Properties

Label 245.4.j.e.79.4
Level $245$
Weight $4$
Character 245.79
Analytic conductor $14.455$
Analytic rank $0$
Dimension $20$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [245,4,Mod(79,245)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(245, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 2]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("245.79");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 245 = 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 245.j (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(14.4554679514\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(10\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - 55 x^{18} + 2042 x^{16} - 41247 x^{14} + 600234 x^{12} - 4812047 x^{10} + 27547801 x^{8} + \cdots + 12960000 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{6}\cdot 3^{2}\cdot 7^{8} \)
Twist minimal: no (minimal twist has level 35)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 79.4
Root \(-2.31676 + 1.33758i\) of defining polynomial
Character \(\chi\) \(=\) 245.79
Dual form 245.4.j.e.214.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.45073 - 0.837581i) q^{2} +(-2.15983 + 1.24698i) q^{3} +(-2.59692 - 4.49799i) q^{4} +(-11.1437 + 0.904354i) q^{5} +4.17779 q^{6} +22.1018i q^{8} +(-10.3901 + 17.9961i) q^{9} +(16.9240 + 8.02178i) q^{10} +(28.7940 + 49.8727i) q^{11} +(11.2178 + 6.47661i) q^{12} -45.5159i q^{13} +(22.9408 - 15.8492i) q^{15} +(-2.26327 + 3.92011i) q^{16} +(-79.6787 + 46.0025i) q^{17} +(30.1465 - 17.4051i) q^{18} +(62.5885 - 108.407i) q^{19} +(33.0070 + 47.7757i) q^{20} -96.4692i q^{22} +(-137.262 - 79.2481i) q^{23} +(-27.5605 - 47.7362i) q^{24} +(123.364 - 20.1557i) q^{25} +(-38.1233 + 66.0315i) q^{26} -119.162i q^{27} +40.1708 q^{29} +(-46.5560 + 3.77820i) q^{30} +(-24.7795 - 42.9194i) q^{31} +(159.693 - 92.1986i) q^{32} +(-124.381 - 71.8111i) q^{33} +154.123 q^{34} +107.929 q^{36} +(200.318 + 115.654i) q^{37} +(-181.598 + 104.846i) q^{38} +(56.7575 + 98.3069i) q^{39} +(-19.9879 - 246.296i) q^{40} +169.556 q^{41} -147.428i q^{43} +(149.551 - 259.030i) q^{44} +(99.5091 - 209.940i) q^{45} +(132.753 + 229.936i) q^{46} +(-58.0520 - 33.5164i) q^{47} -11.2890i q^{48} +(-195.851 - 74.0870i) q^{50} +(114.729 - 198.716i) q^{51} +(-204.730 + 118.201i) q^{52} +(232.655 - 134.323i) q^{53} +(-99.8077 + 172.872i) q^{54} +(-365.974 - 529.726i) q^{55} +312.187i q^{57} +(-58.2771 - 33.6463i) q^{58} +(-120.421 - 208.576i) q^{59} +(-130.865 - 62.0285i) q^{60} +(-45.2290 + 78.3389i) q^{61} +83.0194i q^{62} -272.683 q^{64} +(41.1625 + 507.216i) q^{65} +(120.295 + 208.358i) q^{66} +(352.038 - 203.249i) q^{67} +(413.838 + 238.929i) q^{68} +395.283 q^{69} +330.782 q^{71} +(-397.747 - 229.640i) q^{72} +(473.071 - 273.127i) q^{73} +(-193.739 - 335.565i) q^{74} +(-241.313 + 197.366i) q^{75} -650.149 q^{76} -190.156i q^{78} +(-12.6543 + 21.9179i) q^{79} +(21.6761 - 45.7313i) q^{80} +(-131.940 - 228.526i) q^{81} +(-245.981 - 142.017i) q^{82} +376.255i q^{83} +(846.314 - 584.697i) q^{85} +(-123.483 + 213.878i) q^{86} +(-86.7623 + 50.0922i) q^{87} +(-1102.28 + 636.399i) q^{88} +(513.219 - 888.921i) q^{89} +(-320.203 + 221.220i) q^{90} +823.203i q^{92} +(107.039 + 61.7992i) q^{93} +(56.1453 + 97.2466i) q^{94} +(-599.430 + 1264.65i) q^{95} +(-229.940 + 398.267i) q^{96} +942.660i q^{97} -1196.69 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 36 q^{4} - 6 q^{5} + 24 q^{6} + 46 q^{9} + 16 q^{10} - 84 q^{11} + 16 q^{15} - 148 q^{16} - 72 q^{19} - 136 q^{20} - 72 q^{24} + 362 q^{25} + 620 q^{26} + 176 q^{29} - 52 q^{30} - 120 q^{31} + 1928 q^{34}+ \cdots - 10608 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/245\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(197\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.45073 0.837581i −0.512912 0.296130i 0.221118 0.975247i \(-0.429029\pi\)
−0.734030 + 0.679117i \(0.762363\pi\)
\(3\) −2.15983 + 1.24698i −0.415660 + 0.239982i −0.693219 0.720727i \(-0.743808\pi\)
0.277559 + 0.960709i \(0.410475\pi\)
\(4\) −2.59692 4.49799i −0.324615 0.562249i
\(5\) −11.1437 + 0.904354i −0.996723 + 0.0808879i
\(6\) 4.17779 0.284263
\(7\) 0 0
\(8\) 22.1018i 0.976771i
\(9\) −10.3901 + 17.9961i −0.384818 + 0.666524i
\(10\) 16.9240 + 8.02178i 0.535184 + 0.253671i
\(11\) 28.7940 + 49.8727i 0.789247 + 1.36702i 0.926429 + 0.376470i \(0.122862\pi\)
−0.137182 + 0.990546i \(0.543804\pi\)
\(12\) 11.2178 + 6.47661i 0.269859 + 0.155803i
\(13\) 45.5159i 0.971066i −0.874218 0.485533i \(-0.838626\pi\)
0.874218 0.485533i \(-0.161374\pi\)
\(14\) 0 0
\(15\) 22.9408 15.8492i 0.394887 0.272817i
\(16\) −2.26327 + 3.92011i −0.0353637 + 0.0612517i
\(17\) −79.6787 + 46.0025i −1.13676 + 0.656309i −0.945626 0.325255i \(-0.894550\pi\)
−0.191134 + 0.981564i \(0.561217\pi\)
\(18\) 30.1465 17.4051i 0.394755 0.227912i
\(19\) 62.5885 108.407i 0.755726 1.30896i −0.189286 0.981922i \(-0.560617\pi\)
0.945013 0.327034i \(-0.106049\pi\)
\(20\) 33.0070 + 47.7757i 0.369030 + 0.534149i
\(21\) 0 0
\(22\) 96.4692i 0.934878i
\(23\) −137.262 79.2481i −1.24439 0.718451i −0.274408 0.961613i \(-0.588482\pi\)
−0.969986 + 0.243162i \(0.921815\pi\)
\(24\) −27.5605 47.7362i −0.234407 0.406005i
\(25\) 123.364 20.1557i 0.986914 0.161246i
\(26\) −38.1233 + 66.0315i −0.287561 + 0.498071i
\(27\) 119.162i 0.849360i
\(28\) 0 0
\(29\) 40.1708 0.257225 0.128613 0.991695i \(-0.458948\pi\)
0.128613 + 0.991695i \(0.458948\pi\)
\(30\) −46.5560 + 3.77820i −0.283331 + 0.0229934i
\(31\) −24.7795 42.9194i −0.143566 0.248663i 0.785271 0.619152i \(-0.212523\pi\)
−0.928837 + 0.370489i \(0.879190\pi\)
\(32\) 159.693 92.1986i 0.882185 0.509330i
\(33\) −124.381 71.8111i −0.656117 0.378809i
\(34\) 154.123 0.777410
\(35\) 0 0
\(36\) 107.929 0.499670
\(37\) 200.318 + 115.654i 0.890056 + 0.513874i 0.873961 0.485997i \(-0.161543\pi\)
0.0160950 + 0.999870i \(0.494877\pi\)
\(38\) −181.598 + 104.846i −0.775241 + 0.447586i
\(39\) 56.7575 + 98.3069i 0.233038 + 0.403633i
\(40\) −19.9879 246.296i −0.0790090 0.973570i
\(41\) 169.556 0.645859 0.322929 0.946423i \(-0.395332\pi\)
0.322929 + 0.946423i \(0.395332\pi\)
\(42\) 0 0
\(43\) 147.428i 0.522849i −0.965224 0.261425i \(-0.915808\pi\)
0.965224 0.261425i \(-0.0841923\pi\)
\(44\) 149.551 259.030i 0.512402 0.887507i
\(45\) 99.5091 209.940i 0.329643 0.695467i
\(46\) 132.753 + 229.936i 0.425509 + 0.737004i
\(47\) −58.0520 33.5164i −0.180165 0.104018i 0.407205 0.913337i \(-0.366503\pi\)
−0.587370 + 0.809318i \(0.699837\pi\)
\(48\) 11.2890i 0.0339465i
\(49\) 0 0
\(50\) −195.851 74.0870i −0.553949 0.209550i
\(51\) 114.729 198.716i 0.315004 0.545603i
\(52\) −204.730 + 118.201i −0.545980 + 0.315222i
\(53\) 232.655 134.323i 0.602974 0.348127i −0.167237 0.985917i \(-0.553484\pi\)
0.770211 + 0.637790i \(0.220151\pi\)
\(54\) −99.8077 + 172.872i −0.251521 + 0.435646i
\(55\) −365.974 529.726i −0.897236 1.29870i
\(56\) 0 0
\(57\) 312.187i 0.725441i
\(58\) −58.2771 33.6463i −0.131934 0.0761720i
\(59\) −120.421 208.576i −0.265721 0.460242i 0.702031 0.712146i \(-0.252277\pi\)
−0.967752 + 0.251904i \(0.918943\pi\)
\(60\) −130.865 62.0285i −0.281577 0.133464i
\(61\) −45.2290 + 78.3389i −0.0949340 + 0.164431i −0.909581 0.415527i \(-0.863597\pi\)
0.814647 + 0.579957i \(0.196931\pi\)
\(62\) 83.0194i 0.170056i
\(63\) 0 0
\(64\) −272.683 −0.532583
\(65\) 41.1625 + 507.216i 0.0785475 + 0.967884i
\(66\) 120.295 + 208.358i 0.224353 + 0.388592i
\(67\) 352.038 203.249i 0.641914 0.370609i −0.143437 0.989659i \(-0.545816\pi\)
0.785351 + 0.619050i \(0.212482\pi\)
\(68\) 413.838 + 238.929i 0.738018 + 0.426095i
\(69\) 395.283 0.689660
\(70\) 0 0
\(71\) 330.782 0.552910 0.276455 0.961027i \(-0.410840\pi\)
0.276455 + 0.961027i \(0.410840\pi\)
\(72\) −397.747 229.640i −0.651041 0.375879i
\(73\) 473.071 273.127i 0.758476 0.437906i −0.0702724 0.997528i \(-0.522387\pi\)
0.828748 + 0.559622i \(0.189054\pi\)
\(74\) −193.739 335.565i −0.304347 0.527144i
\(75\) −241.313 + 197.366i −0.371525 + 0.303865i
\(76\) −650.149 −0.981279
\(77\) 0 0
\(78\) 190.156i 0.276038i
\(79\) −12.6543 + 21.9179i −0.0180218 + 0.0312147i −0.874896 0.484311i \(-0.839070\pi\)
0.856874 + 0.515526i \(0.172403\pi\)
\(80\) 21.6761 45.7313i 0.0302933 0.0639114i
\(81\) −131.940 228.526i −0.180987 0.313479i
\(82\) −245.981 142.017i −0.331268 0.191258i
\(83\) 376.255i 0.497582i 0.968557 + 0.248791i \(0.0800333\pi\)
−0.968557 + 0.248791i \(0.919967\pi\)
\(84\) 0 0
\(85\) 846.314 584.697i 1.07995 0.746109i
\(86\) −123.483 + 213.878i −0.154831 + 0.268175i
\(87\) −86.7623 + 50.0922i −0.106918 + 0.0617293i
\(88\) −1102.28 + 636.399i −1.33526 + 0.770914i
\(89\) 513.219 888.921i 0.611248 1.05871i −0.379782 0.925076i \(-0.624001\pi\)
0.991030 0.133637i \(-0.0426656\pi\)
\(90\) −320.203 + 221.220i −0.375026 + 0.259096i
\(91\) 0 0
\(92\) 823.203i 0.932878i
\(93\) 107.039 + 61.7992i 0.119349 + 0.0689062i
\(94\) 56.1453 + 97.2466i 0.0616058 + 0.106704i
\(95\) −599.430 + 1264.65i −0.647371 + 1.36580i
\(96\) −229.940 + 398.267i −0.244460 + 0.423416i
\(97\) 942.660i 0.986728i 0.869823 + 0.493364i \(0.164233\pi\)
−0.869823 + 0.493364i \(0.835767\pi\)
\(98\) 0 0
\(99\) −1196.69 −1.21487
\(100\) −411.027 502.549i −0.411027 0.502549i
\(101\) 302.308 + 523.613i 0.297830 + 0.515856i 0.975639 0.219381i \(-0.0704039\pi\)
−0.677809 + 0.735238i \(0.737071\pi\)
\(102\) −332.881 + 192.189i −0.323139 + 0.186564i
\(103\) 260.645 + 150.484i 0.249341 + 0.143957i 0.619463 0.785026i \(-0.287351\pi\)
−0.370121 + 0.928983i \(0.620684\pi\)
\(104\) 1005.98 0.948509
\(105\) 0 0
\(106\) −450.027 −0.412363
\(107\) 1309.14 + 755.830i 1.18279 + 0.682886i 0.956659 0.291210i \(-0.0940577\pi\)
0.226135 + 0.974096i \(0.427391\pi\)
\(108\) −535.989 + 309.453i −0.477551 + 0.275714i
\(109\) −883.545 1530.34i −0.776406 1.34477i −0.934001 0.357270i \(-0.883707\pi\)
0.157595 0.987504i \(-0.449626\pi\)
\(110\) 87.2424 + 1075.02i 0.0756203 + 0.931814i
\(111\) −576.871 −0.493281
\(112\) 0 0
\(113\) 1045.27i 0.870182i 0.900387 + 0.435091i \(0.143284\pi\)
−0.900387 + 0.435091i \(0.856716\pi\)
\(114\) 261.482 452.900i 0.214825 0.372087i
\(115\) 1601.27 + 758.984i 1.29843 + 0.615440i
\(116\) −104.320 180.688i −0.0834991 0.144625i
\(117\) 819.111 + 472.914i 0.647238 + 0.373683i
\(118\) 403.451i 0.314751i
\(119\) 0 0
\(120\) 350.297 + 507.034i 0.266480 + 0.385714i
\(121\) −992.689 + 1719.39i −0.745822 + 1.29180i
\(122\) 131.230 75.7658i 0.0973855 0.0562255i
\(123\) −366.213 + 211.433i −0.268458 + 0.154994i
\(124\) −128.701 + 222.916i −0.0932070 + 0.161439i
\(125\) −1356.51 + 336.174i −0.970638 + 0.240547i
\(126\) 0 0
\(127\) 260.727i 0.182171i −0.995843 0.0910857i \(-0.970966\pi\)
0.995843 0.0910857i \(-0.0290337\pi\)
\(128\) −881.951 509.195i −0.609017 0.351616i
\(129\) 183.840 + 318.419i 0.125474 + 0.217328i
\(130\) 365.119 770.312i 0.246331 0.519699i
\(131\) 361.761 626.588i 0.241276 0.417903i −0.719802 0.694180i \(-0.755767\pi\)
0.961078 + 0.276277i \(0.0891006\pi\)
\(132\) 745.950i 0.491868i
\(133\) 0 0
\(134\) −680.950 −0.438993
\(135\) 107.765 + 1327.90i 0.0687029 + 0.846577i
\(136\) −1016.74 1761.04i −0.641064 1.11036i
\(137\) −670.038 + 386.847i −0.417848 + 0.241245i −0.694156 0.719824i \(-0.744222\pi\)
0.276308 + 0.961069i \(0.410889\pi\)
\(138\) −573.451 331.082i −0.353735 0.204229i
\(139\) 2952.97 1.80192 0.900961 0.433899i \(-0.142863\pi\)
0.900961 + 0.433899i \(0.142863\pi\)
\(140\) 0 0
\(141\) 167.177 0.0998499
\(142\) −479.876 277.057i −0.283594 0.163733i
\(143\) 2270.00 1310.59i 1.32746 0.766411i
\(144\) −47.0312 81.4604i −0.0272171 0.0471414i
\(145\) −447.652 + 36.3287i −0.256382 + 0.0208064i
\(146\) −915.066 −0.518708
\(147\) 0 0
\(148\) 1201.37i 0.667244i
\(149\) 1257.00 2177.19i 0.691124 1.19706i −0.280345 0.959899i \(-0.590449\pi\)
0.971470 0.237163i \(-0.0762177\pi\)
\(150\) 515.390 84.2063i 0.280543 0.0458361i
\(151\) −50.5262 87.5140i −0.0272302 0.0471642i 0.852089 0.523397i \(-0.175335\pi\)
−0.879319 + 0.476233i \(0.842002\pi\)
\(152\) 2395.98 + 1383.32i 1.27855 + 0.738171i
\(153\) 1911.88i 1.01024i
\(154\) 0 0
\(155\) 314.950 + 455.872i 0.163209 + 0.236235i
\(156\) 294.789 510.589i 0.151295 0.262050i
\(157\) −2025.07 + 1169.17i −1.02941 + 0.594333i −0.916817 0.399308i \(-0.869250\pi\)
−0.112597 + 0.993641i \(0.535917\pi\)
\(158\) 36.7161 21.1980i 0.0184872 0.0106736i
\(159\) −334.997 + 580.233i −0.167088 + 0.289405i
\(160\) −1696.19 + 1171.85i −0.838096 + 0.579019i
\(161\) 0 0
\(162\) 442.040i 0.214383i
\(163\) 1147.66 + 662.602i 0.551483 + 0.318399i 0.749720 0.661755i \(-0.230188\pi\)
−0.198237 + 0.980154i \(0.563522\pi\)
\(164\) −440.323 762.662i −0.209655 0.363133i
\(165\) 1451.00 + 687.758i 0.684608 + 0.324496i
\(166\) 315.144 545.845i 0.147349 0.255216i
\(167\) 2086.20i 0.966675i −0.875434 0.483338i \(-0.839424\pi\)
0.875434 0.483338i \(-0.160576\pi\)
\(168\) 0 0
\(169\) 125.299 0.0570317
\(170\) −1717.51 + 139.382i −0.774863 + 0.0628831i
\(171\) 1300.60 + 2252.70i 0.581634 + 1.00742i
\(172\) −663.129 + 382.858i −0.293971 + 0.169724i
\(173\) −1661.20 959.095i −0.730051 0.421495i 0.0883897 0.996086i \(-0.471828\pi\)
−0.818441 + 0.574591i \(0.805161\pi\)
\(174\) 167.825 0.0731195
\(175\) 0 0
\(176\) −260.675 −0.111643
\(177\) 520.180 + 300.326i 0.220899 + 0.127536i
\(178\) −1489.09 + 859.725i −0.627032 + 0.362017i
\(179\) 314.523 + 544.770i 0.131333 + 0.227475i 0.924191 0.381932i \(-0.124741\pi\)
−0.792858 + 0.609407i \(0.791408\pi\)
\(180\) −1202.72 + 97.6057i −0.498032 + 0.0404172i
\(181\) −2800.85 −1.15020 −0.575099 0.818084i \(-0.695036\pi\)
−0.575099 + 0.818084i \(0.695036\pi\)
\(182\) 0 0
\(183\) 225.599i 0.0911296i
\(184\) 1751.53 3033.73i 0.701762 1.21549i
\(185\) −2336.88 1107.65i −0.928705 0.440195i
\(186\) −103.524 179.308i −0.0408103 0.0706856i
\(187\) −4588.54 2649.19i −1.79437 1.03598i
\(188\) 348.157i 0.135063i
\(189\) 0 0
\(190\) 1928.86 1332.60i 0.736497 0.508827i
\(191\) −370.127 + 641.080i −0.140217 + 0.242863i −0.927578 0.373629i \(-0.878113\pi\)
0.787361 + 0.616492i \(0.211447\pi\)
\(192\) 588.949 340.030i 0.221374 0.127810i
\(193\) 3535.61 2041.29i 1.31865 0.761321i 0.335136 0.942170i \(-0.391218\pi\)
0.983511 + 0.180849i \(0.0578844\pi\)
\(194\) 789.554 1367.55i 0.292199 0.506104i
\(195\) −721.393 1044.17i −0.264923 0.383461i
\(196\) 0 0
\(197\) 3414.89i 1.23503i −0.786559 0.617515i \(-0.788140\pi\)
0.786559 0.617515i \(-0.211860\pi\)
\(198\) 1736.07 + 1002.32i 0.623118 + 0.359758i
\(199\) −1696.22 2937.94i −0.604231 1.04656i −0.992173 0.124875i \(-0.960147\pi\)
0.387941 0.921684i \(-0.373186\pi\)
\(200\) 445.478 + 2726.57i 0.157500 + 0.963989i
\(201\) −506.895 + 877.968i −0.177879 + 0.308095i
\(202\) 1012.83i 0.352785i
\(203\) 0 0
\(204\) −1191.76 −0.409020
\(205\) −1889.48 + 153.339i −0.643743 + 0.0522422i
\(206\) −252.084 436.623i −0.0852600 0.147675i
\(207\) 2852.32 1646.79i 0.957729 0.552945i
\(208\) 178.427 + 103.015i 0.0594794 + 0.0343404i
\(209\) 7208.70 2.38582
\(210\) 0 0
\(211\) 3398.04 1.10867 0.554337 0.832292i \(-0.312972\pi\)
0.554337 + 0.832292i \(0.312972\pi\)
\(212\) −1208.37 697.653i −0.391468 0.226014i
\(213\) −714.434 + 412.479i −0.229823 + 0.132688i
\(214\) −1266.14 2193.02i −0.404446 0.700521i
\(215\) 133.327 + 1642.89i 0.0422922 + 0.521136i
\(216\) 2633.69 0.829630
\(217\) 0 0
\(218\) 2960.16i 0.919667i
\(219\) −681.169 + 1179.82i −0.210179 + 0.364040i
\(220\) −1432.30 + 3021.80i −0.438935 + 0.926045i
\(221\) 2093.85 + 3626.65i 0.637319 + 1.10387i
\(222\) 836.886 + 483.176i 0.253010 + 0.146075i
\(223\) 182.611i 0.0548365i 0.999624 + 0.0274183i \(0.00872860\pi\)
−0.999624 + 0.0274183i \(0.991271\pi\)
\(224\) 0 0
\(225\) −919.040 + 2429.50i −0.272308 + 0.719852i
\(226\) 875.496 1516.40i 0.257687 0.446326i
\(227\) 2730.00 1576.17i 0.798222 0.460854i −0.0446271 0.999004i \(-0.514210\pi\)
0.842849 + 0.538150i \(0.180877\pi\)
\(228\) 1404.21 810.723i 0.407878 0.235489i
\(229\) 3006.18 5206.85i 0.867483 1.50253i 0.00292326 0.999996i \(-0.499069\pi\)
0.864560 0.502529i \(-0.167597\pi\)
\(230\) −1687.31 2442.28i −0.483730 0.700170i
\(231\) 0 0
\(232\) 887.848i 0.251250i
\(233\) 814.635 + 470.330i 0.229050 + 0.132242i 0.610133 0.792299i \(-0.291116\pi\)
−0.381084 + 0.924540i \(0.624449\pi\)
\(234\) −792.208 1372.14i −0.221317 0.383333i
\(235\) 677.225 + 320.997i 0.187989 + 0.0891043i
\(236\) −625.448 + 1083.31i −0.172514 + 0.298802i
\(237\) 63.1188i 0.0172996i
\(238\) 0 0
\(239\) −5158.82 −1.39622 −0.698109 0.715991i \(-0.745975\pi\)
−0.698109 + 0.715991i \(0.745975\pi\)
\(240\) 10.2093 + 125.802i 0.00274586 + 0.0338353i
\(241\) 231.918 + 401.694i 0.0619882 + 0.107367i 0.895354 0.445355i \(-0.146923\pi\)
−0.833366 + 0.552722i \(0.813589\pi\)
\(242\) 2880.25 1662.92i 0.765081 0.441720i
\(243\) 3356.26 + 1937.74i 0.886025 + 0.511547i
\(244\) 469.823 0.123268
\(245\) 0 0
\(246\) 708.370 0.183594
\(247\) −4934.23 2848.78i −1.27108 0.733860i
\(248\) 948.596 547.672i 0.242887 0.140231i
\(249\) −469.183 812.648i −0.119411 0.206825i
\(250\) 2249.50 + 648.486i 0.569084 + 0.164055i
\(251\) 2290.25 0.575934 0.287967 0.957640i \(-0.407021\pi\)
0.287967 + 0.957640i \(0.407021\pi\)
\(252\) 0 0
\(253\) 9127.48i 2.26814i
\(254\) −218.380 + 378.245i −0.0539463 + 0.0934378i
\(255\) −1098.79 + 2318.18i −0.269839 + 0.569295i
\(256\) 1943.71 + 3366.61i 0.474540 + 0.821927i
\(257\) −694.727 401.101i −0.168622 0.0973541i 0.413314 0.910589i \(-0.364371\pi\)
−0.581936 + 0.813235i \(0.697705\pi\)
\(258\) 615.922i 0.148627i
\(259\) 0 0
\(260\) 2174.56 1502.35i 0.518694 0.358352i
\(261\) −417.378 + 722.920i −0.0989849 + 0.171447i
\(262\) −1049.64 + 606.008i −0.247507 + 0.142898i
\(263\) −248.530 + 143.489i −0.0582701 + 0.0336423i −0.528852 0.848714i \(-0.677377\pi\)
0.470582 + 0.882356i \(0.344044\pi\)
\(264\) 1587.16 2749.03i 0.370010 0.640876i
\(265\) −2471.16 + 1707.26i −0.572839 + 0.395760i
\(266\) 0 0
\(267\) 2559.90i 0.586753i
\(268\) −1828.42 1055.64i −0.416749 0.240610i
\(269\) 1780.61 + 3084.11i 0.403590 + 0.699039i 0.994156 0.107951i \(-0.0344288\pi\)
−0.590566 + 0.806989i \(0.701095\pi\)
\(270\) 955.890 2016.70i 0.215458 0.454564i
\(271\) −964.403 + 1670.39i −0.216175 + 0.374425i −0.953635 0.300965i \(-0.902691\pi\)
0.737461 + 0.675390i \(0.236025\pi\)
\(272\) 416.466i 0.0928380i
\(273\) 0 0
\(274\) 1296.06 0.285759
\(275\) 4557.37 + 5572.14i 0.999345 + 1.22187i
\(276\) −1026.52 1777.98i −0.223874 0.387760i
\(277\) −5705.97 + 3294.34i −1.23768 + 0.714578i −0.968620 0.248545i \(-0.920048\pi\)
−0.269064 + 0.963122i \(0.586714\pi\)
\(278\) −4283.96 2473.35i −0.924227 0.533603i
\(279\) 1029.84 0.220986
\(280\) 0 0
\(281\) 815.552 0.173138 0.0865689 0.996246i \(-0.472410\pi\)
0.0865689 + 0.996246i \(0.472410\pi\)
\(282\) −242.529 140.024i −0.0512142 0.0295685i
\(283\) −5640.85 + 3256.75i −1.18485 + 0.684076i −0.957132 0.289651i \(-0.906461\pi\)
−0.227722 + 0.973726i \(0.573128\pi\)
\(284\) −859.013 1487.85i −0.179483 0.310873i
\(285\) −282.327 3478.92i −0.0586794 0.723064i
\(286\) −4390.89 −0.907828
\(287\) 0 0
\(288\) 3831.80i 0.783997i
\(289\) 1775.97 3076.07i 0.361483 0.626108i
\(290\) 679.851 + 322.241i 0.137663 + 0.0652506i
\(291\) −1175.48 2035.99i −0.236796 0.410143i
\(292\) −2457.05 1418.58i −0.492425 0.284301i
\(293\) 435.520i 0.0868373i 0.999057 + 0.0434186i \(0.0138249\pi\)
−0.999057 + 0.0434186i \(0.986175\pi\)
\(294\) 0 0
\(295\) 1530.57 + 2215.40i 0.302078 + 0.437240i
\(296\) −2556.15 + 4427.39i −0.501937 + 0.869381i
\(297\) 5942.92 3431.15i 1.16109 0.670355i
\(298\) −3647.15 + 2105.68i −0.708971 + 0.409325i
\(299\) −3607.05 + 6247.60i −0.697663 + 1.20839i
\(300\) 1514.42 + 572.879i 0.291450 + 0.110251i
\(301\) 0 0
\(302\) 169.279i 0.0322547i
\(303\) −1305.87 753.945i −0.247592 0.142947i
\(304\) 283.310 + 490.707i 0.0534505 + 0.0925789i
\(305\) 433.172 913.888i 0.0813225 0.171571i
\(306\) −1601.35 + 2773.63i −0.299161 + 0.518163i
\(307\) 4915.99i 0.913910i 0.889490 + 0.456955i \(0.151060\pi\)
−0.889490 + 0.456955i \(0.848940\pi\)
\(308\) 0 0
\(309\) −750.601 −0.138188
\(310\) −75.0790 925.144i −0.0137555 0.169499i
\(311\) 915.556 + 1585.79i 0.166934 + 0.289138i 0.937340 0.348415i \(-0.113280\pi\)
−0.770407 + 0.637553i \(0.779947\pi\)
\(312\) −2172.76 + 1254.44i −0.394257 + 0.227625i
\(313\) 2115.66 + 1221.48i 0.382059 + 0.220582i 0.678714 0.734403i \(-0.262538\pi\)
−0.296655 + 0.954985i \(0.595871\pi\)
\(314\) 3917.11 0.703998
\(315\) 0 0
\(316\) 131.449 0.0234006
\(317\) 1442.97 + 833.096i 0.255662 + 0.147607i 0.622354 0.782736i \(-0.286176\pi\)
−0.366692 + 0.930342i \(0.619510\pi\)
\(318\) 971.983 561.175i 0.171403 0.0989595i
\(319\) 1156.68 + 2003.43i 0.203014 + 0.351631i
\(320\) 3038.70 246.602i 0.530838 0.0430796i
\(321\) −3770.02 −0.655521
\(322\) 0 0
\(323\) 11516.9i 1.98396i
\(324\) −685.272 + 1186.93i −0.117502 + 0.203520i
\(325\) −917.406 5615.04i −0.156580 0.958358i
\(326\) −1109.97 1922.52i −0.188575 0.326621i
\(327\) 3816.62 + 2203.53i 0.645442 + 0.372646i
\(328\) 3747.50i 0.630856i
\(329\) 0 0
\(330\) −1528.96 2213.09i −0.255051 0.369171i
\(331\) 2733.19 4734.02i 0.453866 0.786119i −0.544756 0.838595i \(-0.683378\pi\)
0.998622 + 0.0524753i \(0.0167111\pi\)
\(332\) 1692.39 977.102i 0.279765 0.161522i
\(333\) −4162.64 + 2403.30i −0.685018 + 0.395496i
\(334\) −1747.36 + 3026.51i −0.286261 + 0.495819i
\(335\) −3739.19 + 2583.31i −0.609833 + 0.421318i
\(336\) 0 0
\(337\) 10650.5i 1.72157i −0.508970 0.860784i \(-0.669973\pi\)
0.508970 0.860784i \(-0.330027\pi\)
\(338\) −181.775 104.948i −0.0292522 0.0168888i
\(339\) −1303.43 2257.60i −0.208828 0.361700i
\(340\) −4827.77 2288.30i −0.770066 0.365002i
\(341\) 1427.00 2471.64i 0.226617 0.392513i
\(342\) 4357.43i 0.688956i
\(343\) 0 0
\(344\) 3258.42 0.510704
\(345\) −4404.92 + 357.476i −0.687400 + 0.0557851i
\(346\) 1606.64 + 2782.78i 0.249634 + 0.432380i
\(347\) −3480.67 + 2009.57i −0.538479 + 0.310891i −0.744462 0.667664i \(-0.767294\pi\)
0.205983 + 0.978556i \(0.433961\pi\)
\(348\) 450.629 + 260.171i 0.0694145 + 0.0400765i
\(349\) −10544.9 −1.61735 −0.808674 0.588256i \(-0.799815\pi\)
−0.808674 + 0.588256i \(0.799815\pi\)
\(350\) 0 0
\(351\) −5423.76 −0.824784
\(352\) 9196.38 + 5309.53i 1.39252 + 0.803974i
\(353\) 2563.42 1479.99i 0.386507 0.223150i −0.294138 0.955763i \(-0.595033\pi\)
0.680646 + 0.732613i \(0.261699\pi\)
\(354\) −503.095 871.386i −0.0755345 0.130830i
\(355\) −3686.14 + 299.144i −0.551098 + 0.0447237i
\(356\) −5331.14 −0.793680
\(357\) 0 0
\(358\) 1053.75i 0.155566i
\(359\) 1085.08 1879.42i 0.159523 0.276301i −0.775174 0.631748i \(-0.782338\pi\)
0.934697 + 0.355447i \(0.115671\pi\)
\(360\) 4640.05 + 2199.33i 0.679312 + 0.321986i
\(361\) −4405.15 7629.94i −0.642244 1.11240i
\(362\) 4063.29 + 2345.94i 0.589949 + 0.340607i
\(363\) 4951.46i 0.715934i
\(364\) 0 0
\(365\) −5024.76 + 3471.48i −0.720569 + 0.497823i
\(366\) −188.957 + 327.283i −0.0269862 + 0.0467414i
\(367\) 1084.44 626.101i 0.154243 0.0890523i −0.420892 0.907111i \(-0.638283\pi\)
0.575135 + 0.818058i \(0.304950\pi\)
\(368\) 621.322 358.720i 0.0880126 0.0508141i
\(369\) −1761.70 + 3051.36i −0.248538 + 0.430480i
\(370\) 2462.43 + 3564.23i 0.345989 + 0.500798i
\(371\) 0 0
\(372\) 641.949i 0.0894718i
\(373\) −4023.57 2323.01i −0.558533 0.322469i 0.194024 0.980997i \(-0.437846\pi\)
−0.752556 + 0.658528i \(0.771179\pi\)
\(374\) 4437.83 + 7686.55i 0.613569 + 1.06273i
\(375\) 2510.63 2417.62i 0.345729 0.332921i
\(376\) 740.772 1283.05i 0.101602 0.175980i
\(377\) 1828.41i 0.249783i
\(378\) 0 0
\(379\) −1434.84 −0.194466 −0.0972331 0.995262i \(-0.530999\pi\)
−0.0972331 + 0.995262i \(0.530999\pi\)
\(380\) 7245.06 587.965i 0.978063 0.0793736i
\(381\) 325.121 + 563.126i 0.0437178 + 0.0757214i
\(382\) 1073.91 620.023i 0.143838 0.0830449i
\(383\) 11446.0 + 6608.36i 1.52706 + 0.881649i 0.999483 + 0.0321425i \(0.0102330\pi\)
0.527578 + 0.849507i \(0.323100\pi\)
\(384\) 2539.82 0.337526
\(385\) 0 0
\(386\) −6838.97 −0.901799
\(387\) 2653.13 + 1531.79i 0.348492 + 0.201202i
\(388\) 4240.07 2448.01i 0.554787 0.320306i
\(389\) −3877.50 6716.03i −0.505391 0.875363i −0.999981 0.00623657i \(-0.998015\pi\)
0.494589 0.869127i \(-0.335319\pi\)
\(390\) 171.968 + 2119.04i 0.0223281 + 0.275133i
\(391\) 14582.5 1.88610
\(392\) 0 0
\(393\) 1804.44i 0.231607i
\(394\) −2860.25 + 4954.09i −0.365729 + 0.633461i
\(395\) 121.194 255.691i 0.0154379 0.0325702i
\(396\) 3107.70 + 5382.69i 0.394363 + 0.683056i
\(397\) −3083.77 1780.41i −0.389848 0.225079i 0.292246 0.956343i \(-0.405597\pi\)
−0.682094 + 0.731264i \(0.738931\pi\)
\(398\) 5682.89i 0.715723i
\(399\) 0 0
\(400\) −200.195 + 529.219i −0.0250243 + 0.0661524i
\(401\) 2715.30 4703.04i 0.338144 0.585683i −0.645940 0.763389i \(-0.723534\pi\)
0.984084 + 0.177706i \(0.0568675\pi\)
\(402\) 1470.74 849.132i 0.182472 0.105350i
\(403\) −1953.52 + 1127.86i −0.241468 + 0.139412i
\(404\) 1570.14 2719.56i 0.193360 0.334909i
\(405\) 1676.96 + 2427.31i 0.205751 + 0.297812i
\(406\) 0 0
\(407\) 13320.5i 1.62229i
\(408\) 4391.98 + 2535.71i 0.532929 + 0.307687i
\(409\) −4849.39 8399.40i −0.586277 1.01546i −0.994715 0.102675i \(-0.967260\pi\)
0.408438 0.912786i \(-0.366073\pi\)
\(410\) 2869.57 + 1360.14i 0.345653 + 0.163836i
\(411\) 964.780 1671.05i 0.115789 0.200552i
\(412\) 1563.17i 0.186922i
\(413\) 0 0
\(414\) −5517.27 −0.654974
\(415\) −340.268 4192.87i −0.0402484 0.495952i
\(416\) −4196.51 7268.56i −0.494593 0.856660i
\(417\) −6377.91 + 3682.29i −0.748988 + 0.432428i
\(418\) −10457.9 6037.87i −1.22371 0.706511i
\(419\) −13830.9 −1.61261 −0.806307 0.591498i \(-0.798537\pi\)
−0.806307 + 0.591498i \(0.798537\pi\)
\(420\) 0 0
\(421\) 16703.0 1.93362 0.966810 0.255498i \(-0.0822393\pi\)
0.966810 + 0.255498i \(0.0822393\pi\)
\(422\) −4929.64 2846.13i −0.568652 0.328311i
\(423\) 1206.33 696.475i 0.138661 0.0800562i
\(424\) 2968.79 + 5142.10i 0.340041 + 0.588968i
\(425\) −8902.30 + 7281.05i −1.01606 + 0.831019i
\(426\) 1381.94 0.157172
\(427\) 0 0
\(428\) 7851.31i 0.886699i
\(429\) −3268.55 + 5661.30i −0.367849 + 0.637133i
\(430\) 1182.63 2495.07i 0.132632 0.279821i
\(431\) −4087.04 7078.95i −0.456765 0.791140i 0.542023 0.840364i \(-0.317659\pi\)
−0.998788 + 0.0492238i \(0.984325\pi\)
\(432\) 467.127 + 269.696i 0.0520247 + 0.0300365i
\(433\) 14222.8i 1.57853i 0.614051 + 0.789267i \(0.289539\pi\)
−0.614051 + 0.789267i \(0.710461\pi\)
\(434\) 0 0
\(435\) 921.552 636.677i 0.101575 0.0701755i
\(436\) −4588.98 + 7948.35i −0.504065 + 0.873066i
\(437\) −17182.0 + 9920.05i −1.88084 + 1.08590i
\(438\) 1976.39 1141.07i 0.215606 0.124480i
\(439\) 2768.69 4795.52i 0.301008 0.521361i −0.675357 0.737491i \(-0.736010\pi\)
0.976365 + 0.216130i \(0.0693436\pi\)
\(440\) 11707.9 8088.70i 1.26853 0.876394i
\(441\) 0 0
\(442\) 7015.07i 0.754916i
\(443\) −3441.66 1987.04i −0.369116 0.213109i 0.303956 0.952686i \(-0.401692\pi\)
−0.673072 + 0.739577i \(0.735026\pi\)
\(444\) 1498.09 + 2594.76i 0.160126 + 0.277347i
\(445\) −4915.26 + 10370.0i −0.523608 + 1.10469i
\(446\) 152.952 264.920i 0.0162387 0.0281263i
\(447\) 6269.82i 0.663428i
\(448\) 0 0
\(449\) 15243.1 1.60216 0.801078 0.598559i \(-0.204260\pi\)
0.801078 + 0.598559i \(0.204260\pi\)
\(450\) 3368.18 2754.79i 0.352839 0.288582i
\(451\) 4882.20 + 8456.22i 0.509742 + 0.882900i
\(452\) 4701.60 2714.47i 0.489259 0.282474i
\(453\) 218.257 + 126.010i 0.0226371 + 0.0130695i
\(454\) −5280.67 −0.545890
\(455\) 0 0
\(456\) −6899.89 −0.708590
\(457\) −9326.11 5384.43i −0.954611 0.551145i −0.0601005 0.998192i \(-0.519142\pi\)
−0.894510 + 0.447048i \(0.852475\pi\)
\(458\) −8722.32 + 5035.83i −0.889884 + 0.513775i
\(459\) 5481.75 + 9494.67i 0.557443 + 0.965519i
\(460\) −744.467 9173.53i −0.0754586 0.929822i
\(461\) −332.605 −0.0336029 −0.0168015 0.999859i \(-0.505348\pi\)
−0.0168015 + 0.999859i \(0.505348\pi\)
\(462\) 0 0
\(463\) 8205.35i 0.823618i −0.911270 0.411809i \(-0.864897\pi\)
0.911270 0.411809i \(-0.135103\pi\)
\(464\) −90.9176 + 157.474i −0.00909643 + 0.0157555i
\(465\) −1248.70 591.870i −0.124532 0.0590265i
\(466\) −787.879 1364.65i −0.0783214 0.135657i
\(467\) −145.170 83.8138i −0.0143847 0.00830501i 0.492790 0.870148i \(-0.335977\pi\)
−0.507175 + 0.861843i \(0.669310\pi\)
\(468\) 4912.47i 0.485212i
\(469\) 0 0
\(470\) −713.612 1032.91i −0.0700351 0.101372i
\(471\) 2915.87 5050.44i 0.285258 0.494081i
\(472\) 4609.90 2661.53i 0.449551 0.259548i
\(473\) 7352.62 4245.04i 0.714744 0.412657i
\(474\) −52.8671 + 91.5685i −0.00512293 + 0.00887317i
\(475\) 5536.18 14635.0i 0.534773 1.41368i
\(476\) 0 0
\(477\) 5582.52i 0.535862i
\(478\) 7484.07 + 4320.93i 0.716137 + 0.413462i
\(479\) 3314.29 + 5740.52i 0.316146 + 0.547581i 0.979680 0.200565i \(-0.0642778\pi\)
−0.663535 + 0.748146i \(0.730944\pi\)
\(480\) 2202.21 4646.12i 0.209409 0.441803i
\(481\) 5264.08 9117.66i 0.499005 0.864302i
\(482\) 777.001i 0.0734262i
\(483\) 0 0
\(484\) 10311.7 0.968419
\(485\) −852.498 10504.7i −0.0798143 0.983494i
\(486\) −3246.02 5622.28i −0.302968 0.524757i
\(487\) 17876.1 10320.8i 1.66334 0.960327i 0.692231 0.721676i \(-0.256628\pi\)
0.971105 0.238651i \(-0.0767052\pi\)
\(488\) −1731.43 999.642i −0.160611 0.0927288i
\(489\) −3305.01 −0.305640
\(490\) 0 0
\(491\) −16710.8 −1.53594 −0.767972 0.640484i \(-0.778734\pi\)
−0.767972 + 0.640484i \(0.778734\pi\)
\(492\) 1902.05 + 1098.15i 0.174291 + 0.100627i
\(493\) −3200.76 + 1847.96i −0.292404 + 0.168819i
\(494\) 4772.16 + 8265.63i 0.434635 + 0.752810i
\(495\) 13335.5 1082.23i 1.21088 0.0982679i
\(496\) 224.331 0.0203080
\(497\) 0 0
\(498\) 1571.91i 0.141444i
\(499\) −6864.35 + 11889.4i −0.615812 + 1.06662i 0.374429 + 0.927256i \(0.377839\pi\)
−0.990241 + 0.139363i \(0.955495\pi\)
\(500\) 5034.84 + 5228.54i 0.450330 + 0.467655i
\(501\) 2601.45 + 4505.84i 0.231984 + 0.401809i
\(502\) −3322.54 1918.27i −0.295403 0.170551i
\(503\) 19523.7i 1.73065i −0.501209 0.865326i \(-0.667111\pi\)
0.501209 0.865326i \(-0.332889\pi\)
\(504\) 0 0
\(505\) −3842.37 5561.60i −0.338580 0.490075i
\(506\) −7645.00 + 13241.5i −0.671664 + 1.16336i
\(507\) −270.624 + 156.245i −0.0237058 + 0.0136866i
\(508\) −1172.75 + 677.086i −0.102426 + 0.0591355i
\(509\) −4344.08 + 7524.17i −0.378287 + 0.655212i −0.990813 0.135238i \(-0.956820\pi\)
0.612526 + 0.790450i \(0.290153\pi\)
\(510\) 3535.72 2442.74i 0.306989 0.212091i
\(511\) 0 0
\(512\) 1635.04i 0.141131i
\(513\) −12917.9 7458.17i −1.11177 0.641883i
\(514\) 671.909 + 1163.78i 0.0576588 + 0.0998680i
\(515\) −3040.64 1441.23i −0.260169 0.123317i
\(516\) 954.832 1653.82i 0.0814615 0.141095i
\(517\) 3860.28i 0.328385i
\(518\) 0 0
\(519\) 4783.89 0.404604
\(520\) −11210.4 + 909.766i −0.945401 + 0.0767229i
\(521\) −3385.68 5864.17i −0.284701 0.493117i 0.687835 0.725867i \(-0.258561\pi\)
−0.972537 + 0.232750i \(0.925228\pi\)
\(522\) 1211.01 699.176i 0.101541 0.0586247i
\(523\) 1182.90 + 682.947i 0.0988998 + 0.0570998i 0.548634 0.836063i \(-0.315148\pi\)
−0.449734 + 0.893162i \(0.648481\pi\)
\(524\) −3757.85 −0.313287
\(525\) 0 0
\(526\) 480.735 0.0398499
\(527\) 3948.80 + 2279.84i 0.326400 + 0.188447i
\(528\) 563.014 325.057i 0.0464054 0.0267922i
\(529\) 6477.02 + 11218.5i 0.532344 + 0.922046i
\(530\) 5014.97 406.984i 0.411012 0.0333552i
\(531\) 5004.75 0.409016
\(532\) 0 0
\(533\) 7717.51i 0.627171i
\(534\) 2144.12 3713.72i 0.173755 0.300952i
\(535\) −15272.2 7238.82i −1.23416 0.584975i
\(536\) 4492.17 + 7780.67i 0.362000 + 0.627003i
\(537\) −1358.63 784.408i −0.109180 0.0630348i
\(538\) 5965.62i 0.478060i
\(539\) 0 0
\(540\) 5693.05 3933.18i 0.453685 0.313439i
\(541\) 11625.0 20135.2i 0.923844 1.60014i 0.130433 0.991457i \(-0.458363\pi\)
0.793410 0.608687i \(-0.208303\pi\)
\(542\) 2798.18 1615.53i 0.221757 0.128031i
\(543\) 6049.37 3492.61i 0.478091 0.276026i
\(544\) −8482.74 + 14692.5i −0.668556 + 1.15797i
\(545\) 11229.9 + 16254.7i 0.882638 + 1.27757i
\(546\) 0 0
\(547\) 11552.7i 0.903033i 0.892263 + 0.451516i \(0.149117\pi\)
−0.892263 + 0.451516i \(0.850883\pi\)
\(548\) 3480.06 + 2009.22i 0.271279 + 0.156623i
\(549\) −939.865 1627.89i −0.0730646 0.126552i
\(550\) −1944.41 11900.9i −0.150745 0.922644i
\(551\) 2514.23 4354.78i 0.194392 0.336697i
\(552\) 8736.48i 0.673640i
\(553\) 0 0
\(554\) 11037.1 0.846430
\(555\) 6428.48 521.696i 0.491665 0.0399005i
\(556\) −7668.60 13282.4i −0.584930 1.01313i
\(557\) 14208.2 8203.08i 1.08082 0.624014i 0.149706 0.988731i \(-0.452167\pi\)
0.931119 + 0.364717i \(0.118834\pi\)
\(558\) −1494.03 862.578i −0.113346 0.0654406i
\(559\) −6710.31 −0.507721
\(560\) 0 0
\(561\) 13214.0 0.994465
\(562\) −1183.15 683.091i −0.0888044 0.0512712i
\(563\) 11805.6 6815.95i 0.883740 0.510227i 0.0118502 0.999930i \(-0.496228\pi\)
0.871890 + 0.489702i \(0.162895\pi\)
\(564\) −434.145 751.961i −0.0324127 0.0561405i
\(565\) −945.292 11648.2i −0.0703872 0.867330i
\(566\) 10911.2 0.810300
\(567\) 0 0
\(568\) 7310.88i 0.540067i
\(569\) −1543.41 + 2673.27i −0.113714 + 0.196958i −0.917265 0.398278i \(-0.869608\pi\)
0.803551 + 0.595236i \(0.202941\pi\)
\(570\) −2504.29 + 5283.45i −0.184023 + 0.388245i
\(571\) 1629.03 + 2821.57i 0.119392 + 0.206793i 0.919527 0.393027i \(-0.128572\pi\)
−0.800135 + 0.599820i \(0.795239\pi\)
\(572\) −11790.0 6806.96i −0.861827 0.497576i
\(573\) 1846.17i 0.134598i
\(574\) 0 0
\(575\) −18530.5 7009.78i −1.34396 0.508396i
\(576\) 2833.19 4907.24i 0.204948 0.354980i
\(577\) −20575.4 + 11879.2i −1.48451 + 0.857083i −0.999845 0.0176156i \(-0.994392\pi\)
−0.484667 + 0.874699i \(0.661059\pi\)
\(578\) −5152.91 + 2975.03i −0.370818 + 0.214092i
\(579\) −5090.89 + 8817.68i −0.365406 + 0.632902i
\(580\) 1325.92 + 1919.19i 0.0949238 + 0.137397i
\(581\) 0 0
\(582\) 3938.23i 0.280490i
\(583\) 13398.1 + 7735.42i 0.951791 + 0.549517i
\(584\) 6036.61 + 10455.7i 0.427734 + 0.740857i
\(585\) −9555.62 4529.25i −0.675344 0.320105i
\(586\) 364.783 631.823i 0.0257151 0.0445398i
\(587\) 596.893i 0.0419701i −0.999780 0.0209850i \(-0.993320\pi\)
0.999780 0.0209850i \(-0.00668023\pi\)
\(588\) 0 0
\(589\) −6203.66 −0.433985
\(590\) −364.862 4495.93i −0.0254596 0.313720i
\(591\) 4258.30 + 7375.59i 0.296384 + 0.513353i
\(592\) −906.749 + 523.512i −0.0629513 + 0.0363449i
\(593\) −16884.3 9748.16i −1.16923 0.675058i −0.215734 0.976452i \(-0.569215\pi\)
−0.953500 + 0.301394i \(0.902548\pi\)
\(594\) −11495.5 −0.794047
\(595\) 0 0
\(596\) −13057.3 −0.897396
\(597\) 7327.11 + 4230.31i 0.502310 + 0.290009i
\(598\) 10465.7 6042.40i 0.715679 0.413197i
\(599\) 1898.51 + 3288.31i 0.129501 + 0.224302i 0.923483 0.383639i \(-0.125329\pi\)
−0.793983 + 0.607941i \(0.791996\pi\)
\(600\) −4362.14 5333.44i −0.296806 0.362895i
\(601\) 5789.33 0.392931 0.196466 0.980511i \(-0.437054\pi\)
0.196466 + 0.980511i \(0.437054\pi\)
\(602\) 0 0
\(603\) 8447.09i 0.570468i
\(604\) −262.425 + 454.533i −0.0176787 + 0.0306203i
\(605\) 9507.30 20058.1i 0.638887 1.34790i
\(606\) 1262.98 + 2187.55i 0.0846618 + 0.146639i
\(607\) 16053.0 + 9268.21i 1.07343 + 0.619745i 0.929116 0.369787i \(-0.120569\pi\)
0.144313 + 0.989532i \(0.453903\pi\)
\(608\) 23082.3i 1.53966i
\(609\) 0 0
\(610\) −1393.87 + 962.991i −0.0925184 + 0.0639186i
\(611\) −1525.53 + 2642.29i −0.101009 + 0.174952i
\(612\) −8599.62 + 4964.99i −0.568005 + 0.327938i
\(613\) 1873.62 1081.74i 0.123450 0.0712738i −0.437003 0.899460i \(-0.643960\pi\)
0.560453 + 0.828186i \(0.310627\pi\)
\(614\) 4117.54 7131.79i 0.270636 0.468755i
\(615\) 3889.76 2687.34i 0.255041 0.176201i
\(616\) 0 0
\(617\) 22964.9i 1.49843i −0.662327 0.749215i \(-0.730431\pi\)
0.662327 0.749215i \(-0.269569\pi\)
\(618\) 1088.92 + 628.689i 0.0708784 + 0.0409216i
\(619\) −693.333 1200.89i −0.0450200 0.0779770i 0.842637 0.538482i \(-0.181002\pi\)
−0.887657 + 0.460505i \(0.847668\pi\)
\(620\) 1232.61 2600.50i 0.0798431 0.168450i
\(621\) −9443.35 + 16356.4i −0.610223 + 1.05694i
\(622\) 3067.41i 0.197736i
\(623\) 0 0
\(624\) −513.831 −0.0329643
\(625\) 14812.5 4972.99i 0.948000 0.318271i
\(626\) −2046.17 3544.08i −0.130642 0.226278i
\(627\) −15569.6 + 8989.11i −0.991690 + 0.572552i
\(628\) 10517.9 + 6072.49i 0.668326 + 0.385858i
\(629\) −21281.4 −1.34904
\(630\) 0 0
\(631\) 5969.39 0.376605 0.188303 0.982111i \(-0.439701\pi\)
0.188303 + 0.982111i \(0.439701\pi\)
\(632\) −484.426 279.683i −0.0304896 0.0176032i
\(633\) −7339.19 + 4237.28i −0.460832 + 0.266062i
\(634\) −1395.57 2417.20i −0.0874215 0.151418i
\(635\) 235.789 + 2905.46i 0.0147355 + 0.181574i
\(636\) 3479.84 0.216957
\(637\) 0 0
\(638\) 3875.25i 0.240474i
\(639\) −3436.85 + 5952.80i −0.212770 + 0.368528i
\(640\) 10288.7 + 4876.72i 0.635463 + 0.301202i
\(641\) −15183.6 26298.7i −0.935592 1.62049i −0.773576 0.633704i \(-0.781534\pi\)
−0.162016 0.986788i \(-0.551800\pi\)
\(642\) 5469.29 + 3157.70i 0.336224 + 0.194119i
\(643\) 28592.2i 1.75360i 0.480851 + 0.876802i \(0.340328\pi\)
−0.480851 + 0.876802i \(0.659672\pi\)
\(644\) 0 0
\(645\) −2336.62 3382.12i −0.142642 0.206466i
\(646\) 9646.36 16708.0i 0.587509 1.01760i
\(647\) 12564.3 7253.97i 0.763449 0.440778i −0.0670835 0.997747i \(-0.521369\pi\)
0.830533 + 0.556970i \(0.188036\pi\)
\(648\) 5050.84 2916.10i 0.306197 0.176783i
\(649\) 6934.83 12011.5i 0.419439 0.726489i
\(650\) −3372.14 + 8914.33i −0.203487 + 0.537921i
\(651\) 0 0
\(652\) 6882.89i 0.413428i
\(653\) −6062.05 3499.93i −0.363287 0.209744i 0.307235 0.951634i \(-0.400596\pi\)
−0.670522 + 0.741890i \(0.733930\pi\)
\(654\) −3691.26 6393.46i −0.220703 0.382269i
\(655\) −3464.70 + 7309.68i −0.206682 + 0.436050i
\(656\) −383.752 + 664.678i −0.0228399 + 0.0395599i
\(657\) 11351.3i 0.674056i
\(658\) 0 0
\(659\) −7308.92 −0.432041 −0.216020 0.976389i \(-0.569308\pi\)
−0.216020 + 0.976389i \(0.569308\pi\)
\(660\) −674.603 8312.64i −0.0397862 0.490256i
\(661\) 15048.6 + 26065.0i 0.885512 + 1.53375i 0.845126 + 0.534567i \(0.179525\pi\)
0.0403854 + 0.999184i \(0.487141\pi\)
\(662\) −7930.26 + 4578.54i −0.465586 + 0.268806i
\(663\) −9044.73 5221.98i −0.529816 0.305890i
\(664\) −8315.91 −0.486024
\(665\) 0 0
\(666\) 8051.83 0.468472
\(667\) −5513.92 3183.46i −0.320090 0.184804i
\(668\) −9383.70 + 5417.68i −0.543512 + 0.313797i
\(669\) −227.713 394.410i −0.0131598 0.0227934i
\(670\) 7588.31 615.820i 0.437555 0.0355093i
\(671\) −5209.29 −0.299706
\(672\) 0 0
\(673\) 5400.26i 0.309309i −0.987969 0.154654i \(-0.950574\pi\)
0.987969 0.154654i \(-0.0494264\pi\)
\(674\) −8920.64 + 15451.0i −0.509808 + 0.883013i
\(675\) −2401.79 14700.3i −0.136956 0.838245i
\(676\) −325.390 563.593i −0.0185133 0.0320660i
\(677\) 5569.49 + 3215.55i 0.316178 + 0.182546i 0.649688 0.760201i \(-0.274900\pi\)
−0.333509 + 0.942747i \(0.608233\pi\)
\(678\) 4366.91i 0.247360i
\(679\) 0 0
\(680\) 12922.9 + 18705.1i 0.728778 + 1.05486i
\(681\) −3930.90 + 6808.51i −0.221193 + 0.383117i
\(682\) −4140.40 + 2390.46i −0.232469 + 0.134216i
\(683\) −18070.3 + 10432.9i −1.01236 + 0.584486i −0.911881 0.410454i \(-0.865370\pi\)
−0.100477 + 0.994939i \(0.532037\pi\)
\(684\) 6755.10 11700.2i 0.377613 0.654046i
\(685\) 7116.86 4916.86i 0.396965 0.274253i
\(686\) 0 0
\(687\) 14994.6i 0.832720i
\(688\) 577.933 + 333.669i 0.0320254 + 0.0184899i
\(689\) −6113.86 10589.5i −0.338054 0.585527i
\(690\) 6689.78 + 3170.88i 0.369095 + 0.174947i
\(691\) −9225.13 + 15978.4i −0.507873 + 0.879662i 0.492085 + 0.870547i \(0.336235\pi\)
−0.999958 + 0.00911505i \(0.997099\pi\)
\(692\) 9962.76i 0.547294i
\(693\) 0 0
\(694\) 6732.70 0.368256
\(695\) −32907.0 + 2670.53i −1.79602 + 0.145754i
\(696\) −1107.13 1917.60i −0.0602954 0.104435i
\(697\) −13510.0 + 7800.01i −0.734187 + 0.423883i
\(698\) 15297.8 + 8832.20i 0.829557 + 0.478945i
\(699\) −2345.97 −0.126942
\(700\) 0 0
\(701\) 12639.3 0.680996 0.340498 0.940245i \(-0.389404\pi\)
0.340498 + 0.940245i \(0.389404\pi\)
\(702\) 7868.43 + 4542.84i 0.423041 + 0.244243i
\(703\) 25075.2 14477.2i 1.34528 0.776696i
\(704\) −7851.63 13599.4i −0.420340 0.728050i
\(705\) −1862.97 + 151.187i −0.0995228 + 0.00807665i
\(706\) −4958.45 −0.264325
\(707\) 0 0
\(708\) 3119.69i 0.165600i
\(709\) −11563.4 + 20028.4i −0.612514 + 1.06091i 0.378301 + 0.925683i \(0.376508\pi\)
−0.990815 + 0.135223i \(0.956825\pi\)
\(710\) 5598.16 + 2653.46i 0.295909 + 0.140257i
\(711\) −262.959 455.458i −0.0138702 0.0240239i
\(712\) 19646.8 + 11343.1i 1.03412 + 0.597050i
\(713\) 7854.92i 0.412579i
\(714\) 0 0
\(715\) −24111.0 + 16657.7i −1.26112 + 0.871275i
\(716\) 1633.58 2829.44i 0.0852650 0.147683i
\(717\) 11142.2 6432.95i 0.580353 0.335067i
\(718\) −3148.34 + 1817.69i −0.163642 + 0.0944787i
\(719\) −12046.6 + 20865.2i −0.624841 + 1.08226i 0.363731 + 0.931504i \(0.381503\pi\)
−0.988572 + 0.150752i \(0.951831\pi\)
\(720\) 597.771 + 865.238i 0.0309411 + 0.0447854i
\(721\) 0 0
\(722\) 14758.7i 0.760750i
\(723\) −1001.81 578.395i −0.0515321 0.0297521i
\(724\) 7273.58 + 12598.2i 0.373371 + 0.646697i
\(725\) 4955.64 809.671i 0.253859 0.0414765i
\(726\) −4147.25 + 7183.24i −0.212009 + 0.367211i
\(727\) 35983.4i 1.83570i −0.396931 0.917849i \(-0.629925\pi\)
0.396931 0.917849i \(-0.370075\pi\)
\(728\) 0 0
\(729\) −2540.55 −0.129073
\(730\) 10197.2 827.543i 0.517008 0.0419572i
\(731\) 6782.05 + 11746.9i 0.343151 + 0.594355i
\(732\) −1014.74 + 585.861i −0.0512375 + 0.0295820i
\(733\) 1257.04 + 725.752i 0.0633422 + 0.0365706i 0.531337 0.847161i \(-0.321690\pi\)
−0.467994 + 0.883731i \(0.655023\pi\)
\(734\) −2097.64 −0.105484
\(735\) 0 0
\(736\) −29226.3 −1.46371
\(737\) 20273.1 + 11704.7i 1.01326 + 0.585005i
\(738\) 5111.52 2951.14i 0.254956 0.147199i
\(739\) −2945.83 5102.33i −0.146636 0.253982i 0.783346 0.621586i \(-0.213511\pi\)
−0.929982 + 0.367604i \(0.880178\pi\)
\(740\) 1086.46 + 13387.7i 0.0539719 + 0.665057i
\(741\) 14209.5 0.704451
\(742\) 0 0
\(743\) 7438.65i 0.367292i 0.982992 + 0.183646i \(0.0587900\pi\)
−0.982992 + 0.183646i \(0.941210\pi\)
\(744\) −1365.87 + 2365.76i −0.0673056 + 0.116577i
\(745\) −12038.7 + 25398.7i −0.592032 + 1.24904i
\(746\) 3891.42 + 6740.13i 0.190985 + 0.330796i
\(747\) −6771.14 3909.32i −0.331651 0.191479i
\(748\) 27518.9i 1.34518i
\(749\) 0 0
\(750\) −5667.20 + 1404.47i −0.275916 + 0.0683784i
\(751\) −10136.2 + 17556.4i −0.492509 + 0.853051i −0.999963 0.00862831i \(-0.997253\pi\)
0.507454 + 0.861679i \(0.330587\pi\)
\(752\) 262.775 151.713i 0.0127426 0.00735694i
\(753\) −4946.56 + 2855.90i −0.239393 + 0.138213i
\(754\) −1531.44 + 2652.54i −0.0739680 + 0.128116i
\(755\) 642.193 + 929.537i 0.0309560 + 0.0448070i
\(756\) 0 0
\(757\) 10193.8i 0.489432i 0.969595 + 0.244716i \(0.0786947\pi\)
−0.969595 + 0.244716i \(0.921305\pi\)
\(758\) 2081.57 + 1201.79i 0.0997439 + 0.0575872i
\(759\) 11381.8 + 19713.8i 0.544312 + 0.942776i
\(760\) −27951.1 13248.5i −1.33407 0.632333i
\(761\) 20558.8 35608.9i 0.979311 1.69622i 0.314405 0.949289i \(-0.398195\pi\)
0.664906 0.746927i \(-0.268472\pi\)
\(762\) 1089.26i 0.0517845i
\(763\) 0 0
\(764\) 3844.76 0.182066
\(765\) 1729.02 + 21305.4i 0.0817160 + 1.00693i
\(766\) −11070.1 19173.9i −0.522165 0.904416i
\(767\) −9493.53 + 5481.09i −0.446925 + 0.258032i
\(768\) −8396.20 4847.55i −0.394495 0.227762i
\(769\) −11486.6 −0.538642 −0.269321 0.963050i \(-0.586799\pi\)
−0.269321 + 0.963050i \(0.586799\pi\)
\(770\) 0 0
\(771\) 2000.66 0.0934527
\(772\) −18363.4 10602.1i −0.856104 0.494272i
\(773\) −1887