i
\(658\) 0 0
\(659\) −20097.6 −1.18800 −0.594001 0.804465i \(-0.702452\pi\)
−0.594001 + 0.804465i \(0.702452\pi\)
\(660\) 3459.94 + 10659.2i 0.204057 + 0.628647i
\(661\) −13584.0 + 23528.1i −0.799326 + 1.38447i 0.120730 + 0.992685i \(0.461477\pi\)
−0.920056 + 0.391788i \(0.871857\pi\)
\(662\) 21547.6 + 12440.5i 1.26506 + 0.730384i
\(663\) 2981.72 1721.50i 0.174661 0.100841i
\(664\) 67844.3 3.96516
\(665\) 0 0
\(666\) −4730.73 −0.275243
\(667\) −22009.1 + 12707.0i −1.27766 + 0.737655i
\(668\) −815.303 470.715i −0.0472231 0.0272642i
\(669\) 2289.95 3966.32i 0.132339 0.229218i
\(670\) 29136.8 9457.75i 1.68008 0.545350i
\(671\) 14679.4 0.844548
\(672\) 0 0
\(673\) 25909.7i 1.48402i −0.670389 0.742010i \(-0.733873\pi\)
0.670389 0.742010i \(-0.266127\pi\)
\(674\) −9555.55 16550.7i −0.546092 0.945859i
\(675\) 7152.92 + 9857.23i 0.407876 + 0.562081i
\(676\) −19344.6 + 33505.7i −1.10062 + 1.90634i
\(677\) −3775.19 + 2179.61i −0.214317 + 0.123736i −0.603316 0.797502i \(-0.706154\pi\)
0.388999 + 0.921238i \(0.372821\pi\)
\(678\) 16933.0i 0.959159i
\(679\) 0 0
\(680\) 4191.11 19689.4i 0.236355 1.11037i
\(681\) −569.090 985.693i −0.0320229 0.0554653i
\(682\) 15186.3 + 8767.84i 0.852662 + 0.492284i
\(683\) 25739.9 + 14860.9i 1.44203 + 0.832559i 0.997985 0.0634439i \(-0.0202084\pi\)
0.444049 + 0.896003i \(0.353542\pi\)
\(684\) 186.316 + 322.708i 0.0104152 + 0.0180396i
\(685\) −854.826 181.959i −0.0476806 0.0101493i
\(686\) 0 0
\(687\) 8959.10i 0.497541i
\(688\) −27486.7 + 15869.5i −1.52314 + 0.879386i
\(689\) 4616.30 7995.67i 0.255250 0.442105i
\(690\) −8375.67 + 9296.68i −0.462111 + 0.512925i
\(691\) −2464.57 4268.75i −0.135682 0.235009i 0.790176 0.612881i \(-0.209989\pi\)
−0.925858 + 0.377872i \(0.876656\pi\)
\(692\) 50512.0i 2.77482i
\(693\) 0 0
\(694\) 10093.4 0.552073
\(695\) −14820.4 + 4810.68i −0.808880 + 0.262561i
\(696\) −14751.9 + 25551.0i −0.803402 + 1.39153i
\(697\) −9671.03 5583.57i −0.525562 0.303433i
\(698\) −4774.55 + 2756.59i −0.258910 + 0.149482i
\(699\) −9930.51 −0.537348
\(700\) 0 0
\(701\) −19358.8 −1.04304 −0.521520 0.853239i \(-0.674635\pi\)
−0.521520 + 0.853239i \(0.674635\pi\)
\(702\) 28740.6 16593.4i 1.54522 0.892132i
\(703\) −26.2916 15.1794i −0.00141053 0.000814372i
\(704\) 12144.9 21035.6i 0.650182 1.12615i
\(705\) −4267.93 + 1385.36i −0.227999 + 0.0740081i
\(706\) −21717.3 −1.15771
\(707\) 0 0
\(708\) 26649.6i 1.41462i
\(709\) −8593.15 14883.8i −0.455180 0.788394i 0.543519 0.839397i \(-0.317092\pi\)
−0.998699 + 0.0510026i \(0.983758\pi\)
\(710\) −22133.6 + 24567.5i −1.16994 + 1.29859i
\(711\) 921.755 1596.53i 0.0486196 0.0842116i
\(712\) −36712.5 + 21196.0i −1.93239 + 1.11566i
\(713\) 14032.4i 0.737049i
\(714\) 0 0
\(715\) −17904.2 3811.10i −0.936473 0.199339i
\(716\) −30106.6 52146.1i −1.57142 2.72178i
\(717\) 1893.72 + 1093.34i 0.0986365 + 0.0569478i
\(718\) 15980.4 + 9226.28i 0.830617 + 0.479557i
\(719\) 7553.65 + 13083.3i 0.391799 + 0.678616i 0.992687 0.120717i \(-0.0385195\pi\)
−0.600888 + 0.799333i \(0.705186\pi\)
\(720\) 9930.07 46650.5i 0.513989 2.41467i
\(721\) 0 0
\(722\) 36443.0i 1.87849i
\(723\) 5961.64 3441.96i 0.306661 0.177051i
\(724\) −9776.24 + 16932.9i −0.501839 + 0.869210i
\(725\) 23673.8 17179.0i 1.21272 0.880015i
\(726\) −3496.61 6056.31i −0.178748 0.309601i
\(727\) 15840.9i 0.808124i 0.914732 + 0.404062i \(0.132402\pi\)
−0.914732 + 0.404062i \(0.867598\pi\)
\(728\) 0 0
\(729\) 5088.04 0.258499
\(730\) −9789.32 + 3177.59i −0.496327 + 0.161107i
\(731\) −2394.18 + 4146.83i −0.121138 + 0.209817i
\(732\) 19532.2 + 11276.9i 0.986244 + 0.569408i
\(733\) −23936.7 + 13819.9i −1.20617 + 0.696382i −0.961920 0.273331i \(-0.911875\pi\)
−0.244249 + 0.969713i \(0.578541\pi\)
\(734\) −46596.2 −2.34318
\(735\) 0 0
\(736\) 49453.8 2.47675
\(737\) 11405.9 6585.22i 0.570072 0.329131i
\(738\) −43119.7 24895.2i −2.15075 1.24174i
\(739\) 17437.2 30202.1i 0.867982 1.50339i 0.00392555 0.999992i \(-0.498750\pi\)
0.864056 0.503396i \(-0.167916\pi\)
\(740\) 2675.91 + 8243.77i 0.132930 + 0.409523i
\(741\) 98.5136 0.00488392
\(742\) 0 0
\(743\) 27686.7i 1.36706i 0.729922 + 0.683530i \(0.239556\pi\)
−0.729922 + 0.683530i \(0.760444\pi\)
\(744\) 8145.26 + 14108.0i 0.401371 + 0.695194i
\(745\) −269.961 243.216i −0.0132760 0.0119607i
\(746\) 30205.1 52316.8i 1.48242 2.56763i
\(747\) 21002.0 12125.5i 1.02868 0.593909i
\(748\) 14314.0i 0.699694i
\(749\) 0 0
\(750\) 8475.46 11644.1i 0.412640 0.566908i
\(751\) −2403.42 4162.85i −0.116781 0.202270i 0.801710 0.597714i \(-0.203924\pi\)
−0.918490 + 0.395444i \(0.870591\pi\)
\(752\) 32899.7 + 18994.6i 1.59538 + 0.921094i
\(753\) 7922.79 + 4574.23i 0.383430 + 0.221373i
\(754\) −39851.8 69025.3i −1.92482 3.33389i
\(755\) 1086.49 5104.21i 0.0523726 0.246041i
\(756\) 0 0
\(757\) 40166.6i 1.92851i −0.264983 0.964253i \(-0.585366\pi\)
0.264983 0.964253i \(-0.414634\pi\)
\(758\) 55853.4 32247.0i 2.67637 1.54520i
\(759\) −2689.95 + 4659.13i −0.128642 + 0.222814i
\(760\) 385.537 427.932i 0.0184012 0.0204246i
\(761\) 12956.2 + 22440.7i 0.617162 + 1.06896i 0.990001 + 0.141060i \(0.0450512\pi\)
−0.372839 + 0.927896i \(0.621616\pi\)
\(762\) 1978.93i 0.0940803i
\(763\) 0 0
\(764\) 31273.1 1.48092
\(765\) −2221.60 6844.16i −0.104996 0.323465i
\(766\) 26221.9 45417.6i 1.23686 2.14230i
\(767\) −37698.4 21765.2i −1.77472 1.02464i
\(768\) −190.717 + 110.111i −0.00896082 + 0.00517353i
\(769\) −23231.3 −1.08939 −0.544697 0.838633i \(-0.683355\pi\)
−0.544697 + 0.838633i \(0.683355\pi\)
\(770\) 0 0
\(771\) 12141.2 0.567125
\(772\) −40376.2 + 23311.2i −1.88234 + 1.08677i
\(773\) −724.262 418.153i