Properties

Label 245.4.j.e.214.10
Level $245$
Weight $4$
Character 245.214
Analytic conductor $14.455$
Analytic rank $0$
Dimension $20$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [245,4,Mod(79,245)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(245, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 2]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("245.79");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 245 = 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 245.j (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(14.4554679514\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(10\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - 55 x^{18} + 2042 x^{16} - 41247 x^{14} + 600234 x^{12} - 4812047 x^{10} + 27547801 x^{8} + \cdots + 12960000 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{6}\cdot 3^{2}\cdot 7^{8} \)
Twist minimal: no (minimal twist has level 35)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 214.10
Root \(3.73574 + 2.15683i\) of defining polynomial
Character \(\chi\) \(=\) 245.214
Dual form 245.4.j.e.79.10

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(4.60176 - 2.65683i) q^{2} +(1.67956 + 0.969693i) q^{3} +(10.1175 - 17.5240i) q^{4} +(10.6341 - 3.45182i) q^{5} +10.3052 q^{6} -65.0123i q^{8} +(-11.6194 - 20.1254i) q^{9} +(39.7649 - 44.1375i) q^{10} +(-12.7710 + 22.1200i) q^{11} +(33.9858 - 19.6217i) q^{12} +64.1014i q^{13} +(21.2079 + 4.51433i) q^{15} +(-91.7868 - 158.979i) q^{16} +(23.9847 + 13.8476i) q^{17} +(-106.939 - 61.7415i) q^{18} +(0.396218 + 0.686270i) q^{19} +(47.1011 - 221.276i) q^{20} +135.721i q^{22} +(-94.0560 + 54.3032i) q^{23} +(63.0420 - 109.192i) q^{24} +(101.170 - 73.4142i) q^{25} +(170.307 + 294.980i) q^{26} -97.4324i q^{27} +234.000 q^{29} +(109.587 - 35.5718i) q^{30} +(-64.6019 + 111.894i) q^{31} +(-394.343 - 227.674i) q^{32} +(-42.8992 + 24.7679i) q^{33} +147.163 q^{34} -470.236 q^{36} +(33.1781 - 19.1554i) q^{37} +(3.64660 + 2.10537i) q^{38} +(-62.1587 + 107.662i) q^{39} +(-224.411 - 691.350i) q^{40} -403.216 q^{41} -172.895i q^{43} +(258.420 + 447.597i) q^{44} +(-193.031 - 173.908i) q^{45} +(-288.549 + 499.781i) q^{46} +(179.218 - 103.471i) q^{47} -356.020i q^{48} +(270.511 - 606.626i) q^{50} +(26.8558 + 46.5157i) q^{51} +(1123.31 + 648.545i) q^{52} +(124.735 + 72.0155i) q^{53} +(-258.861 - 448.361i) q^{54} +(-59.4542 + 279.310i) q^{55} +1.53684i q^{57} +(1076.81 - 621.699i) q^{58} +(-339.543 + 588.105i) q^{59} +(293.679 - 325.972i) q^{60} +(287.358 + 497.719i) q^{61} +686.544i q^{62} -950.977 q^{64} +(221.266 + 681.664i) q^{65} +(-131.608 + 227.952i) q^{66} +(-446.557 - 257.820i) q^{67} +(485.330 - 280.205i) q^{68} -210.630 q^{69} +556.612 q^{71} +(-1308.40 + 755.404i) q^{72} +(-150.033 - 86.6217i) q^{73} +(101.785 - 176.297i) q^{74} +(241.110 - 25.1997i) q^{75} +16.0349 q^{76} +660.580i q^{78} +(39.6645 + 68.7010i) q^{79} +(-1524.84 - 1373.78i) q^{80} +(-219.244 + 379.742i) q^{81} +(-1855.50 + 1071.28i) q^{82} -1043.56i q^{83} +(302.856 + 64.4663i) q^{85} +(-459.352 - 795.620i) q^{86} +(393.017 + 226.909i) q^{87} +(1438.07 + 830.271i) q^{88} +(326.030 + 564.700i) q^{89} +(-1350.33 - 287.432i) q^{90} +2197.65i q^{92} +(-217.005 + 125.288i) q^{93} +(549.812 - 952.302i) q^{94} +(6.58232 + 5.93022i) q^{95} +(-441.548 - 764.784i) q^{96} +515.714i q^{97} +593.564 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 36 q^{4} - 6 q^{5} + 24 q^{6} + 46 q^{9} + 16 q^{10} - 84 q^{11} + 16 q^{15} - 148 q^{16} - 72 q^{19} - 136 q^{20} - 72 q^{24} + 362 q^{25} + 620 q^{26} + 176 q^{29} - 52 q^{30} - 120 q^{31} + 1928 q^{34}+ \cdots - 10608 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/245\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(197\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 4.60176 2.65683i 1.62697 0.939331i 0.641978 0.766723i \(-0.278114\pi\)
0.984991 0.172608i \(-0.0552192\pi\)
\(3\) 1.67956 + 0.969693i 0.323231 + 0.186617i 0.652832 0.757503i \(-0.273581\pi\)
−0.329601 + 0.944120i \(0.606914\pi\)
\(4\) 10.1175 17.5240i 1.26468 2.19050i
\(5\) 10.6341 3.45182i 0.951146 0.308740i
\(6\) 10.3052 0.701182
\(7\) 0 0
\(8\) 65.0123i 2.87317i
\(9\) −11.6194 20.1254i −0.430348 0.745384i
\(10\) 39.7649 44.1375i 1.25748 1.39575i
\(11\) −12.7710 + 22.1200i −0.350054 + 0.606311i −0.986259 0.165209i \(-0.947170\pi\)
0.636205 + 0.771520i \(0.280503\pi\)
\(12\) 33.9858 19.6217i 0.817570 0.472024i
\(13\) 64.1014i 1.36758i 0.729679 + 0.683790i \(0.239670\pi\)
−0.729679 + 0.683790i \(0.760330\pi\)
\(14\) 0 0
\(15\) 21.2079 + 4.51433i 0.365056 + 0.0777063i
\(16\) −91.7868 158.979i −1.43417 2.48405i
\(17\) 23.9847 + 13.8476i 0.342185 + 0.197561i 0.661238 0.750176i \(-0.270031\pi\)
−0.319053 + 0.947737i \(0.603365\pi\)
\(18\) −106.939 61.7415i −1.40032 0.808478i
\(19\) 0.396218 + 0.686270i 0.00478414 + 0.00828637i 0.868408 0.495851i \(-0.165144\pi\)
−0.863623 + 0.504137i \(0.831810\pi\)
\(20\) 47.1011 221.276i 0.526606 2.47394i
\(21\) 0 0
\(22\) 135.721i 1.31527i
\(23\) −94.0560 + 54.3032i −0.852697 + 0.492305i −0.861560 0.507656i \(-0.830512\pi\)
0.00886320 + 0.999961i \(0.497179\pi\)
\(24\) 63.0420 109.192i 0.536183 0.928696i
\(25\) 101.170 73.4142i 0.809359 0.587314i
\(26\) 170.307 + 294.980i 1.28461 + 2.22501i
\(27\) 97.4324i 0.694477i
\(28\) 0 0
\(29\) 234.000 1.49837 0.749186 0.662360i \(-0.230445\pi\)
0.749186 + 0.662360i \(0.230445\pi\)
\(30\) 109.587 35.5718i 0.666927 0.216483i
\(31\) −64.6019 + 111.894i −0.374285 + 0.648281i −0.990220 0.139516i \(-0.955445\pi\)
0.615935 + 0.787797i \(0.288779\pi\)
\(32\) −394.343 227.674i −2.17846 1.25773i
\(33\) −42.8992 + 24.7679i −0.226297 + 0.130652i
\(34\) 147.163 0.742300
\(35\) 0 0
\(36\) −470.236 −2.17702
\(37\) 33.1781 19.1554i 0.147418 0.0851116i −0.424477 0.905439i \(-0.639542\pi\)
0.571895 + 0.820327i \(0.306209\pi\)
\(38\) 3.64660 + 2.10537i 0.0155673 + 0.00898778i
\(39\) −62.1587 + 107.662i −0.255214 + 0.442044i
\(40\) −224.411 691.350i −0.887061 2.73280i
\(41\) −403.216 −1.53590 −0.767949 0.640511i \(-0.778722\pi\)
−0.767949 + 0.640511i \(0.778722\pi\)
\(42\) 0 0
\(43\) 172.895i 0.613167i −0.951844 0.306584i \(-0.900814\pi\)
0.951844 0.306584i \(-0.0991859\pi\)
\(44\) 258.420 + 447.597i 0.885416 + 1.53359i
\(45\) −193.031 173.908i −0.639454 0.576104i
\(46\) −288.549 + 499.781i −0.924874 + 1.60193i
\(47\) 179.218 103.471i 0.556205 0.321125i −0.195416 0.980720i \(-0.562606\pi\)
0.751621 + 0.659596i \(0.229272\pi\)
\(48\) 356.020i 1.07056i
\(49\) 0 0
\(50\) 270.511 606.626i 0.765120 1.71580i
\(51\) 26.8558 + 46.5157i 0.0737366 + 0.127716i
\(52\) 1123.31 + 648.545i 2.99568 + 1.72956i
\(53\) 124.735 + 72.0155i 0.323276 + 0.186643i 0.652852 0.757486i \(-0.273572\pi\)
−0.329576 + 0.944129i \(0.606906\pi\)
\(54\) −258.861 448.361i −0.652343 1.12989i
\(55\) −59.4542 + 279.310i −0.145760 + 0.684767i
\(56\) 0 0
\(57\) 1.53684i 0.00357122i
\(58\) 1076.81 621.699i 2.43780 1.40747i
\(59\) −339.543 + 588.105i −0.749232 + 1.29771i 0.198959 + 0.980008i \(0.436244\pi\)
−0.948191 + 0.317701i \(0.897089\pi\)
\(60\) 293.679 325.972i 0.631896 0.701381i
\(61\) 287.358 + 497.719i 0.603155 + 1.04470i 0.992340 + 0.123536i \(0.0394234\pi\)
−0.389185 + 0.921160i \(0.627243\pi\)
\(62\) 686.544i 1.40631i
\(63\) 0 0
\(64\) −950.977 −1.85738
\(65\) 221.266 + 681.664i 0.422227 + 1.30077i
\(66\) −131.608 + 227.952i −0.245452 + 0.425135i
\(67\) −446.557 257.820i −0.814263 0.470115i 0.0341709 0.999416i \(-0.489121\pi\)
−0.848434 + 0.529301i \(0.822454\pi\)
\(68\) 485.330 280.205i 0.865513 0.499704i
\(69\) −210.630 −0.367491
\(70\) 0 0
\(71\) 556.612 0.930391 0.465195 0.885208i \(-0.345984\pi\)
0.465195 + 0.885208i \(0.345984\pi\)
\(72\) −1308.40 + 755.404i −2.14161 + 1.23646i
\(73\) −150.033 86.6217i −0.240549 0.138881i 0.374880 0.927073i \(-0.377684\pi\)
−0.615429 + 0.788192i \(0.711017\pi\)
\(74\) 101.785 176.297i 0.159896 0.276948i
\(75\) 241.110 25.1997i 0.371213 0.0387974i
\(76\) 16.0349 0.0242017
\(77\) 0 0
\(78\) 660.580i 0.958923i
\(79\) 39.6645 + 68.7010i 0.0564887 + 0.0978413i 0.892887 0.450281i \(-0.148676\pi\)
−0.836398 + 0.548122i \(0.815343\pi\)
\(80\) −1524.84 1373.78i −2.13103 1.91991i
\(81\) −219.244 + 379.742i −0.300746 + 0.520908i
\(82\) −1855.50 + 1071.28i −2.49886 + 1.44272i
\(83\) 1043.56i 1.38007i −0.723777 0.690034i \(-0.757596\pi\)
0.723777 0.690034i \(-0.242404\pi\)
\(84\) 0 0
\(85\) 302.856 + 64.4663i 0.386463 + 0.0822630i
\(86\) −459.352 795.620i −0.575967 0.997604i
\(87\) 393.017 + 226.909i 0.484320 + 0.279622i
\(88\) 1438.07 + 830.271i 1.74203 + 1.00576i
\(89\) 326.030 + 564.700i 0.388304 + 0.672563i 0.992222 0.124484i \(-0.0397276\pi\)
−0.603917 + 0.797047i \(0.706394\pi\)
\(90\) −1350.33 287.432i −1.58152 0.336645i
\(91\) 0 0
\(92\) 2197.65i 2.49044i
\(93\) −217.005 + 125.288i −0.241961 + 0.139696i
\(94\) 549.812 952.302i 0.603285 1.04492i
\(95\) 6.58232 + 5.93022i 0.00710875 + 0.00640450i
\(96\) −441.548 764.784i −0.469431 0.813078i
\(97\) 515.714i 0.539823i 0.962885 + 0.269912i \(0.0869945\pi\)
−0.962885 + 0.269912i \(0.913005\pi\)
\(98\) 0 0
\(99\) 593.564 0.602580
\(100\) −262.926 2515.67i −0.262926 2.51567i
\(101\) 268.170 464.484i 0.264197 0.457602i −0.703156 0.711036i \(-0.748226\pi\)
0.967353 + 0.253433i \(0.0815598\pi\)
\(102\) 247.168 + 142.703i 0.239934 + 0.138526i
\(103\) −330.556 + 190.846i −0.316220 + 0.182570i −0.649706 0.760185i \(-0.725108\pi\)
0.333487 + 0.942755i \(0.391775\pi\)
\(104\) 4167.38 3.92928
\(105\) 0 0
\(106\) 765.332 0.701279
\(107\) −1196.08 + 690.560i −1.08065 + 0.623915i −0.931072 0.364835i \(-0.881126\pi\)
−0.149580 + 0.988750i \(0.547792\pi\)
\(108\) −1707.40 985.770i −1.52125 0.878294i
\(109\) −195.291 + 338.254i −0.171610 + 0.297237i −0.938983 0.343964i \(-0.888230\pi\)
0.767373 + 0.641201i \(0.221564\pi\)
\(110\) 468.485 + 1443.28i 0.406075 + 1.25101i
\(111\) 74.2995 0.0635333
\(112\) 0 0
\(113\) 1643.15i 1.36792i −0.729521 0.683958i \(-0.760257\pi\)
0.729521 0.683958i \(-0.239743\pi\)
\(114\) 4.08312 + 7.07217i 0.00335455 + 0.00581026i
\(115\) −812.759 + 902.132i −0.659045 + 0.731515i
\(116\) 2367.49 4100.62i 1.89497 3.28218i
\(117\) 1290.07 744.820i 1.01937 0.588535i
\(118\) 3608.43i 2.81511i
\(119\) 0 0
\(120\) 293.487 1378.77i 0.223263 1.04887i
\(121\) 339.304 + 587.692i 0.254924 + 0.441542i
\(122\) 2644.71 + 1526.92i 1.96263 + 1.13312i
\(123\) −677.225 390.996i −0.496450 0.286625i
\(124\) 1307.22 + 2264.16i 0.946705 + 1.63974i
\(125\) 822.443 1129.92i 0.588492 0.808503i
\(126\) 0 0
\(127\) 192.032i 0.134174i −0.997747 0.0670869i \(-0.978630\pi\)
0.997747 0.0670869i \(-0.0213705\pi\)
\(128\) −1221.42 + 705.189i −0.843434 + 0.486957i
\(129\) 167.655 290.387i 0.114428 0.198195i
\(130\) 2829.28 + 2548.99i 1.90880 + 1.71970i
\(131\) −1041.45 1803.84i −0.694594 1.20307i −0.970317 0.241835i \(-0.922251\pi\)
0.275723 0.961237i \(-0.411083\pi\)
\(132\) 1002.35i 0.660936i
\(133\) 0 0
\(134\) −2739.93 −1.76637
\(135\) −336.319 1036.11i −0.214413 0.660549i
\(136\) 900.264 1559.30i 0.567625 0.983156i
\(137\) 67.6980 + 39.0855i 0.0422177 + 0.0243744i 0.520960 0.853581i \(-0.325574\pi\)
−0.478743 + 0.877955i \(0.658907\pi\)
\(138\) −969.268 + 559.607i −0.597896 + 0.345195i
\(139\) −1393.67 −0.850426 −0.425213 0.905093i \(-0.639801\pi\)
−0.425213 + 0.905093i \(0.639801\pi\)
\(140\) 0 0
\(141\) 401.342 0.239710
\(142\) 2561.40 1478.82i 1.51372 0.873945i
\(143\) −1417.92 818.638i −0.829179 0.478727i
\(144\) −2133.01 + 3694.49i −1.23438 + 2.13801i
\(145\) 2488.39 807.727i 1.42517 0.462607i
\(146\) −920.556 −0.521820
\(147\) 0 0
\(148\) 775.217i 0.430557i
\(149\) 16.2501 + 28.1460i 0.00893463 + 0.0154752i 0.870458 0.492242i \(-0.163823\pi\)
−0.861524 + 0.507718i \(0.830489\pi\)
\(150\) 1042.58 756.551i 0.567508 0.411814i
\(151\) −233.381 + 404.228i −0.125777 + 0.217852i −0.922036 0.387103i \(-0.873476\pi\)
0.796260 + 0.604955i \(0.206809\pi\)
\(152\) 44.6160 25.7591i 0.0238081 0.0137456i
\(153\) 643.602i 0.340080i
\(154\) 0 0
\(155\) −300.749 + 1412.89i −0.155850 + 0.732167i
\(156\) 1257.78 + 2178.54i 0.645531 + 1.11809i
\(157\) −1449.30 836.751i −0.736729 0.425351i 0.0841500 0.996453i \(-0.473183\pi\)
−0.820879 + 0.571103i \(0.806516\pi\)
\(158\) 365.053 + 210.764i 0.183811 + 0.106123i
\(159\) 139.666 + 241.908i 0.0696618 + 0.120658i
\(160\) −4979.39 1059.92i −2.46035 0.523712i
\(161\) 0 0
\(162\) 2329.98i 1.13000i
\(163\) −1618.91 + 934.679i −0.777932 + 0.449139i −0.835697 0.549191i \(-0.814936\pi\)
0.0577648 + 0.998330i \(0.481603\pi\)
\(164\) −4079.53 + 7065.95i −1.94243 + 3.36438i
\(165\) −370.702 + 411.465i −0.174904 + 0.194136i
\(166\) −2772.56 4802.22i −1.29634 2.24533i
\(167\) 46.5250i 0.0215581i 0.999942 + 0.0107791i \(0.00343115\pi\)
−0.999942 + 0.0107791i \(0.996569\pi\)
\(168\) 0 0
\(169\) −1911.99 −0.870275
\(170\) 1564.95 507.979i 0.706036 0.229178i
\(171\) 9.20762 15.9481i 0.00411769 0.00713204i
\(172\) −3029.80 1749.26i −1.34314 0.775463i
\(173\) −2161.84 + 1248.14i −0.950066 + 0.548521i −0.893102 0.449855i \(-0.851476\pi\)
−0.0569648 + 0.998376i \(0.518142\pi\)
\(174\) 2411.43 1.05063
\(175\) 0 0
\(176\) 4688.83 2.00815
\(177\) −1140.56 + 658.504i −0.484350 + 0.279640i
\(178\) 3000.62 + 1732.41i 1.26352 + 0.729492i
\(179\) 1487.85 2577.03i 0.621269 1.07607i −0.367981 0.929833i \(-0.619951\pi\)
0.989250 0.146236i \(-0.0467158\pi\)
\(180\) −5000.55 + 1623.17i −2.07066 + 0.672132i
\(181\) 966.273 0.396809 0.198405 0.980120i \(-0.436424\pi\)
0.198405 + 0.980120i \(0.436424\pi\)
\(182\) 0 0
\(183\) 1114.60i 0.450237i
\(184\) 3530.38 + 6114.80i 1.41447 + 2.44994i
\(185\) 286.700 318.226i 0.113938 0.126467i
\(186\) −665.737 + 1153.09i −0.262442 + 0.454563i
\(187\) −612.617 + 353.695i −0.239567 + 0.138314i
\(188\) 4187.48i 1.62449i
\(189\) 0 0
\(190\) 46.0458 + 9.80136i 0.0175817 + 0.00374245i
\(191\) 772.749 + 1338.44i 0.292744 + 0.507048i 0.974458 0.224571i \(-0.0720982\pi\)
−0.681713 + 0.731619i \(0.738765\pi\)
\(192\) −1597.22 922.156i −0.600362 0.346619i
\(193\) −1995.37 1152.03i −0.744195 0.429661i 0.0793975 0.996843i \(-0.474700\pi\)
−0.823593 + 0.567182i \(0.808034\pi\)
\(194\) 1370.16 + 2373.20i 0.507073 + 0.878276i
\(195\) −289.375 + 1359.45i −0.106270 + 0.499244i
\(196\) 0 0
\(197\) 222.021i 0.0802960i −0.999194 0.0401480i \(-0.987217\pi\)
0.999194 0.0401480i \(-0.0127829\pi\)
\(198\) 2731.44 1577.00i 0.980379 0.566022i
\(199\) 1790.28 3100.85i 0.637736 1.10459i −0.348193 0.937423i \(-0.613205\pi\)
0.985928 0.167168i \(-0.0534622\pi\)
\(200\) −4772.83 6577.29i −1.68745 2.32542i
\(201\) −500.012 866.047i −0.175463 0.303912i
\(202\) 2849.92i 0.992673i
\(203\) 0 0
\(204\) 1086.85 0.373014
\(205\) −4287.86 + 1391.83i −1.46086 + 0.474193i
\(206\) −1014.09 + 1756.46i −0.342986 + 0.594070i
\(207\) 2185.75 + 1261.94i 0.733912 + 0.423724i
\(208\) 10190.8 5883.67i 3.39714 1.96134i
\(209\) −20.2404 −0.00669883
\(210\) 0 0
\(211\) −4181.04 −1.36415 −0.682073 0.731284i \(-0.738921\pi\)
−0.682073 + 0.731284i \(0.738921\pi\)
\(212\) 2524.00 1457.23i 0.817683 0.472090i
\(213\) 934.863 + 539.743i 0.300731 + 0.173627i
\(214\) −3669.40 + 6355.58i −1.17213 + 2.03018i
\(215\) −596.801 1838.59i −0.189309 0.583212i
\(216\) −6334.31 −1.99535
\(217\) 0 0
\(218\) 2075.42i 0.644794i
\(219\) −167.993 290.972i −0.0518352 0.0897812i
\(220\) 4293.10 + 3867.79i 1.31564 + 1.18530i
\(221\) −887.651 + 1537.46i −0.270180 + 0.467966i
\(222\) 341.908 197.401i 0.103367 0.0596787i
\(223\) 2361.52i 0.709145i −0.935028 0.354573i \(-0.884626\pi\)
0.935028 0.354573i \(-0.115374\pi\)
\(224\) 0 0
\(225\) −2653.02 1183.05i −0.786081 0.350534i
\(226\) −4365.57 7561.39i −1.28493 2.22556i
\(227\) −508.250 293.438i −0.148607 0.0857982i 0.423853 0.905731i \(-0.360677\pi\)
−0.572460 + 0.819933i \(0.694011\pi\)
\(228\) 26.9315 + 15.5489i 0.00782274 + 0.00451646i
\(229\) −2309.78 4000.65i −0.666526 1.15446i −0.978869 0.204487i \(-0.934447\pi\)
0.312344 0.949969i \(-0.398886\pi\)
\(230\) −1343.31 + 6310.76i −0.385111 + 1.80921i
\(231\) 0 0
\(232\) 15212.9i 4.30507i
\(233\) 4434.43 2560.22i 1.24682 0.719853i 0.276347 0.961058i \(-0.410876\pi\)
0.970474 + 0.241205i \(0.0775426\pi\)
\(234\) 3957.72 6854.97i 1.10566 1.91506i
\(235\) 1548.66 1718.96i 0.429888 0.477159i
\(236\) 6870.63 + 11900.3i 1.89508 + 3.28238i
\(237\) 153.850i 0.0421671i
\(238\) 0 0
\(239\) −1127.51 −0.305158 −0.152579 0.988291i \(-0.548758\pi\)
−0.152579 + 0.988291i \(0.548758\pi\)
\(240\) −1228.92 3785.97i −0.330526 1.01826i
\(241\) 1774.77 3073.98i 0.474368 0.821630i −0.525201 0.850978i \(-0.676010\pi\)
0.999569 + 0.0293484i \(0.00934323\pi\)
\(242\) 3122.80 + 1802.95i 0.829508 + 0.478917i
\(243\) −3014.70 + 1740.54i −0.795856 + 0.459487i
\(244\) 11629.4 3.05120
\(245\) 0 0
\(246\) −4155.24 −1.07694
\(247\) −43.9909 + 25.3981i −0.0113323 + 0.00654269i
\(248\) 7274.47 + 4199.92i 1.86262 + 1.07538i
\(249\) 1011.93 1752.72i 0.257545 0.446081i
\(250\) 782.688 7384.70i 0.198006 1.86820i
\(251\) 4717.19 1.18624 0.593120 0.805114i \(-0.297896\pi\)
0.593120 + 0.805114i \(0.297896\pi\)
\(252\) 0 0
\(253\) 2774.02i 0.689333i
\(254\) −510.196 883.685i −0.126034 0.218297i
\(255\) 446.152 + 401.953i 0.109565 + 0.0987108i
\(256\) 56.7760 98.3390i 0.0138613 0.0240085i
\(257\) 5421.59 3130.16i 1.31591 0.759742i 0.332844 0.942982i \(-0.391992\pi\)
0.983068 + 0.183239i \(0.0586584\pi\)
\(258\) 1781.72i 0.429942i
\(259\) 0 0
\(260\) 14184.1 + 3019.25i 3.38331 + 0.720176i
\(261\) −2718.94 4709.35i −0.644821 1.11686i
\(262\) −9585.00 5533.90i −2.26017 1.30491i
\(263\) −4982.28 2876.52i −1.16814 0.674425i −0.214897 0.976637i \(-0.568942\pi\)
−0.953241 + 0.302212i \(0.902275\pi\)
\(264\) 1610.22 + 2788.98i 0.375386 + 0.650188i
\(265\) 1575.03 + 335.262i 0.365107 + 0.0777170i
\(266\) 0 0
\(267\) 1264.60i 0.289858i
\(268\) −9036.06 + 5216.97i −2.05957 + 1.18909i
\(269\) −3529.60 + 6113.45i −0.800014 + 1.38566i 0.119593 + 0.992823i \(0.461841\pi\)
−0.919606 + 0.392841i \(0.871492\pi\)
\(270\) −4300.42 3874.39i −0.969317 0.873288i
\(271\) 4267.26 + 7391.11i 0.956523 + 1.65675i 0.730844 + 0.682544i \(0.239126\pi\)
0.225678 + 0.974202i \(0.427540\pi\)
\(272\) 5084.11i 1.13334i
\(273\) 0 0
\(274\) 415.373 0.0915826
\(275\) 331.883 + 3175.45i 0.0727756 + 0.696315i
\(276\) −2131.04 + 3691.07i −0.464760 + 0.804987i
\(277\) 1137.91 + 656.972i 0.246824 + 0.142504i 0.618309 0.785935i \(-0.287818\pi\)
−0.371485 + 0.928439i \(0.621151\pi\)
\(278\) −6413.32 + 3702.73i −1.38362 + 0.798832i
\(279\) 3002.54 0.644291
\(280\) 0 0
\(281\) −247.229 −0.0524856 −0.0262428 0.999656i \(-0.508354\pi\)
−0.0262428 + 0.999656i \(0.508354\pi\)
\(282\) 1846.88 1066.30i 0.390001 0.225167i
\(283\) −7859.10 4537.45i −1.65079 0.953087i −0.976746 0.214400i \(-0.931221\pi\)
−0.674049 0.738687i \(-0.735446\pi\)
\(284\) 5631.51 9754.07i 1.17665 2.03802i
\(285\) 5.30489 + 16.3430i 0.00110258 + 0.00339675i
\(286\) −8699.92 −1.79873
\(287\) 0 0
\(288\) 10581.7i 2.16505i
\(289\) −2072.99 3590.52i −0.421939 0.730820i
\(290\) 9305.00 10328.2i 1.88417 2.09135i
\(291\) −500.085 + 866.172i −0.100740 + 0.174488i
\(292\) −3035.91 + 1752.79i −0.608436 + 0.351281i
\(293\) 2740.72i 0.546466i 0.961948 + 0.273233i \(0.0880930\pi\)
−0.961948 + 0.273233i \(0.911907\pi\)
\(294\) 0 0
\(295\) −1580.71 + 7426.04i −0.311975 + 1.46563i
\(296\) −1245.34 2156.99i −0.244540 0.423555i
\(297\) 2155.20 + 1244.31i 0.421069 + 0.243104i
\(298\) 149.558 + 86.3475i 0.0290727 + 0.0167851i
\(299\) −3480.91 6029.12i −0.673266 1.16613i
\(300\) 1997.83 4480.16i 0.384482 0.862208i
\(301\) 0 0
\(302\) 2480.21i 0.472584i
\(303\) 900.813 520.085i 0.170793 0.0986075i
\(304\) 72.7352 125.981i 0.0137225 0.0237681i
\(305\) 4773.85 + 4300.91i 0.896228 + 0.807441i
\(306\) −1709.94 2961.71i −0.319447 0.553299i
\(307\) 6985.46i 1.29864i −0.760517 0.649318i \(-0.775054\pi\)
0.760517 0.649318i \(-0.224946\pi\)
\(308\) 0 0
\(309\) −740.250 −0.136283
\(310\) 2369.83 + 7300.81i 0.434184 + 1.33761i
\(311\) 178.421 309.033i 0.0325315 0.0563462i −0.849301 0.527908i \(-0.822976\pi\)
0.881833 + 0.471562i \(0.156310\pi\)
\(312\) 6999.36 + 4041.08i 1.27007 + 0.733273i
\(313\) −5741.85 + 3315.06i −1.03690 + 0.598653i −0.918953 0.394368i \(-0.870964\pi\)
−0.117944 + 0.993020i \(0.537630\pi\)
\(314\) −8892.42 −1.59818
\(315\) 0 0
\(316\) 1605.22 0.285762
\(317\) 2159.91 1247.02i 0.382689 0.220946i −0.296298 0.955095i \(-0.595752\pi\)
0.678988 + 0.734150i \(0.262419\pi\)
\(318\) 1285.42 + 742.137i 0.226675 + 0.130871i
\(319\) −2988.41 + 5176.08i −0.524511 + 0.908480i
\(320\) −10112.8 + 3282.60i −1.76664 + 0.573447i
\(321\) −2678.52 −0.465734
\(322\) 0 0
\(323\) 21.9467i 0.00378063i
\(324\) 4436.39 + 7684.06i 0.760698 + 1.31757i
\(325\) 4705.96 + 6485.14i 0.803199 + 1.10686i
\(326\) −4966.56 + 8602.34i −0.843781 + 1.46147i
\(327\) −656.005 + 378.744i −0.110939 + 0.0640508i
\(328\) 26214.0i 4.41289i
\(329\) 0 0
\(330\) −612.690 + 2878.35i −0.102204 + 0.480146i
\(331\) 2341.23 + 4055.14i 0.388779 + 0.673385i 0.992286 0.123973i \(-0.0395636\pi\)
−0.603506 + 0.797358i \(0.706230\pi\)
\(332\) −18287.3 10558.2i −3.02304 1.74535i
\(333\) −771.020 445.148i −0.126882 0.0732552i
\(334\) 123.609 + 214.097i 0.0202502 + 0.0350744i
\(335\) −5638.70 1200.26i −0.919627 0.195753i
\(336\) 0 0
\(337\) 3596.60i 0.581363i −0.956820 0.290681i \(-0.906118\pi\)
0.956820 0.290681i \(-0.0938820\pi\)
\(338\) −8798.54 + 5079.84i −1.41591 + 0.817476i
\(339\) 1593.35 2759.77i 0.255277 0.442153i
\(340\) 4193.85 4655.01i 0.668951 0.742511i
\(341\) −1650.06 2857.98i −0.262040 0.453867i
\(342\) 97.8523i 0.0154715i
\(343\) 0 0
\(344\) −11240.3 −1.76173
\(345\) −2239.87 + 727.056i −0.349537 + 0.113459i
\(346\) −6632.18 + 11487.3i −1.03049 + 1.78485i
\(347\) 1645.03 + 949.756i 0.254495 + 0.146932i 0.621821 0.783160i \(-0.286393\pi\)
−0.367326 + 0.930092i \(0.619727\pi\)
\(348\) 7952.68 4591.48i 1.22502 0.707268i
\(349\) 1037.55 0.159137 0.0795683 0.996829i \(-0.474646\pi\)
0.0795683 + 0.996829i \(0.474646\pi\)
\(350\) 0 0
\(351\) 6245.56 0.949752
\(352\) 10072.3 5815.25i 1.52516 0.880550i
\(353\) 3539.51 + 2043.54i 0.533681 + 0.308121i 0.742514 0.669830i \(-0.233633\pi\)
−0.208833 + 0.977951i \(0.566967\pi\)
\(354\) −3499.07 + 6060.56i −0.525348 + 0.909930i
\(355\) 5919.10 1921.32i 0.884938 0.287249i
\(356\) 13194.4 1.96433
\(357\) 0 0
\(358\) 15811.8i 2.33431i
\(359\) 1736.33 + 3007.42i 0.255265 + 0.442132i 0.964967 0.262369i \(-0.0845039\pi\)
−0.709702 + 0.704502i \(0.751171\pi\)
\(360\) −11306.2 + 12549.4i −1.65524 + 1.83726i
\(361\) 3429.19 5939.52i 0.499954 0.865946i
\(362\) 4446.56 2567.22i 0.645596 0.372735i
\(363\) 1316.08i 0.190293i
\(364\) 0 0
\(365\) −1894.48 403.260i −0.271675 0.0578290i
\(366\) 2961.30 + 5129.11i 0.422922 + 0.732522i
\(367\) 7594.29 + 4384.57i 1.08016 + 0.623631i 0.930940 0.365173i \(-0.118990\pi\)
0.149221 + 0.988804i \(0.452323\pi\)
\(368\) 17266.2 + 9968.64i 2.44582 + 1.41210i
\(369\) 4685.13 + 8114.88i 0.660970 + 1.14483i
\(370\) 473.853 2226.11i 0.0665796 0.312784i
\(371\) 0 0
\(372\) 5070.39i 0.706687i
\(373\) 9845.73 5684.43i 1.36674 0.789085i 0.376226 0.926528i \(-0.377222\pi\)
0.990510 + 0.137443i \(0.0438883\pi\)
\(374\) −1879.41 + 3255.24i −0.259845 + 0.450065i
\(375\) 2477.01 1100.24i 0.341100 0.151510i
\(376\) −6726.92 11651.4i −0.922645 1.59807i
\(377\) 14999.8i 2.04914i
\(378\) 0 0
\(379\) 12137.4 1.64500 0.822501 0.568764i \(-0.192578\pi\)
0.822501 + 0.568764i \(0.192578\pi\)
\(380\) 170.517 55.3496i 0.0230194 0.00747203i
\(381\) 186.212 322.529i 0.0250392 0.0433692i
\(382\) 7112.01 + 4106.12i 0.952571 + 0.549967i
\(383\) −8547.33 + 4934.80i −1.14033 + 0.658373i −0.946514 0.322664i \(-0.895422\pi\)
−0.193821 + 0.981037i \(0.562088\pi\)
\(384\) −2735.27 −0.363499
\(385\) 0 0
\(386\) −12242.9 −1.61438
\(387\) −3479.57 + 2008.93i −0.457045 + 0.263875i
\(388\) 9037.37 + 5217.73i 1.18248 + 0.682706i
\(389\) 28.5583 49.4644i 0.00372227 0.00644716i −0.864158 0.503220i \(-0.832148\pi\)
0.867881 + 0.496773i \(0.165482\pi\)
\(390\) 2280.20 + 7024.70i 0.296058 + 0.912076i
\(391\) −3007.88 −0.389041
\(392\) 0 0
\(393\) 4039.54i 0.518494i
\(394\) −589.871 1021.69i −0.0754245 0.130639i
\(395\) 658.941 + 593.661i 0.0839365 + 0.0756211i
\(396\) 6005.37 10401.6i 0.762073 1.31995i
\(397\) 6439.91 3718.09i 0.814131 0.470039i −0.0342574 0.999413i \(-0.510907\pi\)
0.848388 + 0.529374i \(0.177573\pi\)
\(398\) 19025.8i 2.39618i
\(399\) 0 0
\(400\) −20957.4 9345.47i −2.61968 1.16818i
\(401\) 6232.49 + 10795.0i 0.776149 + 1.34433i 0.934147 + 0.356890i \(0.116163\pi\)
−0.157998 + 0.987439i \(0.550504\pi\)
\(402\) −4601.87 2656.89i −0.570947 0.329636i
\(403\) −7172.55 4141.07i −0.886576 0.511865i
\(404\) −5426.40 9398.80i −0.668251 1.15745i
\(405\) −1020.67 + 4795.02i −0.125229 + 0.588312i
\(406\) 0 0
\(407\) 978.533i 0.119175i
\(408\) 3024.09 1745.96i 0.366948 0.211858i
\(409\) −854.358 + 1479.79i −0.103289 + 0.178902i −0.913038 0.407875i \(-0.866270\pi\)
0.809749 + 0.586777i \(0.199603\pi\)
\(410\) −16033.8 + 17797.0i −1.93135 + 2.14373i
\(411\) 75.8018 + 131.293i 0.00909739 + 0.0157571i
\(412\) 7723.54i 0.923571i
\(413\) 0 0
\(414\) 13411.0 1.59207
\(415\) −3602.18 11097.4i −0.426082 1.31265i
\(416\) 14594.2 25278.0i 1.72005 2.97922i
\(417\) −2340.74 1351.43i −0.274884 0.158704i
\(418\) −93.1413 + 53.7752i −0.0108988 + 0.00629242i
\(419\) −10618.8 −1.23810 −0.619050 0.785352i \(-0.712482\pi\)
−0.619050 + 0.785352i \(0.712482\pi\)
\(420\) 0 0
\(421\) 13273.5 1.53661 0.768304 0.640085i \(-0.221101\pi\)
0.768304 + 0.640085i \(0.221101\pi\)
\(422\) −19240.2 + 11108.3i −2.21942 + 1.28138i
\(423\) −4164.81 2404.55i −0.478723 0.276391i
\(424\) 4681.90 8109.29i 0.536257 0.928825i
\(425\) 3443.14 359.861i 0.392981 0.0410725i
\(426\) 5736.02 0.652373
\(427\) 0 0
\(428\) 27946.9i 3.15622i
\(429\) −1587.65 2749.90i −0.178678 0.309479i
\(430\) −7631.15 6875.14i −0.855829 0.771044i
\(431\) −3959.10 + 6857.37i −0.442467 + 0.766375i −0.997872 0.0652048i \(-0.979230\pi\)
0.555405 + 0.831580i \(0.312563\pi\)
\(432\) −15489.7 + 8943.01i −1.72512 + 0.995997i
\(433\) 4433.34i 0.492038i −0.969265 0.246019i \(-0.920877\pi\)
0.969265 0.246019i \(-0.0791226\pi\)
\(434\) 0 0
\(435\) 4962.65 + 1056.35i 0.546990 + 0.116433i
\(436\) 3951.70 + 6844.55i 0.434065 + 0.751822i
\(437\) −74.5333 43.0318i −0.00815884 0.00471051i
\(438\) −1546.13 892.656i −0.168668 0.0973807i
\(439\) 6479.19 + 11222.3i 0.704408 + 1.22007i 0.966905 + 0.255137i \(0.0821206\pi\)
−0.262497 + 0.964933i \(0.584546\pi\)
\(440\) 18158.6 + 3865.26i 1.96745 + 0.418793i
\(441\) 0 0
\(442\) 9433.34i 1.01515i
\(443\) 10427.3 6020.22i 1.11832 0.645664i 0.177351 0.984148i \(-0.443247\pi\)
0.940972 + 0.338483i \(0.109914\pi\)
\(444\) 751.723 1302.02i 0.0803495 0.139169i
\(445\) 5416.29 + 4879.71i 0.576981 + 0.519821i
\(446\) −6274.17 10867.2i −0.666122 1.15376i
\(447\) 63.0304i 0.00666943i
\(448\) 0 0
\(449\) −11586.3 −1.21780 −0.608899 0.793247i \(-0.708389\pi\)
−0.608899 + 0.793247i \(0.708389\pi\)
\(450\) −15351.7 + 1604.49i −1.60820 + 0.168081i
\(451\) 5149.46 8919.13i 0.537647 0.931232i
\(452\) −28794.5 16624.5i −2.99642 1.72998i
\(453\) −783.954 + 452.616i −0.0813099 + 0.0469443i
\(454\) −3118.46 −0.322371
\(455\) 0 0
\(456\) 99.9135 0.0102607
\(457\) 8430.18 4867.17i 0.862904 0.498198i −0.00207942 0.999998i \(-0.500662\pi\)
0.864984 + 0.501800i \(0.167329\pi\)
\(458\) −21258.1 12273.4i −2.16883 1.25218i
\(459\) 1349.20 2336.89i 0.137201 0.237640i
\(460\) 7585.87 + 23370.1i 0.768898 + 2.36877i
\(461\) −1343.41 −0.135724 −0.0678621 0.997695i \(-0.521618\pi\)
−0.0678621 + 0.997695i \(0.521618\pi\)
\(462\) 0 0
\(463\) 6613.72i 0.663857i 0.943305 + 0.331929i \(0.107699\pi\)
−0.943305 + 0.331929i \(0.892301\pi\)
\(464\) −21478.2 37201.2i −2.14892 3.72204i
\(465\) −1875.19 + 2081.39i −0.187011 + 0.207575i
\(466\) 13604.1 23563.1i 1.35236 2.34236i
\(467\) −12721.0 + 7344.47i −1.26051 + 0.727755i −0.973173 0.230076i \(-0.926103\pi\)
−0.287335 + 0.957830i \(0.592769\pi\)
\(468\) 30142.8i 2.97724i
\(469\) 0 0
\(470\) 2559.60 12024.8i 0.251204 1.18013i
\(471\) −1622.78 2810.74i −0.158756 0.274973i
\(472\) 38234.1 + 22074.5i 3.72853 + 2.15267i
\(473\) 3824.43 + 2208.03i 0.371770 + 0.214642i
\(474\) 408.752 + 707.979i 0.0396089 + 0.0686046i
\(475\) 90.4673 + 40.3418i 0.00873879 + 0.00389686i
\(476\) 0 0
\(477\) 3347.11i 0.321286i
\(478\) −5188.55 + 2995.61i −0.496482 + 0.286644i
\(479\) −7649.31 + 13249.0i −0.729657 + 1.26380i 0.227371 + 0.973808i \(0.426987\pi\)
−0.957028 + 0.289995i \(0.906346\pi\)
\(480\) −7335.38 6608.68i −0.697527 0.628424i
\(481\) 1227.89 + 2126.77i 0.116397 + 0.201605i
\(482\) 18861.0i 1.78235i
\(483\) 0 0
\(484\) 13731.6 1.28960
\(485\) 1780.15 + 5484.18i 0.166665 + 0.513451i
\(486\) −9248.61 + 16019.1i −0.863221 + 1.49514i
\(487\) 8360.44 + 4826.90i 0.777921 + 0.449133i 0.835693 0.549197i \(-0.185066\pi\)
−0.0577719 + 0.998330i \(0.518400\pi\)
\(488\) 32357.9 18681.8i 3.00158 1.73297i
\(489\) −3625.41 −0.335269
\(490\) 0 0
\(491\) 20142.6 1.85137 0.925684 0.378297i \(-0.123490\pi\)
0.925684 + 0.378297i \(0.123490\pi\)
\(492\) −13703.6 + 7911.78i −1.25570 + 0.724981i
\(493\) 5612.44 + 3240.34i 0.512721 + 0.296020i
\(494\) −134.957 + 233.752i −0.0122915 + 0.0212895i
\(495\) 6312.04 2048.87i 0.573142 0.186041i
\(496\) 23718.4 2.14715
\(497\) 0 0
\(498\) 10754.1i 0.967679i
\(499\) −654.645 1133.88i −0.0587293 0.101722i 0.835166 0.549998i \(-0.185372\pi\)
−0.893895 + 0.448276i \(0.852038\pi\)
\(500\) −11479.6 25844.4i −1.02677 2.31159i
\(501\) −45.1149 + 78.1413i −0.00402313 + 0.00696826i
\(502\) 21707.4 12532.8i 1.92998 1.11427i
\(503\) 2186.17i 0.193791i −0.995295 0.0968953i \(-0.969109\pi\)
0.995295 0.0968953i \(-0.0308912\pi\)
\(504\) 0 0
\(505\) 1248.44 5865.06i 0.110010 0.516815i
\(506\) −7370.10 12765.4i −0.647512 1.12152i
\(507\) −3211.30 1854.05i −0.281300 0.162409i
\(508\) −3365.16 1942.88i −0.293908 0.169688i
\(509\) 1795.56 + 3110.00i 0.156359 + 0.270822i 0.933553 0.358439i \(-0.116691\pi\)
−0.777194 + 0.629261i \(0.783358\pi\)
\(510\) 3121.01 + 664.340i 0.270981 + 0.0576813i
\(511\) 0 0
\(512\) 11886.4i 1.02600i
\(513\) 66.8649 38.6045i 0.00575469 0.00332247i
\(514\) 16632.6 28808.5i 1.42730 2.47215i
\(515\) −2856.41 + 3170.51i −0.244405 + 0.271280i
\(516\) −3392.49 5875.96i −0.289430 0.501307i
\(517\) 5285.73i 0.449644i
\(518\) 0 0
\(519\) −4841.24 −0.409455
\(520\) 44316.5 14385.0i 3.73733 1.21313i
\(521\) 4302.67 7452.44i 0.361811 0.626674i −0.626448 0.779463i \(-0.715492\pi\)
0.988259 + 0.152789i \(0.0488254\pi\)
\(522\) −25023.9 14447.5i −2.09821 1.21140i
\(523\) −19517.1 + 11268.2i −1.63179 + 0.942113i −0.648245 + 0.761432i \(0.724497\pi\)
−0.983542 + 0.180681i \(0.942170\pi\)
\(524\) −42147.3 −3.51377
\(525\) 0 0
\(526\) −30569.7 −2.53403
\(527\) −3098.92 + 1789.16i −0.256150 + 0.147888i
\(528\) 7875.16 + 4546.72i 0.649095 + 0.374755i
\(529\) −185.819 + 321.847i −0.0152723 + 0.0264525i
\(530\) 8138.65 2641.79i 0.667019 0.216513i
\(531\) 15781.1 1.28972
\(532\) 0 0
\(533\) 25846.7i 2.10046i
\(534\) 3359.81 + 5819.37i 0.272272 + 0.471589i
\(535\) −10335.6 + 11472.2i −0.835231 + 0.927075i
\(536\) −16761.5 + 29031.7i −1.35072 + 2.33951i
\(537\) 4997.86 2885.51i 0.401627 0.231879i
\(538\) 37510.2i 3.00591i
\(539\) 0 0
\(540\) −21559.5 4589.17i −1.71810 0.365716i
\(541\) −4391.22 7605.81i −0.348971 0.604435i 0.637096 0.770784i \(-0.280135\pi\)
−0.986067 + 0.166349i \(0.946802\pi\)
\(542\) 39273.8 + 22674.8i 3.11246 + 1.79698i
\(543\) 1622.91 + 936.988i 0.128261 + 0.0740516i
\(544\) −6305.48 10921.4i −0.496958 0.860757i
\(545\) −909.161 + 4271.15i −0.0714572 + 0.335699i
\(546\) 0 0
\(547\) 22593.0i 1.76601i 0.469366 + 0.883004i \(0.344482\pi\)
−0.469366 + 0.883004i \(0.655518\pi\)
\(548\) 1369.87 790.892i 0.106784 0.0616519i
\(549\) 6677.86 11566.4i 0.519133 0.899165i
\(550\) 9963.87 + 13730.9i 0.772474 + 1.06452i
\(551\) 92.7152 + 160.587i 0.00716842 + 0.0124161i
\(552\) 13693.5i 1.05586i
\(553\) 0 0
\(554\) 6981.84 0.535433
\(555\) 790.111 256.468i 0.0604294 0.0196153i
\(556\) −14100.4 + 24422.6i −1.07552 + 1.86286i
\(557\) 6290.92 + 3632.06i 0.478554 + 0.276294i 0.719814 0.694167i \(-0.244227\pi\)
−0.241259 + 0.970461i \(0.577560\pi\)
\(558\) 13817.0 7977.23i 1.04824 0.605202i
\(559\) 11082.8 0.838555
\(560\) 0 0
\(561\) −1371.90 −0.103247
\(562\) −1137.69 + 656.846i −0.0853924 + 0.0493013i
\(563\) 3335.43 + 1925.71i 0.249683 + 0.144154i 0.619619 0.784903i \(-0.287287\pi\)
−0.369936 + 0.929057i \(0.620620\pi\)
\(564\) 4060.57 7033.11i 0.303158 0.525084i
\(565\) −5671.86 17473.5i −0.422331 1.30109i
\(566\) −48220.9 −3.58105
\(567\) 0 0
\(568\) 36186.7i 2.67317i
\(569\) 8290.14 + 14358.9i 0.610792 + 1.05792i 0.991107 + 0.133066i \(0.0424822\pi\)
−0.380315 + 0.924857i \(0.624184\pi\)
\(570\) 67.8323 + 61.1123i 0.00498453 + 0.00449072i
\(571\) −3192.93 + 5530.32i −0.234010 + 0.405318i −0.958985 0.283458i \(-0.908518\pi\)
0.724974 + 0.688776i \(0.241852\pi\)
\(572\) −28691.6 + 16565.1i −2.09730 + 1.21088i
\(573\) 2997.32i 0.218525i
\(574\) 0 0
\(575\) −5529.00 + 12398.9i −0.401001 + 0.899252i
\(576\) 11049.8 + 19138.8i 0.799318 + 1.38446i
\(577\) 9577.44 + 5529.54i 0.691012 + 0.398956i 0.803991 0.594641i \(-0.202706\pi\)
−0.112979 + 0.993597i \(0.536039\pi\)
\(578\) −19078.8 11015.1i −1.37296 0.792681i
\(579\) −2234.22 3869.79i −0.160365 0.277760i
\(580\) 11021.7 51778.7i 0.789052 3.70689i
\(581\) 0 0
\(582\) 5314.56i 0.378515i
\(583\) −3185.96 + 1839.42i −0.226328 + 0.130670i
\(584\) −5631.48 + 9754.00i −0.399028 + 0.691136i
\(585\) 11147.8 12373.6i 0.787868 0.874504i
\(586\) 7281.62 + 12612.1i 0.513312 + 0.889083i
\(587\) 7871.25i 0.553461i −0.960948 0.276730i \(-0.910749\pi\)
0.960948 0.276730i \(-0.0892509\pi\)
\(588\) 0 0
\(589\) −102.386 −0.00716253
\(590\) 12455.6 + 38372.5i 0.869136 + 2.67758i
\(591\) 215.292 372.896i 0.0149846 0.0259542i
\(592\) −6090.63 3516.43i −0.422844 0.244129i
\(593\) 1747.69 1009.03i 0.121027 0.0698750i −0.438264 0.898846i \(-0.644407\pi\)
0.559291 + 0.828971i \(0.311073\pi\)
\(594\) 13223.6 0.913422
\(595\) 0 0
\(596\) 657.640 0.0451980
\(597\) 6013.75 3472.04i 0.412272 0.238025i
\(598\) −32036.7 18496.4i −2.19076 1.26484i
\(599\) −678.335 + 1174.91i −0.0462705 + 0.0801428i −0.888233 0.459393i \(-0.848067\pi\)
0.841963 + 0.539536i \(0.181400\pi\)
\(600\) −1638.29 15675.1i −0.111471 1.06656i
\(601\) 11178.7 0.758715 0.379358 0.925250i \(-0.376145\pi\)
0.379358 + 0.925250i \(0.376145\pi\)
\(602\) 0 0
\(603\) 11982.8i 0.809252i
\(604\) 4722.46 + 8179.53i 0.318136 + 0.551027i
\(605\) 5636.82 + 5078.39i 0.378792 + 0.341266i
\(606\) 2763.55 4786.61i 0.185250 0.320863i
\(607\) 8144.69 4702.34i 0.544617 0.314435i −0.202331 0.979317i \(-0.564852\pi\)
0.746948 + 0.664882i \(0.231518\pi\)
\(608\) 360.835i 0.0240687i
\(609\) 0 0
\(610\) 33394.9 + 7108.47i 2.21659 + 0.471825i
\(611\) 6632.67 + 11488.1i 0.439164 + 0.760654i
\(612\) −11278.5 6511.63i −0.744943 0.430093i
\(613\) −16400.8 9468.99i −1.08062 0.623897i −0.149557 0.988753i \(-0.547785\pi\)
−0.931064 + 0.364856i \(0.881118\pi\)
\(614\) −18559.2 32145.4i −1.21985 2.11284i
\(615\) −8551.35 1820.25i −0.560689 0.119349i
\(616\) 0 0
\(617\) 17716.9i 1.15600i 0.816036 + 0.578001i \(0.196167\pi\)
−0.816036 + 0.578001i \(0.803833\pi\)
\(618\) −3406.45 + 1966.72i −0.221728 + 0.128015i
\(619\) −3120.16 + 5404.28i −0.202601 + 0.350915i −0.949366 0.314173i \(-0.898273\pi\)
0.746765 + 0.665088i \(0.231606\pi\)
\(620\) 21716.6 + 19565.2i 1.40671 + 1.26735i
\(621\) 5290.89 + 9164.10i 0.341894 + 0.592178i
\(622\) 1896.13i 0.122231i
\(623\) 0 0
\(624\) 22821.4 1.46408
\(625\) 4845.70 14854.6i 0.310125 0.950696i
\(626\) −17615.1 + 30510.2i −1.12467 + 1.94798i
\(627\) −33.9949 19.6269i −0.00216527 0.00125012i
\(628\) −29326.4 + 16931.6i −1.86346 + 1.07587i
\(629\) 1061.03 0.0672589
\(630\) 0 0
\(631\) −25887.7 −1.63323 −0.816617 0.577179i \(-0.804153\pi\)
−0.816617 + 0.577179i \(0.804153\pi\)
\(632\) 4466.41 2578.68i 0.281114 0.162301i
\(633\) −7022.30 4054.33i −0.440934 0.254573i
\(634\) 6626.25 11477.0i 0.415082 0.718944i
\(635\) −662.859 2042.10i −0.0414248 0.127619i
\(636\) 5652.27 0.352401
\(637\) 0 0
\(638\) 31758.8i 1.97076i
\(639\) −6467.50 11202.0i −0.400392 0.693499i
\(640\) −10554.6 + 11715.2i −0.651886 + 0.723569i
\(641\) −9399.22 + 16279.9i −0.579168 + 1.00315i 0.416407 + 0.909178i \(0.363289\pi\)
−0.995575 + 0.0939701i \(0.970044\pi\)
\(642\) −12325.9 + 7116.38i −0.757734 + 0.437478i
\(643\) 2287.70i 0.140308i 0.997536 + 0.0701541i \(0.0223491\pi\)
−0.997536 + 0.0701541i \(0.977651\pi\)
\(644\) 0 0
\(645\) 780.503 3666.73i 0.0476469 0.223841i
\(646\) 58.3085 + 100.993i 0.00355127 + 0.00615097i
\(647\) −1532.27 884.654i −0.0931060 0.0537548i 0.452724 0.891651i \(-0.350452\pi\)
−0.545830 + 0.837896i \(0.683786\pi\)
\(648\) 24687.9 + 14253.6i 1.49666 + 0.864094i
\(649\) −8672.59 15021.4i −0.524544 0.908536i
\(650\) 38885.6 + 17340.1i 2.34649 + 1.04636i
\(651\) 0 0
\(652\) 37826.4i 2.27208i
\(653\) −3370.12 + 1945.74i −0.201965 + 0.116604i −0.597572 0.801816i \(-0.703868\pi\)
0.395607 + 0.918420i \(0.370534\pi\)
\(654\) −2012.52 + 3485.78i −0.120330 + 0.208417i
\(655\) −17301.5 15587.4i −1.03210 0.929849i
\(656\) 37009.9 + 64103.1i 2.20274 + 3.81525i
\(657\) 4025.96i 0.239068i
\(658\) 0 0
\(659\) −20097.6 −1.18800 −0.594001 0.804465i \(-0.702452\pi\)
−0.594001 + 0.804465i \(0.702452\pi\)
\(660\) 3459.94 + 10659.2i 0.204057 + 0.628647i
\(661\) 13584.0 23528.1i 0.799326 1.38447i −0.120730 0.992685i \(-0.538523\pi\)
0.920056 0.391788i \(-0.128143\pi\)
\(662\) 21547.6 + 12440.5i 1.26506 + 0.730384i
\(663\) −2981.72 + 1721.50i −0.174661 + 0.100841i
\(664\) −67844.3 −3.96516
\(665\) 0 0
\(666\) −4730.73 −0.275243
\(667\) −22009.1 + 12707.0i −1.27766 + 0.737655i
\(668\) 815.303 + 470.715i 0.0472231 + 0.0272642i
\(669\) 2289.95 3966.32i 0.132339 0.229218i
\(670\) −29136.8 + 9457.75i −1.68008 + 0.545350i
\(671\) −14679.4 −0.844548
\(672\) 0 0
\(673\) 25909.7i 1.48402i −0.670389 0.742010i \(-0.733873\pi\)
0.670389 0.742010i \(-0.266127\pi\)
\(674\) −9555.55 16550.7i −0.546092 0.945859i
\(675\) −7152.92 9857.23i −0.407876 0.562081i
\(676\) −19344.6 + 33505.7i −1.10062 + 1.90634i
\(677\) 3775.19 2179.61i 0.214317 0.123736i −0.388999 0.921238i \(-0.627179\pi\)
0.603316 + 0.797502i \(0.293846\pi\)
\(678\) 16933.0i 0.959159i
\(679\) 0 0
\(680\) 4191.11 19689.4i 0.236355 1.11037i
\(681\) −569.090 985.693i −0.0320229 0.0554653i
\(682\) −15186.3 8767.84i −0.852662 0.492284i
\(683\) 25739.9 + 14860.9i 1.44203 + 0.832559i 0.997985 0.0634439i \(-0.0202084\pi\)
0.444049 + 0.896003i \(0.353542\pi\)
\(684\) −186.316 322.708i −0.0104152 0.0180396i
\(685\) 854.826 + 181.959i 0.0476806 + 0.0101493i
\(686\) 0 0
\(687\) 8959.10i 0.497541i
\(688\) −27486.7 + 15869.5i −1.52314 + 0.879386i
\(689\) −4616.30 + 7995.67i −0.255250 + 0.442105i
\(690\) −8375.67 + 9296.68i −0.462111 + 0.512925i
\(691\) 2464.57 + 4268.75i 0.135682 + 0.235009i 0.925858 0.377872i \(-0.123344\pi\)
−0.790176 + 0.612881i \(0.790011\pi\)
\(692\) 50512.0i 2.77482i
\(693\) 0 0
\(694\) 10093.4 0.552073
\(695\) −14820.4 + 4810.68i −0.808880 + 0.262561i
\(696\) 14751.9 25551.0i 0.803402 1.39153i
\(697\) −9671.03 5583.57i −0.525562 0.303433i
\(698\) 4774.55 2756.59i 0.258910 0.149482i
\(699\) 9930.51 0.537348
\(700\) 0 0
\(701\) −19358.8 −1.04304 −0.521520 0.853239i \(-0.674635\pi\)
−0.521520 + 0.853239i \(0.674635\pi\)
\(702\) 28740.6 16593.4i 1.54522 0.892132i
\(703\) 26.2916 + 15.1794i 0.00141053 + 0.000814372i
\(704\) 12144.9 21035.6i 0.650182 1.12615i
\(705\) 4267.93 1385.36i 0.227999 0.0740081i
\(706\) 21717.3 1.15771
\(707\) 0 0
\(708\) 26649.6i 1.41462i
\(709\) −8593.15 14883.8i −0.455180 0.788394i 0.543519 0.839397i \(-0.317092\pi\)
−0.998699 + 0.0510026i \(0.983758\pi\)
\(710\) 22133.6 24567.5i 1.16994 1.29859i
\(711\) 921.755 1596.53i 0.0486196 0.0842116i
\(712\) 36712.5 21196.0i 1.93239 1.11566i
\(713\) 14032.4i 0.737049i
\(714\) 0 0
\(715\) −17904.2 3811.10i −0.936473 0.199339i
\(716\) −30106.6 52146.1i −1.57142 2.72178i
\(717\) −1893.72 1093.34i −0.0986365 0.0569478i
\(718\) 15980.4 + 9226.28i 0.830617 + 0.479557i
\(719\) −7553.65 13083.3i −0.391799 0.678616i 0.600888 0.799333i \(-0.294814\pi\)
−0.992687 + 0.120717i \(0.961481\pi\)
\(720\) −9930.07 + 46650.5i −0.513989 + 2.41467i
\(721\) 0 0
\(722\) 36443.0i 1.87849i
\(723\) 5961.64 3441.96i 0.306661 0.177051i
\(724\) 9776.24 16932.9i 0.501839 0.869210i
\(725\) 23673.8 17179.0i 1.21272 0.880015i
\(726\) 3496.61 + 6056.31i 0.178748 + 0.309601i
\(727\) 15840.9i 0.808124i −0.914732 0.404062i \(-0.867598\pi\)
0.914732 0.404062i \(-0.132402\pi\)
\(728\) 0 0
\(729\) 5088.04 0.258499
\(730\) −9789.32 + 3177.59i −0.496327 + 0.161107i
\(731\) 2394.18 4146.83i 0.121138 0.209817i
\(732\) 19532.2 + 11276.9i 0.986244 + 0.569408i
\(733\) 23936.7 13819.9i 1.20617 0.696382i 0.244249 0.969713i \(-0.421459\pi\)
0.961920 + 0.273331i \(0.0881253\pi\)
\(734\) 46596.2 2.34318
\(735\) 0 0
\(736\) 49453.8 2.47675
\(737\) 11405.9 6585.22i 0.570072 0.329131i
\(738\) 43119.7 + 24895.2i 2.15075 + 1.24174i
\(739\) 17437.2 30202.1i 0.867982 1.50339i 0.00392555 0.999992i \(-0.498750\pi\)
0.864056 0.503396i \(-0.167916\pi\)
\(740\) −2675.91 8243.77i −0.132930 0.409523i
\(741\) −98.5136 −0.00488392
\(742\) 0 0
\(743\) 27686.7i 1.36706i 0.729922 + 0.683530i \(0.239556\pi\)
−0.729922 + 0.683530i \(0.760444\pi\)
\(744\) 8145.26 + 14108.0i 0.401371 + 0.695194i
\(745\) 269.961 + 243.216i 0.0132760 + 0.0119607i
\(746\) 30205.1 52316.8i 1.48242 2.56763i
\(747\) −21002.0 + 12125.5i −1.02868 + 0.593909i
\(748\) 14314.0i 0.699694i
\(749\) 0 0
\(750\) 8475.46 11644.1i 0.412640 0.566908i
\(751\) −2403.42 4162.85i −0.116781 0.202270i 0.801710 0.597714i \(-0.203924\pi\)
−0.918490 + 0.395444i \(0.870591\pi\)
\(752\) −32899.7 18994.6i −1.59538 0.921094i
\(753\) 7922.79 + 4574.23i 0.383430 + 0.221373i
\(754\) 39851.8 + 69025.3i 1.92482 + 3.33389i
\(755\) −1086.49 + 5104.21i −0.0523726 + 0.246041i
\(756\) 0 0
\(757\) 40166.6i 1.92851i −0.264983 0.964253i \(-0.585366\pi\)
0.264983 0.964253i \(-0.414634\pi\)
\(758\) 55853.4 32247.0i 2.67637 1.54520i
\(759\) 2689.95 4659.13i 0.128642 0.222814i
\(760\) 385.537 427.932i 0.0184012 0.0204246i
\(761\) −12956.2 22440.7i −0.617162 1.06896i −0.990001 0.141060i \(-0.954949\pi\)
0.372839 0.927896i \(-0.378384\pi\)
\(762\) 1978.93i 0.0940803i
\(763\) 0 0
\(764\) 31273.1 1.48092
\(765\) −2221.60 6844.16i −0.104996 0.323465i
\(766\) −26221.9 + 45417.6i −1.23686 + 2.14230i
\(767\) −37698.4 21765.2i −1.77472 1.02464i
\(768\) 190.717 110.111i 0.00896082 0.00517353i
\(769\) 23231.3 1.08939 0.544697 0.838633i \(-0.316645\pi\)
0.544697 + 0.838633i \(0.316645\pi\)
\(770\) 0 0
\(771\) 12141.2 0.567125
\(772\) −40376.2 + 23311.2i −1.88234 + 1.08677i
\(773\) 724.262 + 418.153i 0.0336997 + 0.0194566i