Properties

Label 245.4.j.f.214.1
Level $245$
Weight $4$
Character 245.214
Analytic conductor $14.455$
Analytic rank $0$
Dimension $20$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [245,4,Mod(79,245)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(245, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 2]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("245.79");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 245 = 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 245.j (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(14.4554679514\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(10\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - 55 x^{18} + 2042 x^{16} - 41247 x^{14} + 600234 x^{12} - 4812047 x^{10} + 27547801 x^{8} + \cdots + 12960000 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{6}\cdot 3^{2}\cdot 7^{8} \)
Twist minimal: no (minimal twist has level 35)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 214.1
Root \(-3.73574 - 2.15683i\) of defining polynomial
Character \(\chi\) \(=\) 245.214
Dual form 245.4.j.f.79.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-4.60176 + 2.65683i) q^{2} +(1.67956 + 0.969693i) q^{3} +(10.1175 - 17.5240i) q^{4} +(8.30643 - 7.48353i) q^{5} -10.3052 q^{6} +65.0123i q^{8} +(-11.6194 - 20.1254i) q^{9} +(-18.3418 + 56.5062i) q^{10} +(-12.7710 + 22.1200i) q^{11} +(33.9858 - 19.6217i) q^{12} +64.1014i q^{13} +(21.2079 - 4.51433i) q^{15} +(-91.7868 - 158.979i) q^{16} +(23.9847 + 13.8476i) q^{17} +(106.939 + 61.7415i) q^{18} +(-0.396218 - 0.686270i) q^{19} +(-47.1011 - 221.276i) q^{20} -135.721i q^{22} +(94.0560 - 54.3032i) q^{23} +(-63.0420 + 109.192i) q^{24} +(12.9936 - 124.323i) q^{25} +(-170.307 - 294.980i) q^{26} -97.4324i q^{27} +234.000 q^{29} +(-85.5997 + 77.1195i) q^{30} +(64.6019 - 111.894i) q^{31} +(394.343 + 227.674i) q^{32} +(-42.8992 + 24.7679i) q^{33} -147.163 q^{34} -470.236 q^{36} +(-33.1781 + 19.1554i) q^{37} +(3.64660 + 2.10537i) q^{38} +(-62.1587 + 107.662i) q^{39} +(486.522 + 540.021i) q^{40} +403.216 q^{41} +172.895i q^{43} +(258.420 + 447.597i) q^{44} +(-247.124 - 80.2160i) q^{45} +(-288.549 + 499.781i) q^{46} +(179.218 - 103.471i) q^{47} -356.020i q^{48} +(270.511 + 606.626i) q^{50} +(26.8558 + 46.5157i) q^{51} +(1123.31 + 648.545i) q^{52} +(-124.735 - 72.0155i) q^{53} +(258.861 + 448.361i) q^{54} +(59.4542 + 279.310i) q^{55} -1.53684i q^{57} +(-1076.81 + 621.699i) q^{58} +(339.543 - 588.105i) q^{59} +(135.461 - 417.320i) q^{60} +(-287.358 - 497.719i) q^{61} +686.544i q^{62} -950.977 q^{64} +(479.705 + 532.454i) q^{65} +(131.608 - 227.952i) q^{66} +(446.557 + 257.820i) q^{67} +(485.330 - 280.205i) q^{68} +210.630 q^{69} +556.612 q^{71} +(1308.40 - 755.404i) q^{72} +(-150.033 - 86.6217i) q^{73} +(101.785 - 176.297i) q^{74} +(142.379 - 196.207i) q^{75} -16.0349 q^{76} -660.580i q^{78} +(39.6645 + 68.7010i) q^{79} +(-1952.15 - 633.663i) q^{80} +(-219.244 + 379.742i) q^{81} +(-1855.50 + 1071.28i) q^{82} -1043.56i q^{83} +(302.856 - 64.4663i) q^{85} +(-459.352 - 795.620i) q^{86} +(393.017 + 226.909i) q^{87} +(-1438.07 - 830.271i) q^{88} +(-326.030 - 564.700i) q^{89} +(1350.33 - 287.432i) q^{90} -2197.65i q^{92} +(217.005 - 125.288i) q^{93} +(-549.812 + 952.302i) q^{94} +(-8.42688 - 2.73534i) q^{95} +(441.548 + 764.784i) q^{96} +515.714i q^{97} +593.564 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 36 q^{4} + 6 q^{5} - 24 q^{6} + 46 q^{9} - 16 q^{10} - 84 q^{11} + 16 q^{15} - 148 q^{16} + 72 q^{19} + 136 q^{20} + 72 q^{24} + 362 q^{25} - 620 q^{26} + 176 q^{29} - 52 q^{30} + 120 q^{31} - 1928 q^{34}+ \cdots - 10608 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/245\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(197\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −4.60176 + 2.65683i −1.62697 + 0.939331i −0.641978 + 0.766723i \(0.721886\pi\)
−0.984991 + 0.172608i \(0.944781\pi\)
\(3\) 1.67956 + 0.969693i 0.323231 + 0.186617i 0.652832 0.757503i \(-0.273581\pi\)
−0.329601 + 0.944120i \(0.606914\pi\)
\(4\) 10.1175 17.5240i 1.26468 2.19050i
\(5\) 8.30643 7.48353i 0.742950 0.669347i
\(6\) −10.3052 −0.701182
\(7\) 0 0
\(8\) 65.0123i 2.87317i
\(9\) −11.6194 20.1254i −0.430348 0.745384i
\(10\) −18.3418 + 56.5062i −0.580018 + 1.78688i
\(11\) −12.7710 + 22.1200i −0.350054 + 0.606311i −0.986259 0.165209i \(-0.947170\pi\)
0.636205 + 0.771520i \(0.280503\pi\)
\(12\) 33.9858 19.6217i 0.817570 0.472024i
\(13\) 64.1014i 1.36758i 0.729679 + 0.683790i \(0.239670\pi\)
−0.729679 + 0.683790i \(0.760330\pi\)
\(14\) 0 0
\(15\) 21.2079 4.51433i 0.365056 0.0777063i
\(16\) −91.7868 158.979i −1.43417 2.48405i
\(17\) 23.9847 + 13.8476i 0.342185 + 0.197561i 0.661238 0.750176i \(-0.270031\pi\)
−0.319053 + 0.947737i \(0.603365\pi\)
\(18\) 106.939 + 61.7415i 1.40032 + 0.808478i
\(19\) −0.396218 0.686270i −0.00478414 0.00828637i 0.863623 0.504137i \(-0.168190\pi\)
−0.868408 + 0.495851i \(0.834856\pi\)
\(20\) −47.1011 221.276i −0.526606 2.47394i
\(21\) 0 0
\(22\) 135.721i 1.31527i
\(23\) 94.0560 54.3032i 0.852697 0.492305i −0.00886320 0.999961i \(-0.502821\pi\)
0.861560 + 0.507656i \(0.169488\pi\)
\(24\) −63.0420 + 109.192i −0.536183 + 0.928696i
\(25\) 12.9936 124.323i 0.103949 0.994583i
\(26\) −170.307 294.980i −1.28461 2.22501i
\(27\) 97.4324i 0.694477i
\(28\) 0 0
\(29\) 234.000 1.49837 0.749186 0.662360i \(-0.230445\pi\)
0.749186 + 0.662360i \(0.230445\pi\)
\(30\) −85.5997 + 77.1195i −0.520943 + 0.469334i
\(31\) 64.6019 111.894i 0.374285 0.648281i −0.615935 0.787797i \(-0.711221\pi\)
0.990220 + 0.139516i \(0.0445548\pi\)
\(32\) 394.343 + 227.674i 2.17846 + 1.25773i
\(33\) −42.8992 + 24.7679i −0.226297 + 0.130652i
\(34\) −147.163 −0.742300
\(35\) 0 0
\(36\) −470.236 −2.17702
\(37\) −33.1781 + 19.1554i −0.147418 + 0.0851116i −0.571895 0.820327i \(-0.693791\pi\)
0.424477 + 0.905439i \(0.360458\pi\)
\(38\) 3.64660 + 2.10537i 0.0155673 + 0.00898778i
\(39\) −62.1587 + 107.662i −0.255214 + 0.442044i
\(40\) 486.522 + 540.021i 1.92315 + 2.13462i
\(41\) 403.216 1.53590 0.767949 0.640511i \(-0.221278\pi\)
0.767949 + 0.640511i \(0.221278\pi\)
\(42\) 0 0
\(43\) 172.895i 0.613167i 0.951844 + 0.306584i \(0.0991859\pi\)
−0.951844 + 0.306584i \(0.900814\pi\)
\(44\) 258.420 + 447.597i 0.885416 + 1.53359i
\(45\) −247.124 80.2160i −0.818648 0.265731i
\(46\) −288.549 + 499.781i −0.924874 + 1.60193i
\(47\) 179.218 103.471i 0.556205 0.321125i −0.195416 0.980720i \(-0.562606\pi\)
0.751621 + 0.659596i \(0.229272\pi\)
\(48\) 356.020i 1.07056i
\(49\) 0 0
\(50\) 270.511 + 606.626i 0.765120 + 1.71580i
\(51\) 26.8558 + 46.5157i 0.0737366 + 0.127716i
\(52\) 1123.31 + 648.545i 2.99568 + 1.72956i
\(53\) −124.735 72.0155i −0.323276 0.186643i 0.329576 0.944129i \(-0.393094\pi\)
−0.652852 + 0.757486i \(0.726428\pi\)
\(54\) 258.861 + 448.361i 0.652343 + 1.12989i
\(55\) 59.4542 + 279.310i 0.145760 + 0.684767i
\(56\) 0 0
\(57\) 1.53684i 0.00357122i
\(58\) −1076.81 + 621.699i −2.43780 + 1.40747i
\(59\) 339.543 588.105i 0.749232 1.29771i −0.198959 0.980008i \(-0.563756\pi\)
0.948191 0.317701i \(-0.102911\pi\)
\(60\) 135.461 417.320i 0.291466 0.897929i
\(61\) −287.358 497.719i −0.603155 1.04470i −0.992340 0.123536i \(-0.960577\pi\)
0.389185 0.921160i \(-0.372757\pi\)
\(62\) 686.544i 1.40631i
\(63\) 0 0
\(64\) −950.977 −1.85738
\(65\) 479.705 + 532.454i 0.915386 + 1.01604i
\(66\) 131.608 227.952i 0.245452 0.425135i
\(67\) 446.557 + 257.820i 0.814263 + 0.470115i 0.848434 0.529301i \(-0.177546\pi\)
−0.0341709 + 0.999416i \(0.510879\pi\)
\(68\) 485.330 280.205i 0.865513 0.499704i
\(69\) 210.630 0.367491
\(70\) 0 0
\(71\) 556.612 0.930391 0.465195 0.885208i \(-0.345984\pi\)
0.465195 + 0.885208i \(0.345984\pi\)
\(72\) 1308.40 755.404i 2.14161 1.23646i
\(73\) −150.033 86.6217i −0.240549 0.138881i 0.374880 0.927073i \(-0.377684\pi\)
−0.615429 + 0.788192i \(0.711017\pi\)
\(74\) 101.785 176.297i 0.159896 0.276948i
\(75\) 142.379 196.207i 0.219206 0.302081i
\(76\) −16.0349 −0.0242017
\(77\) 0 0
\(78\) 660.580i 0.958923i
\(79\) 39.6645 + 68.7010i 0.0564887 + 0.0978413i 0.892887 0.450281i \(-0.148676\pi\)
−0.836398 + 0.548122i \(0.815343\pi\)
\(80\) −1952.15 633.663i −2.72821 0.885570i
\(81\) −219.244 + 379.742i −0.300746 + 0.520908i
\(82\) −1855.50 + 1071.28i −2.49886 + 1.44272i
\(83\) 1043.56i 1.38007i −0.723777 0.690034i \(-0.757596\pi\)
0.723777 0.690034i \(-0.242404\pi\)
\(84\) 0 0
\(85\) 302.856 64.4663i 0.386463 0.0822630i
\(86\) −459.352 795.620i −0.575967 0.997604i
\(87\) 393.017 + 226.909i 0.484320 + 0.279622i
\(88\) −1438.07 830.271i −1.74203 1.00576i
\(89\) −326.030 564.700i −0.388304 0.672563i 0.603917 0.797047i \(-0.293606\pi\)
−0.992222 + 0.124484i \(0.960272\pi\)
\(90\) 1350.33 287.432i 1.58152 0.336645i
\(91\) 0 0
\(92\) 2197.65i 2.49044i
\(93\) 217.005 125.288i 0.241961 0.139696i
\(94\) −549.812 + 952.302i −0.603285 + 1.04492i
\(95\) −8.42688 2.73534i −0.00910083 0.00295411i
\(96\) 441.548 + 764.784i 0.469431 + 0.813078i
\(97\) 515.714i 0.539823i 0.962885 + 0.269912i \(0.0869945\pi\)
−0.962885 + 0.269912i \(0.913005\pi\)
\(98\) 0 0
\(99\) 593.564 0.602580
\(100\) −2047.17 1485.53i −2.04717 1.48553i
\(101\) −268.170 + 464.484i −0.264197 + 0.457602i −0.967353 0.253433i \(-0.918440\pi\)
0.703156 + 0.711036i \(0.251774\pi\)
\(102\) −247.168 142.703i −0.239934 0.138526i
\(103\) −330.556 + 190.846i −0.316220 + 0.182570i −0.649706 0.760185i \(-0.725108\pi\)
0.333487 + 0.942755i \(0.391775\pi\)
\(104\) −4167.38 −3.92928
\(105\) 0 0
\(106\) 765.332 0.701279
\(107\) 1196.08 690.560i 1.08065 0.623915i 0.149580 0.988750i \(-0.452208\pi\)
0.931072 + 0.364835i \(0.118874\pi\)
\(108\) −1707.40 985.770i −1.52125 0.878294i
\(109\) −195.291 + 338.254i −0.171610 + 0.297237i −0.938983 0.343964i \(-0.888230\pi\)
0.767373 + 0.641201i \(0.221564\pi\)
\(110\) −1015.67 1127.36i −0.880369 0.977177i
\(111\) −74.2995 −0.0635333
\(112\) 0 0
\(113\) 1643.15i 1.36792i 0.729521 + 0.683958i \(0.239743\pi\)
−0.729521 + 0.683958i \(0.760257\pi\)
\(114\) 4.08312 + 7.07217i 0.00335455 + 0.00581026i
\(115\) 374.890 1154.94i 0.303988 0.936508i
\(116\) 2367.49 4100.62i 1.89497 3.28218i
\(117\) 1290.07 744.820i 1.01937 0.588535i
\(118\) 3608.43i 2.81511i
\(119\) 0 0
\(120\) 293.487 + 1378.77i 0.223263 + 1.04887i
\(121\) 339.304 + 587.692i 0.254924 + 0.441542i
\(122\) 2644.71 + 1526.92i 1.96263 + 1.13312i
\(123\) 677.225 + 390.996i 0.496450 + 0.286625i
\(124\) −1307.22 2264.16i −0.946705 1.63974i
\(125\) −822.443 1129.92i −0.588492 0.808503i
\(126\) 0 0
\(127\) 192.032i 0.134174i 0.997747 + 0.0670869i \(0.0213705\pi\)
−0.997747 + 0.0670869i \(0.978630\pi\)
\(128\) 1221.42 705.189i 0.843434 0.486957i
\(129\) −167.655 + 290.387i −0.114428 + 0.198195i
\(130\) −3622.13 1175.73i −2.44370 0.793221i
\(131\) 1041.45 + 1803.84i 0.694594 + 1.20307i 0.970317 + 0.241835i \(0.0777493\pi\)
−0.275723 + 0.961237i \(0.588917\pi\)
\(132\) 1002.35i 0.660936i
\(133\) 0 0
\(134\) −2739.93 −1.76637
\(135\) −729.138 809.316i −0.464846 0.515961i
\(136\) −900.264 + 1559.30i −0.567625 + 0.983156i
\(137\) −67.6980 39.0855i −0.0422177 0.0243744i 0.478743 0.877955i \(-0.341093\pi\)
−0.520960 + 0.853581i \(0.674426\pi\)
\(138\) −969.268 + 559.607i −0.597896 + 0.345195i
\(139\) 1393.67 0.850426 0.425213 0.905093i \(-0.360199\pi\)
0.425213 + 0.905093i \(0.360199\pi\)
\(140\) 0 0
\(141\) 401.342 0.239710
\(142\) −2561.40 + 1478.82i −1.51372 + 0.873945i
\(143\) −1417.92 818.638i −0.829179 0.478727i
\(144\) −2133.01 + 3694.49i −1.23438 + 2.13801i
\(145\) 1943.71 1751.15i 1.11322 1.00293i
\(146\) 920.556 0.521820
\(147\) 0 0
\(148\) 775.217i 0.430557i
\(149\) 16.2501 + 28.1460i 0.00893463 + 0.0154752i 0.870458 0.492242i \(-0.163823\pi\)
−0.861524 + 0.507718i \(0.830489\pi\)
\(150\) −133.902 + 1281.18i −0.0728872 + 0.697384i
\(151\) −233.381 + 404.228i −0.125777 + 0.217852i −0.922036 0.387103i \(-0.873476\pi\)
0.796260 + 0.604955i \(0.206809\pi\)
\(152\) 44.6160 25.7591i 0.0238081 0.0137456i
\(153\) 643.602i 0.340080i
\(154\) 0 0
\(155\) −300.749 1412.89i −0.155850 0.732167i
\(156\) 1257.78 + 2178.54i 0.645531 + 1.11809i
\(157\) −1449.30 836.751i −0.736729 0.425351i 0.0841500 0.996453i \(-0.473183\pi\)
−0.820879 + 0.571103i \(0.806516\pi\)
\(158\) −365.053 210.764i −0.183811 0.106123i
\(159\) −139.666 241.908i −0.0696618 0.120658i
\(160\) 4979.39 1059.92i 2.46035 0.523712i
\(161\) 0 0
\(162\) 2329.98i 1.13000i
\(163\) 1618.91 934.679i 0.777932 0.449139i −0.0577648 0.998330i \(-0.518397\pi\)
0.835697 + 0.549191i \(0.185064\pi\)
\(164\) 4079.53 7065.95i 1.94243 3.36438i
\(165\) −170.988 + 526.770i −0.0806752 + 0.248539i
\(166\) 2772.56 + 4802.22i 1.29634 + 2.24533i
\(167\) 46.5250i 0.0215581i 0.999942 + 0.0107791i \(0.00343115\pi\)
−0.999942 + 0.0107791i \(0.996569\pi\)
\(168\) 0 0
\(169\) −1911.99 −0.870275
\(170\) −1222.40 + 1101.30i −0.551492 + 0.496856i
\(171\) −9.20762 + 15.9481i −0.00411769 + 0.00713204i
\(172\) 3029.80 + 1749.26i 1.34314 + 0.775463i
\(173\) −2161.84 + 1248.14i −0.950066 + 0.548521i −0.893102 0.449855i \(-0.851476\pi\)
−0.0569648 + 0.998376i \(0.518142\pi\)
\(174\) −2411.43 −1.05063
\(175\) 0 0
\(176\) 4688.83 2.00815
\(177\) 1140.56 658.504i 0.484350 0.279640i
\(178\) 3000.62 + 1732.41i 1.26352 + 0.729492i
\(179\) 1487.85 2577.03i 0.621269 1.07607i −0.367981 0.929833i \(-0.619951\pi\)
0.989250 0.146236i \(-0.0467158\pi\)
\(180\) −3905.98 + 3519.02i −1.61741 + 1.45718i
\(181\) −966.273 −0.396809 −0.198405 0.980120i \(-0.563576\pi\)
−0.198405 + 0.980120i \(0.563576\pi\)
\(182\) 0 0
\(183\) 1114.60i 0.450237i
\(184\) 3530.38 + 6114.80i 1.41447 + 2.44994i
\(185\) −132.242 + 407.403i −0.0525547 + 0.161907i
\(186\) −665.737 + 1153.09i −0.262442 + 0.454563i
\(187\) −612.617 + 353.695i −0.239567 + 0.138314i
\(188\) 4187.48i 1.62449i
\(189\) 0 0
\(190\) 46.0458 9.80136i 0.0175817 0.00374245i
\(191\) 772.749 + 1338.44i 0.292744 + 0.507048i 0.974458 0.224571i \(-0.0720982\pi\)
−0.681713 + 0.731619i \(0.738765\pi\)
\(192\) −1597.22 922.156i −0.600362 0.346619i
\(193\) 1995.37 + 1152.03i 0.744195 + 0.429661i 0.823593 0.567182i \(-0.191966\pi\)
−0.0793975 + 0.996843i \(0.525300\pi\)
\(194\) −1370.16 2373.20i −0.507073 0.878276i
\(195\) 289.375 + 1359.45i 0.106270 + 0.499244i
\(196\) 0 0
\(197\) 222.021i 0.0802960i 0.999194 + 0.0401480i \(0.0127829\pi\)
−0.999194 + 0.0401480i \(0.987217\pi\)
\(198\) −2731.44 + 1577.00i −0.980379 + 0.566022i
\(199\) −1790.28 + 3100.85i −0.637736 + 1.10459i 0.348193 + 0.937423i \(0.386795\pi\)
−0.985928 + 0.167168i \(0.946538\pi\)
\(200\) 8082.52 + 844.747i 2.85760 + 0.298663i
\(201\) 500.012 + 866.047i 0.175463 + 0.303912i
\(202\) 2849.92i 0.992673i
\(203\) 0 0
\(204\) 1086.85 0.373014
\(205\) 3349.29 3017.48i 1.14109 1.02805i
\(206\) 1014.09 1756.46i 0.342986 0.594070i
\(207\) −2185.75 1261.94i −0.733912 0.423724i
\(208\) 10190.8 5883.67i 3.39714 1.96134i
\(209\) 20.2404 0.00669883
\(210\) 0 0
\(211\) −4181.04 −1.36415 −0.682073 0.731284i \(-0.738921\pi\)
−0.682073 + 0.731284i \(0.738921\pi\)
\(212\) −2524.00 + 1457.23i −0.817683 + 0.472090i
\(213\) 934.863 + 539.743i 0.300731 + 0.173627i
\(214\) −3669.40 + 6355.58i −1.17213 + 2.03018i
\(215\) 1293.86 + 1436.14i 0.410422 + 0.455553i
\(216\) 6334.31 1.99535
\(217\) 0 0
\(218\) 2075.42i 0.644794i
\(219\) −167.993 290.972i −0.0518352 0.0897812i
\(220\) 5496.15 + 1784.04i 1.68432 + 0.546726i
\(221\) −887.651 + 1537.46i −0.270180 + 0.467966i
\(222\) 341.908 197.401i 0.103367 0.0596787i
\(223\) 2361.52i 0.709145i −0.935028 0.354573i \(-0.884626\pi\)
0.935028 0.354573i \(-0.115374\pi\)
\(224\) 0 0
\(225\) −2653.02 + 1183.05i −0.786081 + 0.350534i
\(226\) −4365.57 7561.39i −1.28493 2.22556i
\(227\) −508.250 293.438i −0.148607 0.0857982i 0.423853 0.905731i \(-0.360677\pi\)
−0.572460 + 0.819933i \(0.694011\pi\)
\(228\) −26.9315 15.5489i −0.00782274 0.00451646i
\(229\) 2309.78 + 4000.65i 0.666526 + 1.15446i 0.978869 + 0.204487i \(0.0655527\pi\)
−0.312344 + 0.949969i \(0.601114\pi\)
\(230\) 1343.31 + 6310.76i 0.385111 + 1.80921i
\(231\) 0 0
\(232\) 15212.9i 4.30507i
\(233\) −4434.43 + 2560.22i −1.24682 + 0.719853i −0.970474 0.241205i \(-0.922457\pi\)
−0.276347 + 0.961058i \(0.589124\pi\)
\(234\) −3957.72 + 6854.97i −1.10566 + 1.91506i
\(235\) 714.329 2200.66i 0.198288 0.610874i
\(236\) −6870.63 11900.3i −1.89508 3.28238i
\(237\) 153.850i 0.0421671i
\(238\) 0 0
\(239\) −1127.51 −0.305158 −0.152579 0.988291i \(-0.548758\pi\)
−0.152579 + 0.988291i \(0.548758\pi\)
\(240\) −2664.29 2957.26i −0.716579 0.795375i
\(241\) −1774.77 + 3073.98i −0.474368 + 0.821630i −0.999569 0.0293484i \(-0.990657\pi\)
0.525201 + 0.850978i \(0.323990\pi\)
\(242\) −3122.80 1802.95i −0.829508 0.478917i
\(243\) −3014.70 + 1740.54i −0.795856 + 0.459487i
\(244\) −11629.4 −3.05120
\(245\) 0 0
\(246\) −4155.24 −1.07694
\(247\) 43.9909 25.3981i 0.0113323 0.00654269i
\(248\) 7274.47 + 4199.92i 1.86262 + 1.07538i
\(249\) 1011.93 1752.72i 0.257545 0.446081i
\(250\) 6786.68 + 3014.52i 1.71691 + 0.762620i
\(251\) −4717.19 −1.18624 −0.593120 0.805114i \(-0.702104\pi\)
−0.593120 + 0.805114i \(0.702104\pi\)
\(252\) 0 0
\(253\) 2774.02i 0.689333i
\(254\) −510.196 883.685i −0.126034 0.218297i
\(255\) 571.177 + 185.403i 0.140269 + 0.0455309i
\(256\) 56.7760 98.3390i 0.0138613 0.0240085i
\(257\) 5421.59 3130.16i 1.31591 0.759742i 0.332844 0.942982i \(-0.391992\pi\)
0.983068 + 0.183239i \(0.0586584\pi\)
\(258\) 1781.72i 0.429942i
\(259\) 0 0
\(260\) 14184.1 3019.25i 3.38331 0.720176i
\(261\) −2718.94 4709.35i −0.644821 1.11686i
\(262\) −9585.00 5533.90i −2.26017 1.30491i
\(263\) 4982.28 + 2876.52i 1.16814 + 0.674425i 0.953241 0.302212i \(-0.0977251\pi\)
0.214897 + 0.976637i \(0.431058\pi\)
\(264\) −1610.22 2788.98i −0.375386 0.650188i
\(265\) −1575.03 + 335.262i −0.365107 + 0.0777170i
\(266\) 0 0
\(267\) 1264.60i 0.289858i
\(268\) 9036.06 5216.97i 2.05957 1.18909i
\(269\) 3529.60 6113.45i 0.800014 1.38566i −0.119593 0.992823i \(-0.538159\pi\)
0.919606 0.392841i \(-0.128508\pi\)
\(270\) 5505.53 + 1787.08i 1.24095 + 0.402809i
\(271\) −4267.26 7391.11i −0.956523 1.65675i −0.730844 0.682544i \(-0.760874\pi\)
−0.225678 0.974202i \(-0.572460\pi\)
\(272\) 5084.11i 1.13334i
\(273\) 0 0
\(274\) 415.373 0.0915826
\(275\) 2584.08 + 1875.14i 0.566639 + 0.411183i
\(276\) 2131.04 3691.07i 0.464760 0.804987i
\(277\) −1137.91 656.972i −0.246824 0.142504i 0.371485 0.928439i \(-0.378849\pi\)
−0.618309 + 0.785935i \(0.712182\pi\)
\(278\) −6413.32 + 3702.73i −1.38362 + 0.798832i
\(279\) −3002.54 −0.644291
\(280\) 0 0
\(281\) −247.229 −0.0524856 −0.0262428 0.999656i \(-0.508354\pi\)
−0.0262428 + 0.999656i \(0.508354\pi\)
\(282\) −1846.88 + 1066.30i −0.390001 + 0.225167i
\(283\) −7859.10 4537.45i −1.65079 0.953087i −0.976746 0.214400i \(-0.931221\pi\)
−0.674049 0.738687i \(-0.735446\pi\)
\(284\) 5631.51 9754.07i 1.17665 2.03802i
\(285\) −11.5010 12.7657i −0.00239038 0.00265323i
\(286\) 8699.92 1.79873
\(287\) 0 0
\(288\) 10581.7i 2.16505i
\(289\) −2072.99 3590.52i −0.421939 0.730820i
\(290\) −4291.98 + 13222.5i −0.869083 + 2.67741i
\(291\) −500.085 + 866.172i −0.100740 + 0.174488i
\(292\) −3035.91 + 1752.79i −0.608436 + 0.351281i
\(293\) 2740.72i 0.546466i 0.961948 + 0.273233i \(0.0880930\pi\)
−0.961948 + 0.273233i \(0.911907\pi\)
\(294\) 0 0
\(295\) −1580.71 7426.04i −0.311975 1.46563i
\(296\) −1245.34 2156.99i −0.244540 0.423555i
\(297\) 2155.20 + 1244.31i 0.421069 + 0.243104i
\(298\) −149.558 86.3475i −0.0290727 0.0167851i
\(299\) 3480.91 + 6029.12i 0.673266 + 1.16613i
\(300\) −1997.83 4480.16i −0.384482 0.862208i
\(301\) 0 0
\(302\) 2480.21i 0.472584i
\(303\) −900.813 + 520.085i −0.170793 + 0.0986075i
\(304\) −72.7352 + 125.981i −0.0137225 + 0.0237681i
\(305\) −6111.62 1983.82i −1.14738 0.372436i
\(306\) 1709.94 + 2961.71i 0.319447 + 0.553299i
\(307\) 6985.46i 1.29864i −0.760517 0.649318i \(-0.775054\pi\)
0.760517 0.649318i \(-0.224946\pi\)
\(308\) 0 0
\(309\) −740.250 −0.136283
\(310\) 5137.77 + 5702.73i 0.941309 + 1.04482i
\(311\) −178.421 + 309.033i −0.0325315 + 0.0563462i −0.881833 0.471562i \(-0.843690\pi\)
0.849301 + 0.527908i \(0.177024\pi\)
\(312\) −6999.36 4041.08i −1.27007 0.733273i
\(313\) −5741.85 + 3315.06i −1.03690 + 0.598653i −0.918953 0.394368i \(-0.870964\pi\)
−0.117944 + 0.993020i \(0.537630\pi\)
\(314\) 8892.42 1.59818
\(315\) 0 0
\(316\) 1605.22 0.285762
\(317\) −2159.91 + 1247.02i −0.382689 + 0.220946i −0.678988 0.734150i \(-0.737581\pi\)
0.296298 + 0.955095i \(0.404248\pi\)
\(318\) 1285.42 + 742.137i 0.226675 + 0.130871i
\(319\) −2988.41 + 5176.08i −0.524511 + 0.908480i
\(320\) −7899.23 + 7116.66i −1.37994 + 1.24323i
\(321\) 2678.52 0.465734
\(322\) 0 0
\(323\) 21.9467i 0.00378063i
\(324\) 4436.39 + 7684.06i 0.760698 + 1.31757i
\(325\) 7969.27 + 832.911i 1.36017 + 0.142159i
\(326\) −4966.56 + 8602.34i −0.843781 + 1.46147i
\(327\) −656.005 + 378.744i −0.110939 + 0.0640508i
\(328\) 26214.0i 4.41289i
\(329\) 0 0
\(330\) −612.690 2878.35i −0.102204 0.480146i
\(331\) 2341.23 + 4055.14i 0.388779 + 0.673385i 0.992286 0.123973i \(-0.0395636\pi\)
−0.603506 + 0.797358i \(0.706230\pi\)
\(332\) −18287.3 10558.2i −3.02304 1.74535i
\(333\) 771.020 + 445.148i 0.126882 + 0.0732552i
\(334\) −123.609 214.097i −0.0202502 0.0350744i
\(335\) 5638.70 1200.26i 0.919627 0.195753i
\(336\) 0 0
\(337\) 3596.60i 0.581363i 0.956820 + 0.290681i \(0.0938820\pi\)
−0.956820 + 0.290681i \(0.906118\pi\)
\(338\) 8798.54 5079.84i 1.41591 0.817476i
\(339\) −1593.35 + 2759.77i −0.255277 + 0.442153i
\(340\) 1934.44 5959.49i 0.308557 0.950584i
\(341\) 1650.06 + 2857.98i 0.262040 + 0.453867i
\(342\) 97.8523i 0.0154715i
\(343\) 0 0
\(344\) −11240.3 −1.76173
\(345\) 1749.58 1576.25i 0.273027 0.245979i
\(346\) 6632.18 11487.3i 1.03049 1.78485i
\(347\) −1645.03 949.756i −0.254495 0.146932i 0.367326 0.930092i \(-0.380273\pi\)
−0.621821 + 0.783160i \(0.713607\pi\)
\(348\) 7952.68 4591.48i 1.22502 0.707268i
\(349\) −1037.55 −0.159137 −0.0795683 0.996829i \(-0.525354\pi\)
−0.0795683 + 0.996829i \(0.525354\pi\)
\(350\) 0 0
\(351\) 6245.56 0.949752
\(352\) −10072.3 + 5815.25i −1.52516 + 0.880550i
\(353\) 3539.51 + 2043.54i 0.533681 + 0.308121i 0.742514 0.669830i \(-0.233633\pi\)
−0.208833 + 0.977951i \(0.566967\pi\)
\(354\) −3499.07 + 6060.56i −0.525348 + 0.909930i
\(355\) 4623.46 4165.42i 0.691234 0.622754i
\(356\) −13194.4 −1.96433
\(357\) 0 0
\(358\) 15811.8i 2.33431i
\(359\) 1736.33 + 3007.42i 0.255265 + 0.442132i 0.964967 0.262369i \(-0.0845039\pi\)
−0.709702 + 0.704502i \(0.751171\pi\)
\(360\) 5215.03 16066.1i 0.763490 2.35211i
\(361\) 3429.19 5939.52i 0.499954 0.865946i
\(362\) 4446.56 2567.22i 0.645596 0.372735i
\(363\) 1316.08i 0.190293i
\(364\) 0 0
\(365\) −1894.48 + 403.260i −0.271675 + 0.0578290i
\(366\) 2961.30 + 5129.11i 0.422922 + 0.732522i
\(367\) 7594.29 + 4384.57i 1.08016 + 0.623631i 0.930940 0.365173i \(-0.118990\pi\)
0.149221 + 0.988804i \(0.452323\pi\)
\(368\) −17266.2 9968.64i −2.44582 1.41210i
\(369\) −4685.13 8114.88i −0.660970 1.14483i
\(370\) −473.853 2226.11i −0.0665796 0.312784i
\(371\) 0 0
\(372\) 5070.39i 0.706687i
\(373\) −9845.73 + 5684.43i −1.36674 + 0.789085i −0.990510 0.137443i \(-0.956112\pi\)
−0.376226 + 0.926528i \(0.622778\pi\)
\(374\) 1879.41 3255.24i 0.259845 0.450065i
\(375\) −285.667 2695.28i −0.0393380 0.371156i
\(376\) 6726.92 + 11651.4i 0.922645 + 1.59807i
\(377\) 14999.8i 2.04914i
\(378\) 0 0
\(379\) 12137.4 1.64500 0.822501 0.568764i \(-0.192578\pi\)
0.822501 + 0.568764i \(0.192578\pi\)
\(380\) −133.193 + 119.998i −0.0179807 + 0.0161993i
\(381\) −186.212 + 322.529i −0.0250392 + 0.0433692i
\(382\) −7112.01 4106.12i −0.952571 0.549967i
\(383\) −8547.33 + 4934.80i −1.14033 + 0.658373i −0.946514 0.322664i \(-0.895422\pi\)
−0.193821 + 0.981037i \(0.562088\pi\)
\(384\) 2735.27 0.363499
\(385\) 0 0
\(386\) −12242.9 −1.61438
\(387\) 3479.57 2008.93i 0.457045 0.263875i
\(388\) 9037.37 + 5217.73i 1.18248 + 0.682706i
\(389\) 28.5583 49.4644i 0.00372227 0.00644716i −0.864158 0.503220i \(-0.832148\pi\)
0.867881 + 0.496773i \(0.165482\pi\)
\(390\) −4943.47 5487.06i −0.641852 0.712431i
\(391\) 3007.88 0.389041
\(392\) 0 0
\(393\) 4039.54i 0.518494i
\(394\) −589.871 1021.69i −0.0754245 0.130639i
\(395\) 843.596 + 273.829i 0.107458 + 0.0348806i
\(396\) 6005.37 10401.6i 0.762073 1.31995i
\(397\) 6439.91 3718.09i 0.814131 0.470039i −0.0342574 0.999413i \(-0.510907\pi\)
0.848388 + 0.529374i \(0.177573\pi\)
\(398\) 19025.8i 2.39618i
\(399\) 0 0
\(400\) −20957.4 + 9345.47i −2.61968 + 1.16818i
\(401\) 6232.49 + 10795.0i 0.776149 + 1.34433i 0.934147 + 0.356890i \(0.116163\pi\)
−0.157998 + 0.987439i \(0.550504\pi\)
\(402\) −4601.87 2656.89i −0.570947 0.329636i
\(403\) 7172.55 + 4141.07i 0.886576 + 0.511865i
\(404\) 5426.40 + 9398.80i 0.668251 + 1.15745i
\(405\) 1020.67 + 4795.02i 0.125229 + 0.588312i
\(406\) 0 0
\(407\) 978.533i 0.119175i
\(408\) −3024.09 + 1745.96i −0.366948 + 0.211858i
\(409\) 854.358 1479.79i 0.103289 0.178902i −0.809749 0.586777i \(-0.800397\pi\)
0.913038 + 0.407875i \(0.133730\pi\)
\(410\) −7395.70 + 22784.2i −0.890848 + 2.74447i
\(411\) −75.8018 131.293i −0.00909739 0.0157571i
\(412\) 7723.54i 0.923571i
\(413\) 0 0
\(414\) 13411.0 1.59207
\(415\) −7809.51 8668.26i −0.923744 1.02532i
\(416\) −14594.2 + 25278.0i −1.72005 + 2.97922i
\(417\) 2340.74 + 1351.43i 0.274884 + 0.158704i
\(418\) −93.1413 + 53.7752i −0.0108988 + 0.00629242i
\(419\) 10618.8 1.23810 0.619050 0.785352i \(-0.287518\pi\)
0.619050 + 0.785352i \(0.287518\pi\)
\(420\) 0 0
\(421\) 13273.5 1.53661 0.768304 0.640085i \(-0.221101\pi\)
0.768304 + 0.640085i \(0.221101\pi\)
\(422\) 19240.2 11108.3i 2.21942 1.28138i
\(423\) −4164.81 2404.55i −0.478723 0.276391i
\(424\) 4681.90 8109.29i 0.536257 0.928825i
\(425\) 2033.22 2801.92i 0.232060 0.319795i
\(426\) −5736.02 −0.652373
\(427\) 0 0
\(428\) 27946.9i 3.15622i
\(429\) −1587.65 2749.90i −0.178678 0.309479i
\(430\) −9769.62 3171.20i −1.09566 0.355648i
\(431\) −3959.10 + 6857.37i −0.442467 + 0.766375i −0.997872 0.0652048i \(-0.979230\pi\)
0.555405 + 0.831580i \(0.312563\pi\)
\(432\) −15489.7 + 8943.01i −1.72512 + 0.995997i
\(433\) 4433.34i 0.492038i −0.969265 0.246019i \(-0.920877\pi\)
0.969265 0.246019i \(-0.0791226\pi\)
\(434\) 0 0
\(435\) 4962.65 1056.35i 0.546990 0.116433i
\(436\) 3951.70 + 6844.55i 0.434065 + 0.751822i
\(437\) −74.5333 43.0318i −0.00815884 0.00471051i
\(438\) 1546.13 + 892.656i 0.168668 + 0.0973807i
\(439\) −6479.19 11222.3i −0.704408 1.22007i −0.966905 0.255137i \(-0.917879\pi\)
0.262497 0.964933i \(-0.415454\pi\)
\(440\) −18158.6 + 3865.26i −1.96745 + 0.418793i
\(441\) 0 0
\(442\) 9433.34i 1.01515i
\(443\) −10427.3 + 6020.22i −1.11832 + 0.645664i −0.940972 0.338483i \(-0.890086\pi\)
−0.177351 + 0.984148i \(0.556753\pi\)
\(444\) −751.723 + 1302.02i −0.0803495 + 0.139169i
\(445\) −6934.09 2250.79i −0.738669 0.239770i
\(446\) 6274.17 + 10867.2i 0.666122 + 1.15376i
\(447\) 63.0304i 0.00666943i
\(448\) 0 0
\(449\) −11586.3 −1.21780 −0.608899 0.793247i \(-0.708389\pi\)
−0.608899 + 0.793247i \(0.708389\pi\)
\(450\) 9065.40 12492.8i 0.949661 1.30870i
\(451\) −5149.46 + 8919.13i −0.537647 + 0.931232i
\(452\) 28794.5 + 16624.5i 2.99642 + 1.72998i
\(453\) −783.954 + 452.616i −0.0813099 + 0.0469443i
\(454\) 3118.46 0.322371
\(455\) 0 0
\(456\) 99.9135 0.0102607
\(457\) −8430.18 + 4867.17i −0.862904 + 0.498198i −0.864984 0.501800i \(-0.832671\pi\)
0.00207942 + 0.999998i \(0.499338\pi\)
\(458\) −21258.1 12273.4i −2.16883 1.25218i
\(459\) 1349.20 2336.89i 0.137201 0.237640i
\(460\) −16446.1 18254.6i −1.66697 1.85027i
\(461\) 1343.41 0.135724 0.0678621 0.997695i \(-0.478382\pi\)
0.0678621 + 0.997695i \(0.478382\pi\)
\(462\) 0 0
\(463\) 6613.72i 0.663857i −0.943305 0.331929i \(-0.892301\pi\)
0.943305 0.331929i \(-0.107699\pi\)
\(464\) −21478.2 37201.2i −2.14892 3.72204i
\(465\) 864.942 2664.66i 0.0862597 0.265743i
\(466\) 13604.1 23563.1i 1.35236 2.34236i
\(467\) −12721.0 + 7344.47i −1.26051 + 0.727755i −0.973173 0.230076i \(-0.926103\pi\)
−0.287335 + 0.957830i \(0.592769\pi\)
\(468\) 30142.8i 2.97724i
\(469\) 0 0
\(470\) 2559.60 + 12024.8i 0.251204 + 1.18013i
\(471\) −1622.78 2810.74i −0.158756 0.274973i
\(472\) 38234.1 + 22074.5i 3.72853 + 2.15267i
\(473\) −3824.43 2208.03i −0.371770 0.214642i
\(474\) −408.752 707.979i −0.0396089 0.0686046i
\(475\) −90.4673 + 40.3418i −0.00873879 + 0.00389686i
\(476\) 0 0
\(477\) 3347.11i 0.321286i
\(478\) 5188.55 2995.61i 0.496482 0.286644i
\(479\) 7649.31 13249.0i 0.729657 1.26380i −0.227371 0.973808i \(-0.573013\pi\)
0.957028 0.289995i \(-0.0936538\pi\)
\(480\) 9390.97 + 3048.29i 0.892994 + 0.289864i
\(481\) −1227.89 2126.77i −0.116397 0.201605i
\(482\) 18861.0i 1.78235i
\(483\) 0 0
\(484\) 13731.6 1.28960
\(485\) 3859.36 + 4283.75i 0.361329 + 0.401062i
\(486\) 9248.61 16019.1i 0.863221 1.49514i
\(487\) −8360.44 4826.90i −0.777921 0.449133i 0.0577719 0.998330i \(-0.481600\pi\)
−0.835693 + 0.549197i \(0.814934\pi\)
\(488\) 32357.9 18681.8i 3.00158 1.73297i
\(489\) 3625.41 0.335269
\(490\) 0 0
\(491\) 20142.6 1.85137 0.925684 0.378297i \(-0.123490\pi\)
0.925684 + 0.378297i \(0.123490\pi\)
\(492\) 13703.6 7911.78i 1.25570 0.724981i
\(493\) 5612.44 + 3240.34i 0.512721 + 0.296020i
\(494\) −134.957 + 233.752i −0.0122915 + 0.0212895i
\(495\) 4930.40 4441.95i 0.447687 0.403335i
\(496\) −23718.4 −2.14715
\(497\) 0 0
\(498\) 10754.1i 0.967679i
\(499\) −654.645 1133.88i −0.0587293 0.101722i 0.835166 0.549998i \(-0.185372\pi\)
−0.893895 + 0.448276i \(0.852038\pi\)
\(500\) −28121.7 + 2980.56i −2.51528 + 0.266589i
\(501\) −45.1149 + 78.1413i −0.00402313 + 0.00696826i
\(502\) 21707.4 12532.8i 1.92998 1.11427i
\(503\) 2186.17i 0.193791i −0.995295 0.0968953i \(-0.969109\pi\)
0.995295 0.0968953i \(-0.0308912\pi\)
\(504\) 0 0
\(505\) 1248.44 + 5865.06i 0.110010 + 0.516815i
\(506\) −7370.10 12765.4i −0.647512 1.12152i
\(507\) −3211.30 1854.05i −0.281300 0.162409i
\(508\) 3365.16 + 1942.88i 0.293908 + 0.169688i
\(509\) −1795.56 3110.00i −0.156359 0.270822i 0.777194 0.629261i \(-0.216642\pi\)
−0.933553 + 0.358439i \(0.883309\pi\)
\(510\) −3121.01 + 664.340i −0.270981 + 0.0576813i
\(511\) 0 0
\(512\) 11886.4i 1.02600i
\(513\) −66.8649 + 38.6045i −0.00575469 + 0.00332247i
\(514\) −16632.6 + 28808.5i −1.42730 + 2.47215i
\(515\) −1317.53 + 4058.98i −0.112733 + 0.347301i
\(516\) 3392.49 + 5875.96i 0.289430 + 0.501307i
\(517\) 5285.73i 0.449644i
\(518\) 0 0
\(519\) −4841.24 −0.409455
\(520\) −34616.1 + 31186.7i −2.91926 + 2.63005i
\(521\) −4302.67 + 7452.44i −0.361811 + 0.626674i −0.988259 0.152789i \(-0.951175\pi\)
0.626448 + 0.779463i \(0.284508\pi\)
\(522\) 25023.9 + 14447.5i 2.09821 + 1.21140i
\(523\) −19517.1 + 11268.2i −1.63179 + 0.942113i −0.648245 + 0.761432i \(0.724497\pi\)
−0.983542 + 0.180681i \(0.942170\pi\)
\(524\) 42147.3 3.51377
\(525\) 0 0
\(526\) −30569.7 −2.53403
\(527\) 3098.92 1789.16i 0.256150 0.147888i
\(528\) 7875.16 + 4546.72i 0.649095 + 0.374755i
\(529\) −185.819 + 321.847i −0.0152723 + 0.0264525i
\(530\) 6357.18 5727.38i 0.521015 0.469399i
\(531\) −15781.1 −1.28972
\(532\) 0 0
\(533\) 25846.7i 2.10046i
\(534\) 3359.81 + 5819.37i 0.272272 + 0.471589i
\(535\) 4767.37 14687.0i 0.385255 1.18687i
\(536\) −16761.5 + 29031.7i −1.35072 + 2.33951i
\(537\) 4997.86 2885.51i 0.401627 0.231879i
\(538\) 37510.2i 3.00591i
\(539\) 0 0
\(540\) −21559.5 + 4589.17i −1.71810 + 0.365716i
\(541\) −4391.22 7605.81i −0.348971 0.604435i 0.637096 0.770784i \(-0.280135\pi\)
−0.986067 + 0.166349i \(0.946802\pi\)
\(542\) 39273.8 + 22674.8i 3.11246 + 1.79698i
\(543\) −1622.91 936.988i −0.128261 0.0740516i
\(544\) 6305.48 + 10921.4i 0.496958 + 0.860757i
\(545\) 909.161 + 4271.15i 0.0714572 + 0.335699i
\(546\) 0 0
\(547\) 22593.0i 1.76601i −0.469366 0.883004i \(-0.655518\pi\)
0.469366 0.883004i \(-0.344482\pi\)
\(548\) −1369.87 + 790.892i −0.106784 + 0.0616519i
\(549\) −6677.86 + 11566.4i −0.519133 + 0.899165i
\(550\) −16873.2 1763.51i −1.30814 0.136721i
\(551\) −92.7152 160.587i −0.00716842 0.0124161i
\(552\) 13693.5i 1.05586i
\(553\) 0 0
\(554\) 6981.84 0.535433
\(555\) −617.163 + 556.022i −0.0472020 + 0.0425258i
\(556\) 14100.4 24422.6i 1.07552 1.86286i
\(557\) −6290.92 3632.06i −0.478554 0.276294i 0.241259 0.970461i \(-0.422440\pi\)
−0.719814 + 0.694167i \(0.755773\pi\)
\(558\) 13817.0 7977.23i 1.04824 0.605202i
\(559\) −11082.8 −0.838555
\(560\) 0 0
\(561\) −1371.90 −0.103247
\(562\) 1137.69 656.846i 0.0853924 0.0493013i
\(563\) 3335.43 + 1925.71i 0.249683 + 0.144154i 0.619619 0.784903i \(-0.287287\pi\)
−0.369936 + 0.929057i \(0.620620\pi\)
\(564\) 4060.57 7033.11i 0.303158 0.525084i
\(565\) 12296.6 + 13648.7i 0.915611 + 1.01629i
\(566\) 48220.9 3.58105
\(567\) 0 0
\(568\) 36186.7i 2.67317i
\(569\) 8290.14 + 14358.9i 0.610792 + 1.05792i 0.991107 + 0.133066i \(0.0424822\pi\)
−0.380315 + 0.924857i \(0.624184\pi\)
\(570\) 86.8409 + 28.1884i 0.00638134 + 0.00207137i
\(571\) −3192.93 + 5530.32i −0.234010 + 0.405318i −0.958985 0.283458i \(-0.908518\pi\)
0.724974 + 0.688776i \(0.241852\pi\)
\(572\) −28691.6 + 16565.1i −2.09730 + 1.21088i
\(573\) 2997.32i 0.218525i
\(574\) 0 0
\(575\) −5529.00 12398.9i −0.401001 0.899252i
\(576\) 11049.8 + 19138.8i 0.799318 + 1.38446i
\(577\) 9577.44 + 5529.54i 0.691012 + 0.398956i 0.803991 0.594641i \(-0.202706\pi\)
−0.112979 + 0.993597i \(0.536039\pi\)
\(578\) 19078.8 + 11015.1i 1.37296 + 0.792681i
\(579\) 2234.22 + 3869.79i 0.160365 + 0.277760i
\(580\) −11021.7 51778.7i −0.789052 3.70689i
\(581\) 0 0
\(582\) 5314.56i 0.378515i
\(583\) 3185.96 1839.42i 0.226328 0.130670i
\(584\) 5631.48 9754.00i 0.399028 0.691136i
\(585\) 5141.96 15841.0i 0.363409 1.11957i
\(586\) −7281.62 12612.1i −0.513312 0.889083i
\(587\) 7871.25i 0.553461i −0.960948 0.276730i \(-0.910749\pi\)
0.960948 0.276730i \(-0.0892509\pi\)
\(588\) 0 0
\(589\) −102.386 −0.00716253
\(590\) 27003.8 + 29973.2i 1.88428 + 2.09148i
\(591\) −215.292 + 372.896i −0.0149846 + 0.0259542i
\(592\) 6090.63 + 3516.43i 0.422844 + 0.244129i
\(593\) 1747.69 1009.03i 0.121027 0.0698750i −0.438264 0.898846i \(-0.644407\pi\)
0.559291 + 0.828971i \(0.311073\pi\)
\(594\) −13223.6 −0.913422
\(595\) 0 0
\(596\) 657.640 0.0451980
\(597\) −6013.75 + 3472.04i −0.412272 + 0.238025i
\(598\) −32036.7 18496.4i −2.19076 1.26484i
\(599\) −678.335 + 1174.91i −0.0462705 + 0.0801428i −0.888233 0.459393i \(-0.848067\pi\)
0.841963 + 0.539536i \(0.181400\pi\)
\(600\) 12755.9 + 9256.36i 0.867929 + 0.629815i
\(601\) −11178.7 −0.758715 −0.379358 0.925250i \(-0.623855\pi\)
−0.379358 + 0.925250i \(0.623855\pi\)
\(602\) 0 0
\(603\) 11982.8i 0.809252i
\(604\) 4722.46 + 8179.53i 0.318136 + 0.551027i
\(605\) 7216.42 + 2342.43i 0.484941 + 0.157411i
\(606\) 2763.55 4786.61i 0.185250 0.320863i
\(607\) 8144.69 4702.34i 0.544617 0.314435i −0.202331 0.979317i \(-0.564852\pi\)
0.746948 + 0.664882i \(0.231518\pi\)
\(608\) 360.835i 0.0240687i
\(609\) 0 0
\(610\) 33394.9 7108.47i 2.21659 0.471825i
\(611\) 6632.67 + 11488.1i 0.439164 + 0.760654i
\(612\) −11278.5 6511.63i −0.744943 0.430093i
\(613\) 16400.8 + 9468.99i 1.08062 + 0.623897i 0.931064 0.364856i \(-0.118882\pi\)
0.149557 + 0.988753i \(0.452215\pi\)
\(614\) 18559.2 + 32145.4i 1.21985 + 2.11284i
\(615\) 8551.35 1820.25i 0.560689 0.119349i
\(616\) 0 0
\(617\) 17716.9i 1.15600i −0.816036 0.578001i \(-0.803833\pi\)
0.816036 0.578001i \(-0.196167\pi\)
\(618\) 3406.45 1966.72i 0.221728 0.128015i
\(619\) 3120.16 5404.28i 0.202601 0.350915i −0.746765 0.665088i \(-0.768394\pi\)
0.949366 + 0.314173i \(0.101727\pi\)
\(620\) −27802.2 9024.54i −1.80091 0.584571i
\(621\) −5290.89 9164.10i −0.341894 0.592178i
\(622\) 1896.13i 0.122231i
\(623\) 0 0
\(624\) 22821.4 1.46408
\(625\) −15287.3 3230.81i −0.978389 0.206772i
\(626\) 17615.1 30510.2i 1.12467 1.94798i
\(627\) 33.9949 + 19.6269i 0.00216527 + 0.00125012i
\(628\) −29326.4 + 16931.6i −1.86346 + 1.07587i
\(629\) −1061.03 −0.0672589
\(630\) 0 0
\(631\) −25887.7 −1.63323 −0.816617 0.577179i \(-0.804153\pi\)
−0.816617 + 0.577179i \(0.804153\pi\)
\(632\) −4466.41 + 2578.68i −0.281114 + 0.162301i
\(633\) −7022.30 4054.33i −0.440934 0.254573i
\(634\) 6626.25 11477.0i 0.415082 0.718944i
\(635\) 1437.08 + 1595.10i 0.0898089 + 0.0996845i
\(636\) −5652.27 −0.352401
\(637\) 0 0
\(638\) 31758.8i 1.97076i
\(639\) −6467.50 11202.0i −0.400392 0.693499i
\(640\) 4868.37 14998.2i 0.300686 0.926335i
\(641\) −9399.22 + 16279.9i −0.579168 + 1.00315i 0.416407 + 0.909178i \(0.363289\pi\)
−0.995575 + 0.0939701i \(0.970044\pi\)
\(642\) −12325.9 + 7116.38i −0.757734 + 0.437478i
\(643\) 2287.70i 0.140308i 0.997536 + 0.0701541i \(0.0223491\pi\)
−0.997536 + 0.0701541i \(0.977651\pi\)
\(644\) 0 0
\(645\) 780.503 + 3666.73i 0.0476469 + 0.223841i
\(646\) 58.3085 + 100.993i 0.00355127 + 0.00615097i
\(647\) −1532.27 884.654i −0.0931060 0.0537548i 0.452724 0.891651i \(-0.350452\pi\)
−0.545830 + 0.837896i \(0.683786\pi\)
\(648\) −24687.9 14253.6i −1.49666 0.864094i
\(649\) 8672.59 + 15021.4i 0.524544 + 0.908536i
\(650\) −38885.6 + 17340.1i −2.34649 + 1.04636i
\(651\) 0 0
\(652\) 37826.4i 2.27208i
\(653\) 3370.12 1945.74i 0.201965 0.116604i −0.395607 0.918420i \(-0.629466\pi\)
0.597572 + 0.801816i \(0.296132\pi\)
\(654\) 2012.52 3485.78i 0.120330 0.208417i
\(655\) 22149.8 + 7189.78i 1.32132 + 0.428898i
\(656\) −37009.9 64103.1i −2.20274 3.81525i
\(657\) 4025.96i 0.239068i
\(658\) 0 0
\(659\) −20097.6 −1.18800 −0.594001 0.804465i \(-0.702452\pi\)
−0.594001 + 0.804465i \(0.702452\pi\)
\(660\) 7501.13 + 8325.97i 0.442396 + 0.491043i
\(661\) −13584.0 + 23528.1i −0.799326 + 1.38447i 0.120730 + 0.992685i \(0.461477\pi\)
−0.920056 + 0.391788i \(0.871857\pi\)
\(662\) −21547.6 12440.5i −1.26506 0.730384i
\(663\) −2981.72 + 1721.50i −0.174661 + 0.100841i
\(664\) 67844.3 3.96516
\(665\) 0 0
\(666\) −4730.73 −0.275243
\(667\) 22009.1 12707.0i 1.27766 0.737655i
\(668\) 815.303 + 470.715i 0.0472231 + 0.0272642i
\(669\) 2289.95 3966.32i 0.132339 0.229218i
\(670\) −22759.1 + 20504.4i −1.31233 + 1.18232i
\(671\) 14679.4 0.844548
\(672\) 0 0
\(673\) 25909.7i 1.48402i 0.670389 + 0.742010i \(0.266127\pi\)
−0.670389 + 0.742010i \(0.733873\pi\)
\(674\) −9555.55 16550.7i −0.546092 0.945859i
\(675\) −12113.1 1266.00i −0.690714 0.0721902i
\(676\) −19344.6 + 33505.7i −1.10062 + 1.90634i
\(677\) 3775.19 2179.61i 0.214317 0.123736i −0.388999 0.921238i \(-0.627179\pi\)
0.603316 + 0.797502i \(0.293846\pi\)
\(678\) 16933.0i 0.959159i
\(679\) 0 0
\(680\) 4191.11 + 19689.4i 0.236355 + 1.11037i
\(681\) −569.090 985.693i −0.0320229 0.0554653i
\(682\) −15186.3 8767.84i −0.852662 0.492284i
\(683\) −25739.9 14860.9i −1.44203 0.832559i −0.444049 0.896003i \(-0.646458\pi\)
−0.997985 + 0.0634439i \(0.979792\pi\)
\(684\) 186.316 + 322.708i 0.0104152 + 0.0180396i
\(685\) −854.826 + 181.959i −0.0476806 + 0.0101493i
\(686\) 0 0
\(687\) 8959.10i 0.497541i
\(688\) 27486.7 15869.5i 1.52314 0.879386i
\(689\) 4616.30 7995.67i 0.255250 0.442105i
\(690\) −3863.32 + 11901.9i −0.213151 + 0.656662i
\(691\) −2464.57 4268.75i −0.135682 0.235009i 0.790176 0.612881i \(-0.209989\pi\)
−0.925858 + 0.377872i \(0.876656\pi\)
\(692\) 50512.0i 2.77482i
\(693\) 0 0
\(694\) 10093.4 0.552073
\(695\) 11576.4 10429.5i 0.631824 0.569230i
\(696\) −14751.9 + 25551.0i −0.803402 + 1.39153i
\(697\) 9671.03 + 5583.57i 0.525562 + 0.303433i
\(698\) 4774.55 2756.59i 0.258910 0.149482i
\(699\) −9930.51 −0.537348
\(700\) 0 0
\(701\) −19358.8 −1.04304 −0.521520 0.853239i \(-0.674635\pi\)
−0.521520 + 0.853239i \(0.674635\pi\)
\(702\) −28740.6 + 16593.4i −1.54522 + 0.892132i
\(703\) 26.2916 + 15.1794i 0.00141053 + 0.000814372i
\(704\) 12144.9 21035.6i 0.650182 1.12615i
\(705\) 3333.72 3003.46i 0.178093 0.160449i
\(706\) −21717.3 −1.15771
\(707\) 0 0
\(708\) 26649.6i 1.41462i
\(709\) −8593.15 14883.8i −0.455180 0.788394i 0.543519 0.839397i \(-0.317092\pi\)
−0.998699 + 0.0510026i \(0.983758\pi\)
\(710\) −10209.3 + 31452.0i −0.539643 + 1.66250i
\(711\) 921.755 1596.53i 0.0486196 0.0842116i
\(712\) 36712.5 21196.0i 1.93239 1.11566i
\(713\) 14032.4i 0.737049i
\(714\) 0 0
\(715\) −17904.2 + 3811.10i −0.936473 + 0.199339i
\(716\) −30106.6 52146.1i −1.57142 2.72178i
\(717\) −1893.72 1093.34i −0.0986365 0.0569478i
\(718\) −15980.4 9226.28i −0.830617 0.479557i
\(719\) 7553.65 + 13083.3i 0.391799 + 0.678616i 0.992687 0.120717i \(-0.0385195\pi\)
−0.600888 + 0.799333i \(0.705186\pi\)
\(720\) 9930.07 + 46650.5i 0.513989 + 2.41467i
\(721\) 0 0
\(722\) 36443.0i 1.87849i
\(723\) −5961.64 + 3441.96i −0.306661 + 0.177051i
\(724\) −9776.24 + 16932.9i −0.501839 + 0.869210i
\(725\) 3040.52 29091.6i 0.155754 1.49025i
\(726\) −3496.61 6056.31i −0.178748 0.309601i
\(727\) 15840.9i 0.808124i −0.914732 0.404062i \(-0.867598\pi\)
0.914732 0.404062i \(-0.132402\pi\)
\(728\) 0 0
\(729\) 5088.04 0.258499
\(730\) 7646.53 6889.00i 0.387686 0.349279i
\(731\) −2394.18 + 4146.83i −0.121138 + 0.209817i
\(732\) −19532.2 11276.9i −0.986244 0.569408i
\(733\) 23936.7 13819.9i 1.20617 0.696382i 0.244249 0.969713i \(-0.421459\pi\)
0.961920 + 0.273331i \(0.0881253\pi\)
\(734\) −46596.2 −2.34318
\(735\) 0 0
\(736\) 49453.8 2.47675
\(737\) −11405.9 + 6585.22i −0.570072 + 0.329131i
\(738\) 43119.7 + 24895.2i 2.15075 + 1.24174i
\(739\) 17437.2 30202.1i 0.867982 1.50339i 0.00392555 0.999992i \(-0.498750\pi\)
0.864056 0.503396i \(-0.167916\pi\)
\(740\) 5801.36 + 6439.29i 0.288192 + 0.319883i
\(741\) 98.5136 0.00488392
\(742\) 0 0
\(743\) 27686.7i 1.36706i −0.729922 0.683530i \(-0.760444\pi\)
0.729922 0.683530i \(-0.239556\pi\)
\(744\) 8145.26 + 14108.0i 0.401371 + 0.695194i
\(745\) 345.612 + 112.185i 0.0169963 + 0.00551696i
\(746\) 30205.1 52316.8i 1.48242 2.56763i
\(747\) −21002.0 + 12125.5i −1.02868 + 0.593909i
\(748\) 14314.0i 0.699694i
\(749\) 0 0
\(750\) 8475.46 + 11644.1i 0.412640 + 0.566908i
\(751\) −2403.42 4162.85i −0.116781 0.202270i 0.801710 0.597714i \(-0.203924\pi\)
−0.918490 + 0.395444i \(0.870591\pi\)
\(752\) −32899.7 18994.6i −1.59538 0.921094i
\(753\) −7922.79 4574.23i −0.383430 0.221373i
\(754\) −39851.8 69025.3i −1.92482 3.33389i
\(755\) 1086.49 + 5104.21i 0.0523726 + 0.246041i
\(756\) 0 0
\(757\) 40166.6i 1.92851i 0.264983 + 0.964253i \(0.414634\pi\)
−0.264983 + 0.964253i \(0.585366\pi\)
\(758\) −55853.4 + 32247.0i −2.67637 + 1.54520i
\(759\) −2689.95 + 4659.13i −0.128642 + 0.222814i
\(760\) 177.831 547.851i 0.00848765 0.0261482i
\(761\) 12956.2 + 22440.7i 0.617162 + 1.06896i 0.990001 + 0.141060i \(0.0450512\pi\)
−0.372839 + 0.927896i \(0.621616\pi\)
\(762\) 1978.93i 0.0940803i
\(763\) 0 0
\(764\) 31273.1 1.48092
\(765\) −4816.42 5346.04i −0.227631 0.252662i
\(766\) 26221.9 45417.6i 1.23686 2.14230i
\(767\) 37698.4 + 21765.2i 1.77472 + 1.02464i
\(768\) 190.717 110.111i 0.00896082 0.00517353i
\(769\) −23231.3 −1.08939 −0.544697 0.838633i \(-0.683355\pi\)
−0.544697 + 0.838633i \(0.683355\pi\)
\(770\) 0 0
\(771\) 12141.2 0.567125
\(772\) 40376.2 23311.2i 1.88234 1.08677i
\(773\) 724.262 + 418.153i