Properties

Label 245.4.j.e.79.7
Level $245$
Weight $4$
Character 245.79
Analytic conductor $14.455$
Analytic rank $0$
Dimension $20$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [245,4,Mod(79,245)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(245, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 2]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("245.79");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 245 = 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 245.j (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(14.4554679514\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(10\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - 55 x^{18} + 2042 x^{16} - 41247 x^{14} + 600234 x^{12} - 4812047 x^{10} + 27547801 x^{8} + \cdots + 12960000 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{6}\cdot 3^{2}\cdot 7^{8} \)
Twist minimal: no (minimal twist has level 35)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 79.7
Root \(2.31676 - 1.33758i\) of defining polynomial
Character \(\chi\) \(=\) 245.79
Dual form 245.4.j.e.214.7

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.45073 + 0.837581i) q^{2} +(2.15983 - 1.24698i) q^{3} +(-2.59692 - 4.49799i) q^{4} +(4.78866 + 10.1029i) q^{5} +4.17779 q^{6} -22.1018i q^{8} +(-10.3901 + 17.9961i) q^{9} +(-1.51494 + 18.6675i) q^{10} +(28.7940 + 49.8727i) q^{11} +(-11.2178 - 6.47661i) q^{12} +45.5159i q^{13} +(22.9408 + 15.8492i) q^{15} +(-2.26327 + 3.92011i) q^{16} +(79.6787 - 46.0025i) q^{17} +(-30.1465 + 17.4051i) q^{18} +(62.5885 - 108.407i) q^{19} +(33.0070 - 47.7757i) q^{20} +96.4692i q^{22} +(137.262 + 79.2481i) q^{23} +(-27.5605 - 47.7362i) q^{24} +(-79.1375 + 96.7588i) q^{25} +(-38.1233 + 66.0315i) q^{26} +119.162i q^{27} +40.1708 q^{29} +(20.0060 + 42.2078i) q^{30} +(-24.7795 - 42.9194i) q^{31} +(-159.693 + 92.1986i) q^{32} +(124.381 + 71.8111i) q^{33} +154.123 q^{34} +107.929 q^{36} +(-200.318 - 115.654i) q^{37} +(181.598 - 104.846i) q^{38} +(56.7575 + 98.3069i) q^{39} +(223.293 - 105.838i) q^{40} +169.556 q^{41} +147.428i q^{43} +(149.551 - 259.030i) q^{44} +(-231.568 - 18.7926i) q^{45} +(132.753 + 229.936i) q^{46} +(58.0520 + 33.5164i) q^{47} +11.2890i q^{48} +(-195.851 + 74.0870i) q^{50} +(114.729 - 198.716i) q^{51} +(204.730 - 118.201i) q^{52} +(-232.655 + 134.323i) q^{53} +(-99.8077 + 172.872i) q^{54} +(-365.974 + 529.726i) q^{55} -312.187i q^{57} +(58.2771 + 33.6463i) q^{58} +(-120.421 - 208.576i) q^{59} +(11.7143 - 144.347i) q^{60} +(-45.2290 + 78.3389i) q^{61} -83.0194i q^{62} -272.683 q^{64} +(-459.843 + 217.960i) q^{65} +(120.295 + 208.358i) q^{66} +(-352.038 + 203.249i) q^{67} +(-413.838 - 238.929i) q^{68} +395.283 q^{69} +330.782 q^{71} +(397.747 + 229.640i) q^{72} +(-473.071 + 273.127i) q^{73} +(-193.739 - 335.565i) q^{74} +(-50.2676 + 307.666i) q^{75} -650.149 q^{76} +190.156i q^{78} +(-12.6543 + 21.9179i) q^{79} +(-50.4425 - 4.09360i) q^{80} +(-131.940 - 228.526i) q^{81} +(245.981 + 142.017i) q^{82} -376.255i q^{83} +(846.314 + 584.697i) q^{85} +(-123.483 + 213.878i) q^{86} +(86.7623 - 50.0922i) q^{87} +(1102.28 - 636.399i) q^{88} +(513.219 - 888.921i) q^{89} +(-320.203 - 221.220i) q^{90} -823.203i q^{92} +(-107.039 - 61.7992i) q^{93} +(56.1453 + 97.2466i) q^{94} +(1394.94 + 113.204i) q^{95} +(-229.940 + 398.267i) q^{96} -942.660i q^{97} -1196.69 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 36 q^{4} - 6 q^{5} + 24 q^{6} + 46 q^{9} + 16 q^{10} - 84 q^{11} + 16 q^{15} - 148 q^{16} - 72 q^{19} - 136 q^{20} - 72 q^{24} + 362 q^{25} + 620 q^{26} + 176 q^{29} - 52 q^{30} - 120 q^{31} + 1928 q^{34}+ \cdots - 10608 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/245\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(197\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.45073 + 0.837581i 0.512912 + 0.296130i 0.734030 0.679117i \(-0.237637\pi\)
−0.221118 + 0.975247i \(0.570971\pi\)
\(3\) 2.15983 1.24698i 0.415660 0.239982i −0.277559 0.960709i \(-0.589525\pi\)
0.693219 + 0.720727i \(0.256192\pi\)
\(4\) −2.59692 4.49799i −0.324615 0.562249i
\(5\) 4.78866 + 10.1029i 0.428311 + 0.903632i
\(6\) 4.17779 0.284263
\(7\) 0 0
\(8\) 22.1018i 0.976771i
\(9\) −10.3901 + 17.9961i −0.384818 + 0.666524i
\(10\) −1.51494 + 18.6675i −0.0479066 + 0.590319i
\(11\) 28.7940 + 49.8727i 0.789247 + 1.36702i 0.926429 + 0.376470i \(0.122862\pi\)
−0.137182 + 0.990546i \(0.543804\pi\)
\(12\) −11.2178 6.47661i −0.269859 0.155803i
\(13\) 45.5159i 0.971066i 0.874218 + 0.485533i \(0.161374\pi\)
−0.874218 + 0.485533i \(0.838626\pi\)
\(14\) 0 0
\(15\) 22.9408 + 15.8492i 0.394887 + 0.272817i
\(16\) −2.26327 + 3.92011i −0.0353637 + 0.0612517i
\(17\) 79.6787 46.0025i 1.13676 0.656309i 0.191134 0.981564i \(-0.438783\pi\)
0.945626 + 0.325255i \(0.105450\pi\)
\(18\) −30.1465 + 17.4051i −0.394755 + 0.227912i
\(19\) 62.5885 108.407i 0.755726 1.30896i −0.189286 0.981922i \(-0.560617\pi\)
0.945013 0.327034i \(-0.106049\pi\)
\(20\) 33.0070 47.7757i 0.369030 0.534149i
\(21\) 0 0
\(22\) 96.4692i 0.934878i
\(23\) 137.262 + 79.2481i 1.24439 + 0.718451i 0.969986 0.243162i \(-0.0781848\pi\)
0.274408 + 0.961613i \(0.411518\pi\)
\(24\) −27.5605 47.7362i −0.234407 0.406005i
\(25\) −79.1375 + 96.7588i −0.633100 + 0.774070i
\(26\) −38.1233 + 66.0315i −0.287561 + 0.498071i
\(27\) 119.162i 0.849360i
\(28\) 0 0
\(29\) 40.1708 0.257225 0.128613 0.991695i \(-0.458948\pi\)
0.128613 + 0.991695i \(0.458948\pi\)
\(30\) 20.0060 + 42.2078i 0.121753 + 0.256869i
\(31\) −24.7795 42.9194i −0.143566 0.248663i 0.785271 0.619152i \(-0.212523\pi\)
−0.928837 + 0.370489i \(0.879190\pi\)
\(32\) −159.693 + 92.1986i −0.882185 + 0.509330i
\(33\) 124.381 + 71.8111i 0.656117 + 0.378809i
\(34\) 154.123 0.777410
\(35\) 0 0
\(36\) 107.929 0.499670
\(37\) −200.318 115.654i −0.890056 0.513874i −0.0160950 0.999870i \(-0.505123\pi\)
−0.873961 + 0.485997i \(0.838457\pi\)
\(38\) 181.598 104.846i 0.775241 0.447586i
\(39\) 56.7575 + 98.3069i 0.233038 + 0.403633i
\(40\) 223.293 105.838i 0.882641 0.418361i
\(41\) 169.556 0.645859 0.322929 0.946423i \(-0.395332\pi\)
0.322929 + 0.946423i \(0.395332\pi\)
\(42\) 0 0
\(43\) 147.428i 0.522849i 0.965224 + 0.261425i \(0.0841923\pi\)
−0.965224 + 0.261425i \(0.915808\pi\)
\(44\) 149.551 259.030i 0.512402 0.887507i
\(45\) −231.568 18.7926i −0.767114 0.0622542i
\(46\) 132.753 + 229.936i 0.425509 + 0.737004i
\(47\) 58.0520 + 33.5164i 0.180165 + 0.104018i 0.587370 0.809318i \(-0.300163\pi\)
−0.407205 + 0.913337i \(0.633497\pi\)
\(48\) 11.2890i 0.0339465i
\(49\) 0 0
\(50\) −195.851 + 74.0870i −0.553949 + 0.209550i
\(51\) 114.729 198.716i 0.315004 0.545603i
\(52\) 204.730 118.201i 0.545980 0.315222i
\(53\) −232.655 + 134.323i −0.602974 + 0.348127i −0.770211 0.637790i \(-0.779849\pi\)
0.167237 + 0.985917i \(0.446516\pi\)
\(54\) −99.8077 + 172.872i −0.251521 + 0.435646i
\(55\) −365.974 + 529.726i −0.897236 + 1.29870i
\(56\) 0 0
\(57\) 312.187i 0.725441i
\(58\) 58.2771 + 33.6463i 0.131934 + 0.0761720i
\(59\) −120.421 208.576i −0.265721 0.460242i 0.702031 0.712146i \(-0.252277\pi\)
−0.967752 + 0.251904i \(0.918943\pi\)
\(60\) 11.7143 144.347i 0.0252052 0.310585i
\(61\) −45.2290 + 78.3389i −0.0949340 + 0.164431i −0.909581 0.415527i \(-0.863597\pi\)
0.814647 + 0.579957i \(0.196931\pi\)
\(62\) 83.0194i 0.170056i
\(63\) 0 0
\(64\) −272.683 −0.532583
\(65\) −459.843 + 217.960i −0.877485 + 0.415918i
\(66\) 120.295 + 208.358i 0.224353 + 0.388592i
\(67\) −352.038 + 203.249i −0.641914 + 0.370609i −0.785351 0.619050i \(-0.787518\pi\)
0.143437 + 0.989659i \(0.454184\pi\)
\(68\) −413.838 238.929i −0.738018 0.426095i
\(69\) 395.283 0.689660
\(70\) 0 0
\(71\) 330.782 0.552910 0.276455 0.961027i \(-0.410840\pi\)
0.276455 + 0.961027i \(0.410840\pi\)
\(72\) 397.747 + 229.640i 0.651041 + 0.375879i
\(73\) −473.071 + 273.127i −0.758476 + 0.437906i −0.828748 0.559622i \(-0.810946\pi\)
0.0702724 + 0.997528i \(0.477613\pi\)
\(74\) −193.739 335.565i −0.304347 0.527144i
\(75\) −50.2676 + 307.666i −0.0773920 + 0.473682i
\(76\) −650.149 −0.981279
\(77\) 0 0
\(78\) 190.156i 0.276038i
\(79\) −12.6543 + 21.9179i −0.0180218 + 0.0312147i −0.874896 0.484311i \(-0.839070\pi\)
0.856874 + 0.515526i \(0.172403\pi\)
\(80\) −50.4425 4.09360i −0.0704956 0.00572098i
\(81\) −131.940 228.526i −0.180987 0.313479i
\(82\) 245.981 + 142.017i 0.331268 + 0.191258i
\(83\) 376.255i 0.497582i −0.968557 0.248791i \(-0.919967\pi\)
0.968557 0.248791i \(-0.0800333\pi\)
\(84\) 0 0
\(85\) 846.314 + 584.697i 1.07995 + 0.746109i
\(86\) −123.483 + 213.878i −0.154831 + 0.268175i
\(87\) 86.7623 50.0922i 0.106918 0.0617293i
\(88\) 1102.28 636.399i 1.33526 0.770914i
\(89\) 513.219 888.921i 0.611248 1.05871i −0.379782 0.925076i \(-0.624001\pi\)
0.991030 0.133637i \(-0.0426656\pi\)
\(90\) −320.203 221.220i −0.375026 0.259096i
\(91\) 0 0
\(92\) 823.203i 0.932878i
\(93\) −107.039 61.7992i −0.119349 0.0689062i
\(94\) 56.1453 + 97.2466i 0.0616058 + 0.106704i
\(95\) 1394.94 + 113.204i 1.50650 + 0.122258i
\(96\) −229.940 + 398.267i −0.244460 + 0.423416i
\(97\) 942.660i 0.986728i −0.869823 0.493364i \(-0.835767\pi\)
0.869823 0.493364i \(-0.164233\pi\)
\(98\) 0 0
\(99\) −1196.69 −1.21487
\(100\) 640.733 + 104.685i 0.640733 + 0.104685i
\(101\) 302.308 + 523.613i 0.297830 + 0.515856i 0.975639 0.219381i \(-0.0704039\pi\)
−0.677809 + 0.735238i \(0.737071\pi\)
\(102\) 332.881 192.189i 0.323139 0.186564i
\(103\) −260.645 150.484i −0.249341 0.143957i 0.370121 0.928983i \(-0.379316\pi\)
−0.619463 + 0.785026i \(0.712649\pi\)
\(104\) 1005.98 0.948509
\(105\) 0 0
\(106\) −450.027 −0.412363
\(107\) −1309.14 755.830i −1.18279 0.682886i −0.226135 0.974096i \(-0.572609\pi\)
−0.956659 + 0.291210i \(0.905942\pi\)
\(108\) 535.989 309.453i 0.477551 0.275714i
\(109\) −883.545 1530.34i −0.776406 1.34477i −0.934001 0.357270i \(-0.883707\pi\)
0.157595 0.987504i \(-0.449626\pi\)
\(110\) −974.620 + 461.958i −0.844785 + 0.400418i
\(111\) −576.871 −0.493281
\(112\) 0 0
\(113\) 1045.27i 0.870182i −0.900387 0.435091i \(-0.856716\pi\)
0.900387 0.435091i \(-0.143284\pi\)
\(114\) 261.482 452.900i 0.214825 0.372087i
\(115\) −143.337 + 1766.23i −0.116228 + 1.43219i
\(116\) −104.320 180.688i −0.0834991 0.144625i
\(117\) −819.111 472.914i −0.647238 0.373683i
\(118\) 403.451i 0.314751i
\(119\) 0 0
\(120\) 350.297 507.034i 0.266480 0.385714i
\(121\) −992.689 + 1719.39i −0.745822 + 1.29180i
\(122\) −131.230 + 75.7658i −0.0973855 + 0.0562255i
\(123\) 366.213 211.433i 0.268458 0.154994i
\(124\) −128.701 + 222.916i −0.0932070 + 0.161439i
\(125\) −1356.51 336.174i −0.970638 0.240547i
\(126\) 0 0
\(127\) 260.727i 0.182171i 0.995843 + 0.0910857i \(0.0290337\pi\)
−0.995843 + 0.0910857i \(0.970966\pi\)
\(128\) 881.951 + 509.195i 0.609017 + 0.351616i
\(129\) 183.840 + 318.419i 0.125474 + 0.217328i
\(130\) −849.669 68.9539i −0.573238 0.0465205i
\(131\) 361.761 626.588i 0.241276 0.417903i −0.719802 0.694180i \(-0.755767\pi\)
0.961078 + 0.276277i \(0.0891006\pi\)
\(132\) 745.950i 0.491868i
\(133\) 0 0
\(134\) −680.950 −0.438993
\(135\) −1203.88 + 570.625i −0.767508 + 0.363790i
\(136\) −1016.74 1761.04i −0.641064 1.11036i
\(137\) 670.038 386.847i 0.417848 0.241245i −0.276308 0.961069i \(-0.589111\pi\)
0.694156 + 0.719824i \(0.255778\pi\)
\(138\) 573.451 + 331.082i 0.353735 + 0.204229i
\(139\) 2952.97 1.80192 0.900961 0.433899i \(-0.142863\pi\)
0.900961 + 0.433899i \(0.142863\pi\)
\(140\) 0 0
\(141\) 167.177 0.0998499
\(142\) 479.876 + 277.057i 0.283594 + 0.163733i
\(143\) −2270.00 + 1310.59i −1.32746 + 0.766411i
\(144\) −47.0312 81.4604i −0.0272171 0.0471414i
\(145\) 192.364 + 405.842i 0.110172 + 0.232437i
\(146\) −915.066 −0.518708
\(147\) 0 0
\(148\) 1201.37i 0.667244i
\(149\) 1257.00 2177.19i 0.691124 1.19706i −0.280345 0.959899i \(-0.590449\pi\)
0.971470 0.237163i \(-0.0762177\pi\)
\(150\) −330.620 + 404.238i −0.179967 + 0.220039i
\(151\) −50.5262 87.5140i −0.0272302 0.0471642i 0.852089 0.523397i \(-0.175335\pi\)
−0.879319 + 0.476233i \(0.842002\pi\)
\(152\) −2395.98 1383.32i −1.27855 0.738171i
\(153\) 1911.88i 1.01024i
\(154\) 0 0
\(155\) 314.950 455.872i 0.163209 0.236235i
\(156\) 294.789 510.589i 0.151295 0.262050i
\(157\) 2025.07 1169.17i 1.02941 0.594333i 0.112597 0.993641i \(-0.464083\pi\)
0.916817 + 0.399308i \(0.130750\pi\)
\(158\) −36.7161 + 21.1980i −0.0184872 + 0.0106736i
\(159\) −334.997 + 580.233i −0.167088 + 0.289405i
\(160\) −1696.19 1171.85i −0.838096 0.579019i
\(161\) 0 0
\(162\) 442.040i 0.214383i
\(163\) −1147.66 662.602i −0.551483 0.318399i 0.198237 0.980154i \(-0.436478\pi\)
−0.749720 + 0.661755i \(0.769812\pi\)
\(164\) −440.323 762.662i −0.209655 0.363133i
\(165\) −129.885 + 1600.48i −0.0612822 + 0.755136i
\(166\) 315.144 545.845i 0.147349 0.255216i
\(167\) 2086.20i 0.966675i 0.875434 + 0.483338i \(0.160576\pi\)
−0.875434 + 0.483338i \(0.839424\pi\)
\(168\) 0 0
\(169\) 125.299 0.0570317
\(170\) 738.044 + 1557.09i 0.332973 + 0.702493i
\(171\) 1300.60 + 2252.70i 0.581634 + 1.00742i
\(172\) 663.129 382.858i 0.293971 0.169724i
\(173\) 1661.20 + 959.095i 0.730051 + 0.421495i 0.818441 0.574591i \(-0.194839\pi\)
−0.0883897 + 0.996086i \(0.528172\pi\)
\(174\) 167.825 0.0731195
\(175\) 0 0
\(176\) −260.675 −0.111643
\(177\) −520.180 300.326i −0.220899 0.127536i
\(178\) 1489.09 859.725i 0.627032 0.362017i
\(179\) 314.523 + 544.770i 0.131333 + 0.227475i 0.924191 0.381932i \(-0.124741\pi\)
−0.792858 + 0.609407i \(0.791408\pi\)
\(180\) 516.833 + 1090.39i 0.214014 + 0.451517i
\(181\) −2800.85 −1.15020 −0.575099 0.818084i \(-0.695036\pi\)
−0.575099 + 0.818084i \(0.695036\pi\)
\(182\) 0 0
\(183\) 225.599i 0.0911296i
\(184\) 1751.53 3033.73i 0.701762 1.21549i
\(185\) 209.184 2577.62i 0.0831324 1.02438i
\(186\) −103.524 179.308i −0.0408103 0.0706856i
\(187\) 4588.54 + 2649.19i 1.79437 + 1.03598i
\(188\) 348.157i 0.135063i
\(189\) 0 0
\(190\) 1928.86 + 1332.60i 0.736497 + 0.508827i
\(191\) −370.127 + 641.080i −0.140217 + 0.242863i −0.927578 0.373629i \(-0.878113\pi\)
0.787361 + 0.616492i \(0.211447\pi\)
\(192\) −588.949 + 340.030i −0.221374 + 0.127810i
\(193\) −3535.61 + 2041.29i −1.31865 + 0.761321i −0.983511 0.180849i \(-0.942116\pi\)
−0.335136 + 0.942170i \(0.608782\pi\)
\(194\) 789.554 1367.55i 0.292199 0.506104i
\(195\) −721.393 + 1044.17i −0.264923 + 0.383461i
\(196\) 0 0
\(197\) 3414.89i 1.23503i 0.786559 + 0.617515i \(0.211860\pi\)
−0.786559 + 0.617515i \(0.788140\pi\)
\(198\) −1736.07 1002.32i −0.623118 0.359758i
\(199\) −1696.22 2937.94i −0.604231 1.04656i −0.992173 0.124875i \(-0.960147\pi\)
0.387941 0.921684i \(-0.373186\pi\)
\(200\) 2138.54 + 1749.08i 0.756089 + 0.618394i
\(201\) −506.895 + 877.968i −0.177879 + 0.308095i
\(202\) 1012.83i 0.352785i
\(203\) 0 0
\(204\) −1191.76 −0.409020
\(205\) 811.946 + 1713.01i 0.276628 + 0.583619i
\(206\) −252.084 436.623i −0.0852600 0.147675i
\(207\) −2852.32 + 1646.79i −0.957729 + 0.552945i
\(208\) −178.427 103.015i −0.0594794 0.0343404i
\(209\) 7208.70 2.38582
\(210\) 0 0
\(211\) 3398.04 1.10867 0.554337 0.832292i \(-0.312972\pi\)
0.554337 + 0.832292i \(0.312972\pi\)
\(212\) 1208.37 + 697.653i 0.391468 + 0.226014i
\(213\) 714.434 412.479i 0.229823 0.132688i
\(214\) −1266.14 2193.02i −0.404446 0.700521i
\(215\) −1489.45 + 705.981i −0.472463 + 0.223942i
\(216\) 2633.69 0.829630
\(217\) 0 0
\(218\) 2960.16i 0.919667i
\(219\) −681.169 + 1179.82i −0.210179 + 0.364040i
\(220\) 3333.11 + 270.495i 1.02145 + 0.0828943i
\(221\) 2093.85 + 3626.65i 0.637319 + 1.10387i
\(222\) −836.886 483.176i −0.253010 0.146075i
\(223\) 182.611i 0.0548365i −0.999624 0.0274183i \(-0.991271\pi\)
0.999624 0.0274183i \(-0.00872860\pi\)
\(224\) 0 0
\(225\) −919.040 2429.50i −0.272308 0.719852i
\(226\) 875.496 1516.40i 0.257687 0.446326i
\(227\) −2730.00 + 1576.17i −0.798222 + 0.460854i −0.842849 0.538150i \(-0.819123\pi\)
0.0446271 + 0.999004i \(0.485790\pi\)
\(228\) −1404.21 + 810.723i −0.407878 + 0.235489i
\(229\) 3006.18 5206.85i 0.867483 1.50253i 0.00292326 0.999996i \(-0.499069\pi\)
0.864560 0.502529i \(-0.167597\pi\)
\(230\) −1687.31 + 2442.28i −0.483730 + 0.700170i
\(231\) 0 0
\(232\) 887.848i 0.251250i
\(233\) −814.635 470.330i −0.229050 0.132242i 0.381084 0.924540i \(-0.375551\pi\)
−0.610133 + 0.792299i \(0.708884\pi\)
\(234\) −792.208 1372.14i −0.221317 0.383333i
\(235\) −60.6213 + 746.993i −0.0168277 + 0.207355i
\(236\) −625.448 + 1083.31i −0.172514 + 0.298802i
\(237\) 63.1188i 0.0172996i
\(238\) 0 0
\(239\) −5158.82 −1.39622 −0.698109 0.715991i \(-0.745975\pi\)
−0.698109 + 0.715991i \(0.745975\pi\)
\(240\) −114.052 + 54.0593i −0.0306751 + 0.0145396i
\(241\) 231.918 + 401.694i 0.0619882 + 0.107367i 0.895354 0.445355i \(-0.146923\pi\)
−0.833366 + 0.552722i \(0.813589\pi\)
\(242\) −2880.25 + 1662.92i −0.765081 + 0.441720i
\(243\) −3356.26 1937.74i −0.886025 0.511547i
\(244\) 469.823 0.123268
\(245\) 0 0
\(246\) 708.370 0.183594
\(247\) 4934.23 + 2848.78i 1.27108 + 0.733860i
\(248\) −948.596 + 547.672i −0.242887 + 0.140231i
\(249\) −469.183 812.648i −0.119411 0.206825i
\(250\) −1686.36 1623.88i −0.426618 0.410814i
\(251\) 2290.25 0.575934 0.287967 0.957640i \(-0.407021\pi\)
0.287967 + 0.957640i \(0.407021\pi\)
\(252\) 0 0
\(253\) 9127.48i 2.26814i
\(254\) −218.380 + 378.245i −0.0539463 + 0.0934378i
\(255\) 2557.00 + 207.511i 0.627944 + 0.0509601i
\(256\) 1943.71 + 3366.61i 0.474540 + 0.821927i
\(257\) 694.727 + 401.101i 0.168622 + 0.0973541i 0.581936 0.813235i \(-0.302295\pi\)
−0.413314 + 0.910589i \(0.635629\pi\)
\(258\) 615.922i 0.148627i
\(259\) 0 0
\(260\) 2174.56 + 1502.35i 0.518694 + 0.358352i
\(261\) −417.378 + 722.920i −0.0989849 + 0.171447i
\(262\) 1049.64 606.008i 0.247507 0.142898i
\(263\) 248.530 143.489i 0.0582701 0.0336423i −0.470582 0.882356i \(-0.655956\pi\)
0.528852 + 0.848714i \(0.322623\pi\)
\(264\) 1587.16 2749.03i 0.370010 0.640876i
\(265\) −2471.16 1707.26i −0.572839 0.395760i
\(266\) 0 0
\(267\) 2559.90i 0.586753i
\(268\) 1828.42 + 1055.64i 0.416749 + 0.240610i
\(269\) 1780.61 + 3084.11i 0.403590 + 0.699039i 0.994156 0.107951i \(-0.0344288\pi\)
−0.590566 + 0.806989i \(0.701095\pi\)
\(270\) −2224.46 180.523i −0.501393 0.0406899i
\(271\) −964.403 + 1670.39i −0.216175 + 0.374425i −0.953635 0.300965i \(-0.902691\pi\)
0.737461 + 0.675390i \(0.236025\pi\)
\(272\) 416.466i 0.0928380i
\(273\) 0 0
\(274\) 1296.06 0.285759
\(275\) −7104.30 1160.73i −1.55784 0.254525i
\(276\) −1026.52 1777.98i −0.223874 0.387760i
\(277\) 5705.97 3294.34i 1.23768 0.714578i 0.269064 0.963122i \(-0.413286\pi\)
0.968620 + 0.248545i \(0.0799523\pi\)
\(278\) 4283.96 + 2473.35i 0.924227 + 0.533603i
\(279\) 1029.84 0.220986
\(280\) 0 0
\(281\) 815.552 0.173138 0.0865689 0.996246i \(-0.472410\pi\)
0.0865689 + 0.996246i \(0.472410\pi\)
\(282\) 242.529 + 140.024i 0.0512142 + 0.0295685i
\(283\) 5640.85 3256.75i 1.18485 0.684076i 0.227722 0.973726i \(-0.426872\pi\)
0.957132 + 0.289651i \(0.0935391\pi\)
\(284\) −859.013 1487.85i −0.179483 0.310873i
\(285\) 3153.99 1494.96i 0.655532 0.310714i
\(286\) −4390.89 −0.907828
\(287\) 0 0
\(288\) 3831.80i 0.783997i
\(289\) 1775.97 3076.07i 0.361483 0.626108i
\(290\) −60.8564 + 749.889i −0.0123228 + 0.151845i
\(291\) −1175.48 2035.99i −0.236796 0.410143i
\(292\) 2457.05 + 1418.58i 0.492425 + 0.284301i
\(293\) 435.520i 0.0868373i −0.999057 0.0434186i \(-0.986175\pi\)
0.999057 0.0434186i \(-0.0138249\pi\)
\(294\) 0 0
\(295\) 1530.57 2215.40i 0.302078 0.437240i
\(296\) −2556.15 + 4427.39i −0.501937 + 0.869381i
\(297\) −5942.92 + 3431.15i −1.16109 + 0.670355i
\(298\) 3647.15 2105.68i 0.708971 0.409325i
\(299\) −3607.05 + 6247.60i −0.697663 + 1.20839i
\(300\) 1514.42 572.879i 0.291450 0.110251i
\(301\) 0 0
\(302\) 169.279i 0.0322547i
\(303\) 1305.87 + 753.945i 0.247592 + 0.142947i
\(304\) 283.310 + 490.707i 0.0534505 + 0.0925789i
\(305\) −1008.04 81.8060i −0.189246 0.0153580i
\(306\) −1601.35 + 2773.63i −0.299161 + 0.518163i
\(307\) 4915.99i 0.913910i −0.889490 0.456955i \(-0.848940\pi\)
0.889490 0.456955i \(-0.151060\pi\)
\(308\) 0 0
\(309\) −750.601 −0.138188
\(310\) 838.738 397.552i 0.153668 0.0728368i
\(311\) 915.556 + 1585.79i 0.166934 + 0.289138i 0.937340 0.348415i \(-0.113280\pi\)
−0.770407 + 0.637553i \(0.779947\pi\)
\(312\) 2172.76 1254.44i 0.394257 0.227625i
\(313\) −2115.66 1221.48i −0.382059 0.220582i 0.296655 0.954985i \(-0.404129\pi\)
−0.678714 + 0.734403i \(0.737462\pi\)
\(314\) 3917.11 0.703998
\(315\) 0 0
\(316\) 131.449 0.0234006
\(317\) −1442.97 833.096i −0.255662 0.147607i 0.366692 0.930342i \(-0.380490\pi\)
−0.622354 + 0.782736i \(0.713824\pi\)
\(318\) −971.983 + 561.175i −0.171403 + 0.0989595i
\(319\) 1156.68 + 2003.43i 0.203014 + 0.351631i
\(320\) −1305.78 2754.89i −0.228111 0.481259i
\(321\) −3770.02 −0.655521
\(322\) 0 0
\(323\) 11516.9i 1.98396i
\(324\) −685.272 + 1186.93i −0.117502 + 0.203520i
\(325\) −4404.07 3602.02i −0.751673 0.614782i
\(326\) −1109.97 1922.52i −0.188575 0.326621i
\(327\) −3816.62 2203.53i −0.645442 0.372646i
\(328\) 3747.50i 0.630856i
\(329\) 0 0
\(330\) −1528.96 + 2213.09i −0.255051 + 0.369171i
\(331\) 2733.19 4734.02i 0.453866 0.786119i −0.544756 0.838595i \(-0.683378\pi\)
0.998622 + 0.0524753i \(0.0167111\pi\)
\(332\) −1692.39 + 977.102i −0.279765 + 0.161522i
\(333\) 4162.64 2403.30i 0.685018 0.395496i
\(334\) −1747.36 + 3026.51i −0.286261 + 0.495819i
\(335\) −3739.19 2583.31i −0.609833 0.421318i
\(336\) 0 0
\(337\) 10650.5i 1.72157i 0.508970 + 0.860784i \(0.330027\pi\)
−0.508970 + 0.860784i \(0.669973\pi\)
\(338\) 181.775 + 104.948i 0.0292522 + 0.0168888i
\(339\) −1303.43 2257.60i −0.208828 0.361700i
\(340\) 432.154 5325.12i 0.0689319 0.849397i
\(341\) 1427.00 2471.64i 0.226617 0.392513i
\(342\) 4357.43i 0.688956i
\(343\) 0 0
\(344\) 3258.42 0.510704
\(345\) 1892.88 + 3993.51i 0.295389 + 0.623198i
\(346\) 1606.64 + 2782.78i 0.249634 + 0.432380i
\(347\) 3480.67 2009.57i 0.538479 0.310891i −0.205983 0.978556i \(-0.566039\pi\)
0.744462 + 0.667664i \(0.232706\pi\)
\(348\) −450.629 260.171i −0.0694145 0.0400765i
\(349\) −10544.9 −1.61735 −0.808674 0.588256i \(-0.799815\pi\)
−0.808674 + 0.588256i \(0.799815\pi\)
\(350\) 0 0
\(351\) −5423.76 −0.824784
\(352\) −9196.38 5309.53i −1.39252 0.803974i
\(353\) −2563.42 + 1479.99i −0.386507 + 0.223150i −0.680646 0.732613i \(-0.738301\pi\)
0.294138 + 0.955763i \(0.404967\pi\)
\(354\) −503.095 871.386i −0.0755345 0.130830i
\(355\) 1584.00 + 3341.86i 0.236817 + 0.499627i
\(356\) −5331.14 −0.793680
\(357\) 0 0
\(358\) 1053.75i 0.155566i
\(359\) 1085.08 1879.42i 0.159523 0.276301i −0.775174 0.631748i \(-0.782338\pi\)
0.934697 + 0.355447i \(0.115671\pi\)
\(360\) −415.351 + 5118.07i −0.0608081 + 0.749294i
\(361\) −4405.15 7629.94i −0.642244 1.11240i
\(362\) −4063.29 2345.94i −0.589949 0.340607i
\(363\) 4951.46i 0.715934i
\(364\) 0 0
\(365\) −5024.76 3471.48i −0.720569 0.497823i
\(366\) −188.957 + 327.283i −0.0269862 + 0.0467414i
\(367\) −1084.44 + 626.101i −0.154243 + 0.0890523i −0.575135 0.818058i \(-0.695050\pi\)
0.420892 + 0.907111i \(0.361717\pi\)
\(368\) −621.322 + 358.720i −0.0880126 + 0.0508141i
\(369\) −1761.70 + 3051.36i −0.248538 + 0.430480i
\(370\) 2462.43 3564.23i 0.345989 0.500798i
\(371\) 0 0
\(372\) 641.949i 0.0894718i
\(373\) 4023.57 + 2323.01i 0.558533 + 0.322469i 0.752556 0.658528i \(-0.228821\pi\)
−0.194024 + 0.980997i \(0.562154\pi\)
\(374\) 4437.83 + 7686.55i 0.613569 + 1.06273i
\(375\) −3349.03 + 965.458i −0.461182 + 0.132949i
\(376\) 740.772 1283.05i 0.101602 0.175980i
\(377\) 1828.41i 0.249783i
\(378\) 0 0
\(379\) −1434.84 −0.194466 −0.0972331 0.995262i \(-0.530999\pi\)
−0.0972331 + 0.995262i \(0.530999\pi\)
\(380\) −3113.34 6568.39i −0.420292 0.886714i
\(381\) 325.121 + 563.126i 0.0437178 + 0.0757214i
\(382\) −1073.91 + 620.023i −0.143838 + 0.0830449i
\(383\) −11446.0 6608.36i −1.52706 0.881649i −0.999483 0.0321425i \(-0.989767\pi\)
−0.527578 0.849507i \(-0.676900\pi\)
\(384\) 2539.82 0.337526
\(385\) 0 0
\(386\) −6838.97 −0.901799
\(387\) −2653.13 1531.79i −0.348492 0.201202i
\(388\) −4240.07 + 2448.01i −0.554787 + 0.320306i
\(389\) −3877.50 6716.03i −0.505391 0.875363i −0.999981 0.00623657i \(-0.998015\pi\)
0.494589 0.869127i \(-0.335319\pi\)
\(390\) −1921.13 + 910.592i −0.249436 + 0.118230i
\(391\) 14582.5 1.88610
\(392\) 0 0
\(393\) 1804.44i 0.231607i
\(394\) −2860.25 + 4954.09i −0.365729 + 0.633461i
\(395\) −282.032 22.8880i −0.0359255 0.00291549i
\(396\) 3107.70 + 5382.69i 0.394363 + 0.683056i
\(397\) 3083.77 + 1780.41i 0.389848 + 0.225079i 0.682094 0.731264i \(-0.261069\pi\)
−0.292246 + 0.956343i \(0.594403\pi\)
\(398\) 5682.89i 0.715723i
\(399\) 0 0
\(400\) −200.195 529.219i −0.0250243 0.0661524i
\(401\) 2715.30 4703.04i 0.338144 0.585683i −0.645940 0.763389i \(-0.723534\pi\)
0.984084 + 0.177706i \(0.0568675\pi\)
\(402\) −1470.74 + 849.132i −0.182472 + 0.105350i
\(403\) 1953.52 1127.86i 0.241468 0.139412i
\(404\) 1570.14 2719.56i 0.193360 0.334909i
\(405\) 1676.96 2427.31i 0.205751 0.297812i
\(406\) 0 0
\(407\) 13320.5i 1.62229i
\(408\) −4391.98 2535.71i −0.532929 0.307687i
\(409\) −4849.39 8399.40i −0.586277 1.01546i −0.994715 0.102675i \(-0.967260\pi\)
0.408438 0.912786i \(-0.366073\pi\)
\(410\) −256.867 + 3165.19i −0.0309409 + 0.381262i
\(411\) 964.780 1671.05i 0.115789 0.200552i
\(412\) 1563.17i 0.186922i
\(413\) 0 0
\(414\) −5517.27 −0.654974
\(415\) 3801.27 1801.76i 0.449631 0.213120i
\(416\) −4196.51 7268.56i −0.494593 0.856660i
\(417\) 6377.91 3682.29i 0.748988 0.432428i
\(418\) 10457.9 + 6037.87i 1.22371 + 0.706511i
\(419\) −13830.9 −1.61261 −0.806307 0.591498i \(-0.798537\pi\)
−0.806307 + 0.591498i \(0.798537\pi\)
\(420\) 0 0
\(421\) 16703.0 1.93362 0.966810 0.255498i \(-0.0822393\pi\)
0.966810 + 0.255498i \(0.0822393\pi\)
\(422\) 4929.64 + 2846.13i 0.568652 + 0.328311i
\(423\) −1206.33 + 696.475i −0.138661 + 0.0800562i
\(424\) 2968.79 + 5142.10i 0.340041 + 0.588968i
\(425\) −1854.43 + 11350.1i −0.211654 + 1.29544i
\(426\) 1381.94 0.157172
\(427\) 0 0
\(428\) 7851.31i 0.886699i
\(429\) −3268.55 + 5661.30i −0.367849 + 0.637133i
\(430\) −2752.11 223.344i −0.308648 0.0250479i
\(431\) −4087.04 7078.95i −0.456765 0.791140i 0.542023 0.840364i \(-0.317659\pi\)
−0.998788 + 0.0492238i \(0.984325\pi\)
\(432\) −467.127 269.696i −0.0520247 0.0300365i
\(433\) 14222.8i 1.57853i −0.614051 0.789267i \(-0.710461\pi\)
0.614051 0.789267i \(-0.289539\pi\)
\(434\) 0 0
\(435\) 921.552 + 636.677i 0.101575 + 0.0701755i
\(436\) −4588.98 + 7948.35i −0.504065 + 0.873066i
\(437\) 17182.0 9920.05i 1.88084 1.08590i
\(438\) −1976.39 + 1141.07i −0.215606 + 0.124480i
\(439\) 2768.69 4795.52i 0.301008 0.521361i −0.675357 0.737491i \(-0.736010\pi\)
0.976365 + 0.216130i \(0.0693436\pi\)
\(440\) 11707.9 + 8088.70i 1.26853 + 0.876394i
\(441\) 0 0
\(442\) 7015.07i 0.754916i
\(443\) 3441.66 + 1987.04i 0.369116 + 0.213109i 0.673072 0.739577i \(-0.264974\pi\)
−0.303956 + 0.952686i \(0.598308\pi\)
\(444\) 1498.09 + 2594.76i 0.160126 + 0.277347i
\(445\) 11438.3 + 928.263i 1.21849 + 0.0988852i
\(446\) 152.952 264.920i 0.0162387 0.0281263i
\(447\) 6269.82i 0.663428i
\(448\) 0 0
\(449\) 15243.1 1.60216 0.801078 0.598559i \(-0.204260\pi\)
0.801078 + 0.598559i \(0.204260\pi\)
\(450\) 701.623 4294.33i 0.0734996 0.449859i
\(451\) 4882.20 + 8456.22i 0.509742 + 0.882900i
\(452\) −4701.60 + 2714.47i −0.489259 + 0.282474i
\(453\) −218.257 126.010i −0.0226371 0.0130695i
\(454\) −5280.67 −0.545890
\(455\) 0 0
\(456\) −6899.89 −0.708590
\(457\) 9326.11 + 5384.43i 0.954611 + 0.551145i 0.894510 0.447048i \(-0.147525\pi\)
0.0601005 + 0.998192i \(0.480858\pi\)
\(458\) 8722.32 5035.83i 0.889884 0.513775i
\(459\) 5481.75 + 9494.67i 0.557443 + 0.965519i
\(460\) 8316.74 3942.04i 0.842978 0.399562i
\(461\) −332.605 −0.0336029 −0.0168015 0.999859i \(-0.505348\pi\)
−0.0168015 + 0.999859i \(0.505348\pi\)
\(462\) 0 0
\(463\) 8205.35i 0.823618i 0.911270 + 0.411809i \(0.135103\pi\)
−0.911270 + 0.411809i \(0.864897\pi\)
\(464\) −90.9176 + 157.474i −0.00909643 + 0.0157555i
\(465\) 111.777 1377.34i 0.0111474 0.137361i
\(466\) −787.879 1364.65i −0.0783214 0.135657i
\(467\) 145.170 + 83.8138i 0.0143847 + 0.00830501i 0.507175 0.861843i \(-0.330690\pi\)
−0.492790 + 0.870148i \(0.664023\pi\)
\(468\) 4912.47i 0.485212i
\(469\) 0 0
\(470\) −713.612 + 1032.91i −0.0700351 + 0.101372i
\(471\) 2915.87 5050.44i 0.285258 0.494081i
\(472\) −4609.90 + 2661.53i −0.449551 + 0.259548i
\(473\) −7352.62 + 4245.04i −0.714744 + 0.412657i
\(474\) −52.8671 + 91.5685i −0.00512293 + 0.00887317i
\(475\) 5536.18 + 14635.0i 0.534773 + 1.41368i
\(476\) 0 0
\(477\) 5582.52i 0.535862i
\(478\) −7484.07 4320.93i −0.716137 0.413462i
\(479\) 3314.29 + 5740.52i 0.316146 + 0.547581i 0.979680 0.200565i \(-0.0642778\pi\)
−0.663535 + 0.748146i \(0.730944\pi\)
\(480\) −5124.76 415.894i −0.487317 0.0395476i
\(481\) 5264.08 9117.66i 0.499005 0.864302i
\(482\) 777.001i 0.0734262i
\(483\) 0 0
\(484\) 10311.7 0.968419
\(485\) 9523.60 4514.08i 0.891638 0.422626i
\(486\) −3246.02 5622.28i −0.302968 0.524757i
\(487\) −17876.1 + 10320.8i −1.66334 + 0.960327i −0.692231 + 0.721676i \(0.743372\pi\)
−0.971105 + 0.238651i \(0.923295\pi\)
\(488\) 1731.43 + 999.642i 0.160611 + 0.0927288i
\(489\) −3305.01 −0.305640
\(490\) 0 0
\(491\) −16710.8 −1.53594 −0.767972 0.640484i \(-0.778734\pi\)
−0.767972 + 0.640484i \(0.778734\pi\)
\(492\) −1902.05 1098.15i −0.174291 0.100627i
\(493\) 3200.76 1847.96i 0.292404 0.168819i
\(494\) 4772.16 + 8265.63i 0.434635 + 0.752810i
\(495\) −5730.53 12090.0i −0.520340 1.09779i
\(496\) 224.331 0.0203080
\(497\) 0 0
\(498\) 1571.91i 0.141444i
\(499\) −6864.35 + 11889.4i −0.615812 + 1.06662i 0.374429 + 0.927256i \(0.377839\pi\)
−0.990241 + 0.139363i \(0.955495\pi\)
\(500\) 2010.63 + 6974.57i 0.179836 + 0.623825i
\(501\) 2601.45 + 4505.84i 0.231984 + 0.401809i
\(502\) 3322.54 + 1918.27i 0.295403 + 0.170551i
\(503\) 19523.7i 1.73065i 0.501209 + 0.865326i \(0.332889\pi\)
−0.501209 + 0.865326i \(0.667111\pi\)
\(504\) 0 0
\(505\) −3842.37 + 5561.60i −0.338580 + 0.490075i
\(506\) −7645.00 + 13241.5i −0.671664 + 1.16336i
\(507\) 270.624 156.245i 0.0237058 0.0136866i
\(508\) 1172.75 677.086i 0.102426 0.0591355i
\(509\) −4344.08 + 7524.17i −0.378287 + 0.655212i −0.990813 0.135238i \(-0.956820\pi\)
0.612526 + 0.790450i \(0.290153\pi\)
\(510\) 3535.72 + 2442.74i 0.306989 + 0.212091i
\(511\) 0 0
\(512\) 1635.04i 0.141131i
\(513\) 12917.9 + 7458.17i 1.11177 + 0.641883i
\(514\) 671.909 + 1163.78i 0.0576588 + 0.0998680i
\(515\) 272.181 3353.89i 0.0232888 0.286971i
\(516\) 954.832 1653.82i 0.0814615 0.141095i
\(517\) 3860.28i 0.328385i
\(518\) 0 0
\(519\) 4783.89 0.404604
\(520\) 4817.32 + 10163.4i 0.406256 + 0.857102i
\(521\) −3385.68 5864.17i −0.284701 0.493117i 0.687835 0.725867i \(-0.258561\pi\)
−0.972537 + 0.232750i \(0.925228\pi\)
\(522\) −1211.01 + 699.176i −0.101541 + 0.0586247i
\(523\) −1182.90 682.947i −0.0988998 0.0570998i 0.449734 0.893162i \(-0.351519\pi\)
−0.548634 + 0.836063i \(0.684852\pi\)
\(524\) −3757.85 −0.313287
\(525\) 0 0
\(526\) 480.735 0.0398499
\(527\) −3948.80 2279.84i −0.326400 0.188447i
\(528\) −563.014 + 325.057i −0.0464054 + 0.0267922i
\(529\) 6477.02 + 11218.5i 0.532344 + 0.922046i
\(530\) −2155.03 4546.58i −0.176619 0.372624i
\(531\) 5004.75 0.409016
\(532\) 0 0
\(533\) 7717.51i 0.627171i
\(534\) 2144.12 3713.72i 0.173755 0.300952i
\(535\) 1367.08 16845.5i 0.110474 1.36130i
\(536\) 4492.17 + 7780.67i 0.362000 + 0.627003i
\(537\) 1358.63 + 784.408i 0.109180 + 0.0630348i
\(538\) 5965.62i 0.478060i
\(539\) 0 0
\(540\) 5693.05 + 3933.18i 0.453685 + 0.313439i
\(541\) 11625.0 20135.2i 0.923844 1.60014i 0.130433 0.991457i \(-0.458363\pi\)
0.793410 0.608687i \(-0.208303\pi\)
\(542\) −2798.18 + 1615.53i −0.221757 + 0.128031i
\(543\) −6049.37 + 3492.61i −0.478091 + 0.276026i
\(544\) −8482.74 + 14692.5i −0.668556 + 1.15797i
\(545\) 11229.9 16254.7i 0.882638 1.27757i
\(546\) 0 0
\(547\) 11552.7i 0.903033i −0.892263 0.451516i \(-0.850883\pi\)
0.892263 0.451516i \(-0.149117\pi\)
\(548\) −3480.06 2009.22i −0.271279 0.156623i
\(549\) −939.865 1627.89i −0.0730646 0.126552i
\(550\) −9334.24 7634.33i −0.723661 0.591871i
\(551\) 2514.23 4354.78i 0.194392 0.336697i
\(552\) 8736.48i 0.673640i
\(553\) 0 0
\(554\) 11037.1 0.846430
\(555\) −2762.44 5828.08i −0.211277 0.445744i
\(556\) −7668.60 13282.4i −0.584930 1.01313i
\(557\) −14208.2 + 8203.08i −1.08082 + 0.624014i −0.931119 0.364717i \(-0.881166\pi\)
−0.149706 + 0.988731i \(0.547833\pi\)
\(558\) 1494.03 + 862.578i 0.113346 + 0.0654406i
\(559\) −6710.31 −0.507721
\(560\) 0 0
\(561\) 13214.0 0.994465
\(562\) 1183.15 + 683.091i 0.0888044 + 0.0512712i
\(563\) −11805.6 + 6815.95i −0.883740 + 0.510227i −0.871890 0.489702i \(-0.837105\pi\)
−0.0118502 + 0.999930i \(0.503772\pi\)
\(564\) −434.145 751.961i −0.0324127 0.0561405i
\(565\) 10560.2 5005.43i 0.786324 0.372708i
\(566\) 10911.2 0.810300
\(567\) 0 0
\(568\) 7310.88i 0.540067i
\(569\) −1543.41 + 2673.27i −0.113714 + 0.196958i −0.917265 0.398278i \(-0.869608\pi\)
0.803551 + 0.595236i \(0.202941\pi\)
\(570\) 5827.75 + 472.944i 0.428241 + 0.0347534i
\(571\) 1629.03 + 2821.57i 0.119392 + 0.206793i 0.919527 0.393027i \(-0.128572\pi\)
−0.800135 + 0.599820i \(0.795239\pi\)
\(572\) 11790.0 + 6806.96i 0.861827 + 0.497576i
\(573\) 1846.17i 0.134598i
\(574\) 0 0
\(575\) −18530.5 + 7009.78i −1.34396 + 0.508396i
\(576\) 2833.19 4907.24i 0.204948 0.354980i
\(577\) 20575.4 11879.2i 1.48451 0.857083i 0.484667 0.874699i \(-0.338941\pi\)
0.999845 + 0.0176156i \(0.00560752\pi\)
\(578\) 5152.91 2975.03i 0.370818 0.214092i
\(579\) −5090.89 + 8817.68i −0.365406 + 0.632902i
\(580\) 1325.92 1919.19i 0.0949238 0.137397i
\(581\) 0 0
\(582\) 3938.23i 0.280490i
\(583\) −13398.1 7735.42i −0.951791 0.549517i
\(584\) 6036.61 + 10455.7i 0.427734 + 0.740857i
\(585\) 855.364 10540.0i 0.0604529 0.744917i
\(586\) 364.783 631.823i 0.0257151 0.0445398i
\(587\) 596.893i 0.0419701i 0.999780 + 0.0209850i \(0.00668023\pi\)
−0.999780 + 0.0209850i \(0.993320\pi\)
\(588\) 0 0
\(589\) −6203.66 −0.433985
\(590\) 4076.02 1931.99i 0.284419 0.134811i
\(591\) 4258.30 + 7375.59i 0.296384 + 0.513353i
\(592\) 906.749 523.512i 0.0629513 0.0363449i
\(593\) 16884.3 + 9748.16i 1.16923 + 0.675058i 0.953500 0.301394i \(-0.0974521\pi\)
0.215734 + 0.976452i \(0.430785\pi\)
\(594\) −11495.5 −0.794047
\(595\) 0 0
\(596\) −13057.3 −0.897396
\(597\) −7327.11 4230.31i −0.502310 0.290009i
\(598\) −10465.7 + 6042.40i −0.715679 + 0.413197i
\(599\) 1898.51 + 3288.31i 0.129501 + 0.224302i 0.923483 0.383639i \(-0.125329\pi\)
−0.793983 + 0.607941i \(0.791996\pi\)
\(600\) 6799.97 + 1111.00i 0.462679 + 0.0755942i
\(601\) 5789.33 0.392931 0.196466 0.980511i \(-0.437054\pi\)
0.196466 + 0.980511i \(0.437054\pi\)
\(602\) 0 0
\(603\) 8447.09i 0.570468i
\(604\) −262.425 + 454.533i −0.0176787 + 0.0306203i
\(605\) −22124.5 1795.49i −1.48676 0.120656i
\(606\) 1262.98 + 2187.55i 0.0846618 + 0.146639i
\(607\) −16053.0 9268.21i −1.07343 0.619745i −0.144313 0.989532i \(-0.546097\pi\)
−0.929116 + 0.369787i \(0.879431\pi\)
\(608\) 23082.3i 1.53966i
\(609\) 0 0
\(610\) −1393.87 962.991i −0.0925184 0.0639186i
\(611\) −1525.53 + 2642.29i −0.101009 + 0.174952i
\(612\) 8599.62 4964.99i 0.568005 0.327938i
\(613\) −1873.62 + 1081.74i −0.123450 + 0.0712738i −0.560453 0.828186i \(-0.689373\pi\)
0.437003 + 0.899460i \(0.356040\pi\)
\(614\) 4117.54 7131.79i 0.270636 0.468755i
\(615\) 3889.76 + 2687.34i 0.255041 + 0.176201i
\(616\) 0 0
\(617\) 22964.9i 1.49843i 0.662327 + 0.749215i \(0.269569\pi\)
−0.662327 + 0.749215i \(0.730431\pi\)
\(618\) −1088.92 628.689i −0.0708784 0.0409216i
\(619\) −693.333 1200.89i −0.0450200 0.0779770i 0.842637 0.538482i \(-0.181002\pi\)
−0.887657 + 0.460505i \(0.847668\pi\)
\(620\) −2868.40 232.782i −0.185803 0.0150786i
\(621\) −9443.35 + 16356.4i −0.610223 + 1.05694i
\(622\) 3067.41i 0.197736i
\(623\) 0 0
\(624\) −513.831 −0.0329643
\(625\) −3099.51 15314.5i −0.198369 0.980127i
\(626\) −2046.17 3544.08i −0.130642 0.226278i
\(627\) 15569.6 8989.11i 0.991690 0.572552i
\(628\) −10517.9 6072.49i −0.668326 0.385858i
\(629\) −21281.4 −1.34904
\(630\) 0 0
\(631\) 5969.39 0.376605 0.188303 0.982111i \(-0.439701\pi\)
0.188303 + 0.982111i \(0.439701\pi\)
\(632\) 484.426 + 279.683i 0.0304896 + 0.0176032i
\(633\) 7339.19 4237.28i 0.460832 0.266062i
\(634\) −1395.57 2417.20i −0.0874215 0.151418i
\(635\) −2634.10 + 1248.53i −0.164616 + 0.0780259i
\(636\) 3479.84 0.216957
\(637\) 0 0
\(638\) 3875.25i 0.240474i
\(639\) −3436.85 + 5952.80i −0.212770 + 0.368528i
\(640\) −920.985 + 11348.6i −0.0568830 + 0.700928i
\(641\) −15183.6 26298.7i −0.935592 1.62049i −0.773576 0.633704i \(-0.781534\pi\)
−0.162016 0.986788i \(-0.551800\pi\)
\(642\) −5469.29 3157.70i −0.336224 0.194119i
\(643\) 28592.2i 1.75360i −0.480851 0.876802i \(-0.659672\pi\)
0.480851 0.876802i \(-0.340328\pi\)
\(644\) 0 0
\(645\) −2336.62 + 3382.12i −0.142642 + 0.206466i
\(646\) 9646.36 16708.0i 0.587509 1.01760i
\(647\) −12564.3 + 7253.97i −0.763449 + 0.440778i −0.830533 0.556970i \(-0.811964\pi\)
0.0670835 + 0.997747i \(0.478631\pi\)
\(648\) −5050.84 + 2916.10i −0.306197 + 0.176783i
\(649\) 6934.83 12011.5i 0.419439 0.726489i
\(650\) −3372.14 8914.33i −0.203487 0.537921i
\(651\) 0 0
\(652\) 6882.89i 0.413428i
\(653\) 6062.05 + 3499.93i 0.363287 + 0.209744i 0.670522 0.741890i \(-0.266070\pi\)
−0.307235 + 0.951634i \(0.599404\pi\)
\(654\) −3691.26 6393.46i −0.220703 0.382269i
\(655\) 8062.71 + 654.320i 0.480971 + 0.0390327i
\(656\) −383.752 + 664.678i −0.0228399 + 0.0395599i
\(657\) 11351.3i 0.674056i
\(658\) 0 0
\(659\) −7308.92 −0.432041 −0.216020 0.976389i \(-0.569308\pi\)
−0.216020 + 0.976389i \(0.569308\pi\)
\(660\) 7536.26 3572.10i 0.444468 0.210672i
\(661\) 15048.6 + 26065.0i 0.885512 + 1.53375i 0.845126 + 0.534567i \(0.179525\pi\)
0.0403854 + 0.999184i \(0.487141\pi\)
\(662\) 7930.26 4578.54i 0.465586 0.268806i
\(663\) 9044.73 + 5221.98i 0.529816 + 0.305890i
\(664\) −8315.91 −0.486024
\(665\) 0 0
\(666\) 8051.83 0.468472
\(667\) 5513.92 + 3183.46i 0.320090 + 0.184804i
\(668\) 9383.70 5417.68i 0.543512 0.313797i
\(669\) −227.713 394.410i −0.0131598 0.0227934i
\(670\) −3260.84 6879.58i −0.188026 0.396688i
\(671\) −5209.29 −0.299706
\(672\) 0 0
\(673\) 5400.26i 0.309309i 0.987969 + 0.154654i \(0.0494264\pi\)
−0.987969 + 0.154654i \(0.950574\pi\)
\(674\) −8920.64 + 15451.0i −0.509808 + 0.883013i
\(675\) −11530.0 9430.17i −0.657464 0.537730i
\(676\) −325.390 563.593i −0.0185133 0.0320660i
\(677\) −5569.49 3215.55i −0.316178 0.182546i 0.333509 0.942747i \(-0.391767\pi\)
−0.649688 + 0.760201i \(0.725100\pi\)
\(678\) 4366.91i 0.247360i
\(679\) 0 0
\(680\) 12922.9 18705.1i 0.728778 1.05486i
\(681\) −3930.90 + 6808.51i −0.221193 + 0.383117i
\(682\) 4140.40 2390.46i 0.232469 0.134216i
\(683\) 18070.3 10432.9i 1.01236 0.584486i 0.100477 0.994939i \(-0.467963\pi\)
0.911881 + 0.410454i \(0.134630\pi\)
\(684\) 6755.10 11700.2i 0.377613 0.654046i
\(685\) 7116.86 + 4916.86i 0.396965 + 0.274253i
\(686\) 0 0
\(687\) 14994.6i 0.832720i
\(688\) −577.933 333.669i −0.0320254 0.0184899i
\(689\) −6113.86 10589.5i −0.338054 0.585527i
\(690\) −598.831 + 7378.96i −0.0330393 + 0.407119i
\(691\) −9225.13 + 15978.4i −0.507873 + 0.879662i 0.492085 + 0.870547i \(0.336235\pi\)
−0.999958 + 0.00911505i \(0.997099\pi\)
\(692\) 9962.76i 0.547294i
\(693\) 0 0
\(694\) 6732.70 0.368256
\(695\) 14140.7 + 29833.5i 0.771783 + 1.62827i
\(696\) −1107.13 1917.60i −0.0602954 0.104435i
\(697\) 13510.0 7800.01i 0.734187 0.423883i
\(698\) −15297.8 8832.20i −0.829557 0.478945i
\(699\) −2345.97 −0.126942
\(700\) 0 0
\(701\) 12639.3 0.680996 0.340498 0.940245i \(-0.389404\pi\)
0.340498 + 0.940245i \(0.389404\pi\)
\(702\) −7868.43 4542.84i −0.423041 0.244243i
\(703\) −25075.2 + 14477.2i −1.34528 + 0.776696i
\(704\) −7851.63 13599.4i −0.420340 0.728050i
\(705\) 800.554 + 1688.97i 0.0427668 + 0.0902276i
\(706\) −4958.45 −0.264325
\(707\) 0 0
\(708\) 3119.69i 0.165600i
\(709\) −11563.4 + 20028.4i −0.612514 + 1.06091i 0.378301 + 0.925683i \(0.376508\pi\)
−0.990815 + 0.135223i \(0.956825\pi\)
\(710\) −501.115 + 6174.88i −0.0264880 + 0.326393i
\(711\) −262.959 455.458i −0.0138702 0.0240239i
\(712\) −19646.8 11343.1i −1.03412 0.597050i
\(713\) 7854.92i 0.412579i
\(714\) 0 0
\(715\) −24111.0 16657.7i −1.26112 0.871275i
\(716\) 1633.58 2829.44i 0.0852650 0.147683i
\(717\) −11142.2 + 6432.95i −0.580353 + 0.335067i
\(718\) 3148.34 1817.69i 0.163642 0.0944787i
\(719\) −12046.6 + 20865.2i −0.624841 + 1.08226i 0.363731 + 0.931504i \(0.381503\pi\)
−0.988572 + 0.150752i \(0.951831\pi\)
\(720\) 597.771 865.238i 0.0309411 0.0447854i
\(721\) 0 0
\(722\) 14758.7i 0.760750i
\(723\) 1001.81 + 578.395i 0.0515321 + 0.0297521i
\(724\) 7273.58 + 12598.2i 0.373371 + 0.646697i
\(725\) −3179.02 + 3886.88i −0.162849 + 0.199110i
\(726\) −4147.25 + 7183.24i −0.212009 + 0.367211i
\(727\) 35983.4i 1.83570i 0.396931 + 0.917849i \(0.370075\pi\)
−0.396931 + 0.917849i \(0.629925\pi\)
\(728\) 0 0
\(729\) −2540.55 −0.129073
\(730\) −4381.94 9244.82i −0.222168 0.468721i
\(731\) 6782.05 + 11746.9i 0.343151 + 0.594355i
\(732\) 1014.74 585.861i 0.0512375 0.0295820i
\(733\) −1257.04 725.752i −0.0633422 0.0365706i 0.467994 0.883731i \(-0.344977\pi\)
−0.531337 + 0.847161i \(0.678310\pi\)
\(734\) −2097.64 −0.105484
\(735\) 0 0
\(736\) −29226.3 −1.46371
\(737\) −20273.1 11704.7i −1.01326 0.585005i
\(738\) −5111.52 + 2951.14i −0.254956 + 0.147199i
\(739\) −2945.83 5102.33i −0.146636 0.253982i 0.783346 0.621586i \(-0.213511\pi\)
−0.929982 + 0.367604i \(0.880178\pi\)
\(740\) −12137.3 + 5752.95i −0.602942 + 0.285788i
\(741\) 14209.5 0.704451
\(742\) 0 0
\(743\) 7438.65i 0.367292i −0.982992 0.183646i \(-0.941210\pi\)
0.982992 0.183646i \(-0.0587900\pi\)
\(744\) −1365.87 + 2365.76i −0.0673056 + 0.116577i
\(745\) 28015.3 + 2273.55i 1.37772 + 0.111807i
\(746\) 3891.42 + 6740.13i 0.190985 + 0.330796i
\(747\) 6771.14 + 3909.32i 0.331651 + 0.191479i
\(748\) 27518.9i 1.34518i
\(749\) 0 0
\(750\) −5667.20 1404.47i −0.275916 0.0683784i
\(751\) −10136.2 + 17556.4i −0.492509 + 0.853051i −0.999963 0.00862831i \(-0.997253\pi\)
0.507454 + 0.861679i \(0.330587\pi\)
\(752\) −262.775 + 151.713i −0.0127426 + 0.00735694i
\(753\) 4946.56 2855.90i 0.239393 0.138213i
\(754\) −1531.44 + 2652.54i −0.0739680 + 0.128116i
\(755\) 642.193 929.537i 0.0309560 0.0448070i
\(756\) 0 0
\(757\) 10193.8i 0.489432i −0.969595 0.244716i \(-0.921305\pi\)
0.969595 0.244716i \(-0.0786947\pi\)
\(758\) −2081.57 1201.79i −0.0997439 0.0575872i
\(759\) 11381.8 + 19713.8i 0.544312 + 0.942776i
\(760\) 2502.02 30830.6i 0.119418 1.47151i
\(761\) 20558.8 35608.9i 0.979311 1.69622i 0.314405 0.949289i \(-0.398195\pi\)
0.664906 0.746927i \(-0.268472\pi\)
\(762\) 1089.26i 0.0517845i
\(763\) 0 0
\(764\) 3844.76 0.182066
\(765\) −19315.6 + 9155.34i −0.912883 + 0.432696i
\(766\) −11070.1 19173.9i −0.522165 0.904416i
\(767\) 9493.53 5481.09i 0.446925 0.258032i
\(768\) 8396.20 + 4847.55i 0.394495 + 0.227762i
\(769\) −11486.6 −0.538642 −0.269321 0.963050i \(-0.586799\pi\)
−0.269321 + 0.963050i \(0.586799\pi\)
\(770\) 0 0
\(771\) 2000.66 0.0934527
\(772\) 18363.4 + 10602.1i 0.856104 + 0.494272i
\(773\)