Properties

Label 245.4.e.n.226.3
Level $245$
Weight $4$
Character 245.226
Analytic conductor $14.455$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [245,4,Mod(116,245)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(245, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 4]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("245.116");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 245 = 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 245.e (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(14.4554679514\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{3})\)
Coefficient field: 6.0.5567659200.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} + 17x^{4} - 28x^{3} + 289x^{2} - 238x + 196 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 35)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 226.3
Root \(1.81228 + 3.13896i\) of defining polynomial
Character \(\chi\) \(=\) 245.226
Dual form 245.4.e.n.116.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.31228 - 4.00499i) q^{2} +(-4.19330 - 7.26300i) q^{3} +(-6.69330 - 11.5931i) q^{4} +(2.50000 - 4.33013i) q^{5} -38.7844 q^{6} -24.9107 q^{8} +(-21.6675 + 37.5292i) q^{9} +(-11.5614 - 20.0250i) q^{10} +(15.0558 + 26.0775i) q^{11} +(-56.1340 + 97.2269i) q^{12} -88.9295 q^{13} -41.9330 q^{15} +(-4.05409 + 7.02189i) q^{16} +(-2.36850 - 4.10236i) q^{17} +(100.203 + 173.556i) q^{18} +(62.4089 - 108.095i) q^{19} -66.9330 q^{20} +139.253 q^{22} +(-10.1340 + 17.5526i) q^{23} +(104.458 + 180.926i) q^{24} +(-12.5000 - 21.6506i) q^{25} +(-205.630 + 356.162i) q^{26} +136.995 q^{27} +134.088 q^{29} +(-96.9609 + 167.941i) q^{30} +(-1.01883 - 1.76467i) q^{31} +(-80.8942 - 140.113i) q^{32} +(126.267 - 218.701i) q^{33} -21.9065 q^{34} +580.108 q^{36} +(70.5687 - 122.229i) q^{37} +(-288.614 - 499.894i) q^{38} +(372.908 + 645.895i) q^{39} +(-62.2766 + 107.866i) q^{40} -95.2784 q^{41} -298.646 q^{43} +(201.546 - 349.088i) q^{44} +(108.337 + 187.646i) q^{45} +(46.8653 + 81.1730i) q^{46} +(-64.5268 + 111.764i) q^{47} +68.0000 q^{48} -115.614 q^{50} +(-19.8636 + 34.4048i) q^{51} +(595.232 + 1030.97i) q^{52} +(-194.214 - 336.389i) q^{53} +(316.771 - 548.663i) q^{54} +150.558 q^{55} -1046.80 q^{57} +(310.049 - 537.020i) q^{58} +(419.250 + 726.163i) q^{59} +(280.670 + 486.135i) q^{60} +(194.711 - 337.250i) q^{61} -9.42333 q^{62} -813.067 q^{64} +(-222.324 + 385.076i) q^{65} +(-583.931 - 1011.40i) q^{66} +(-348.897 - 604.307i) q^{67} +(-31.7061 + 54.9166i) q^{68} +169.979 q^{69} -523.450 q^{71} +(539.752 - 934.877i) q^{72} +(33.2342 + 57.5633i) q^{73} +(-326.350 - 565.254i) q^{74} +(-104.832 + 181.575i) q^{75} -1670.89 q^{76} +3449.07 q^{78} +(263.491 - 456.380i) q^{79} +(20.2704 + 35.1094i) q^{80} +(10.5618 + 18.2936i) q^{81} +(-220.311 + 381.589i) q^{82} -70.0265 q^{83} -23.6850 q^{85} +(-690.554 + 1196.07i) q^{86} +(-562.270 - 973.880i) q^{87} +(-375.051 - 649.607i) q^{88} +(-4.63963 + 8.03607i) q^{89} +1002.03 q^{90} +271.319 q^{92} +(-8.54456 + 14.7996i) q^{93} +(298.408 + 516.858i) q^{94} +(-312.045 - 540.477i) q^{95} +(-678.427 + 1175.07i) q^{96} +4.19493 q^{97} -1304.89 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 3 q^{2} + 2 q^{3} - 13 q^{4} + 15 q^{5} - 48 q^{6} - 30 q^{8} - 81 q^{9} - 15 q^{10} + 74 q^{11} - 152 q^{12} - 88 q^{13} + 20 q^{15} + 79 q^{16} - 52 q^{17} + 411 q^{18} + 168 q^{19} - 130 q^{20}+ \cdots - 6976 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/245\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(197\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.31228 4.00499i 0.817515 1.41598i −0.0899925 0.995942i \(-0.528684\pi\)
0.907508 0.420035i \(-0.137982\pi\)
\(3\) −4.19330 7.26300i −0.807001 1.39777i −0.914932 0.403608i \(-0.867756\pi\)
0.107932 0.994158i \(-0.465577\pi\)
\(4\) −6.69330 11.5931i −0.836662 1.44914i
\(5\) 2.50000 4.33013i 0.223607 0.387298i
\(6\) −38.7844 −2.63894
\(7\) 0 0
\(8\) −24.9107 −1.10091
\(9\) −21.6675 + 37.5292i −0.802500 + 1.38997i
\(10\) −11.5614 20.0250i −0.365604 0.633245i
\(11\) 15.0558 + 26.0775i 0.412682 + 0.714786i 0.995182 0.0980443i \(-0.0312587\pi\)
−0.582500 + 0.812831i \(0.697925\pi\)
\(12\) −56.1340 + 97.2269i −1.35037 + 2.33892i
\(13\) −88.9295 −1.89728 −0.948639 0.316362i \(-0.897539\pi\)
−0.948639 + 0.316362i \(0.897539\pi\)
\(14\) 0 0
\(15\) −41.9330 −0.721803
\(16\) −4.05409 + 7.02189i −0.0633451 + 0.109717i
\(17\) −2.36850 4.10236i −0.0337909 0.0585275i 0.848635 0.528978i \(-0.177425\pi\)
−0.882426 + 0.470451i \(0.844091\pi\)
\(18\) 100.203 + 173.556i 1.31211 + 2.27264i
\(19\) 62.4089 108.095i 0.753557 1.30520i −0.192531 0.981291i \(-0.561670\pi\)
0.946088 0.323909i \(-0.104997\pi\)
\(20\) −66.9330 −0.748333
\(21\) 0 0
\(22\) 139.253 1.34950
\(23\) −10.1340 + 17.5526i −0.0918731 + 0.159129i −0.908299 0.418321i \(-0.862619\pi\)
0.816426 + 0.577450i \(0.195952\pi\)
\(24\) 104.458 + 180.926i 0.888432 + 1.53881i
\(25\) −12.5000 21.6506i −0.100000 0.173205i
\(26\) −205.630 + 356.162i −1.55105 + 2.68650i
\(27\) 136.995 0.976470
\(28\) 0 0
\(29\) 134.088 0.858603 0.429301 0.903161i \(-0.358760\pi\)
0.429301 + 0.903161i \(0.358760\pi\)
\(30\) −96.9609 + 167.941i −0.590085 + 1.02206i
\(31\) −1.01883 1.76467i −0.00590284 0.0102240i 0.863059 0.505103i \(-0.168546\pi\)
−0.868962 + 0.494879i \(0.835212\pi\)
\(32\) −80.8942 140.113i −0.446882 0.774022i
\(33\) 126.267 218.701i 0.666069 1.15367i
\(34\) −21.9065 −0.110498
\(35\) 0 0
\(36\) 580.108 2.68568
\(37\) 70.5687 122.229i 0.313552 0.543088i −0.665577 0.746329i \(-0.731814\pi\)
0.979129 + 0.203242i \(0.0651477\pi\)
\(38\) −288.614 499.894i −1.23209 2.13404i
\(39\) 372.908 + 645.895i 1.53110 + 2.65195i
\(40\) −62.2766 + 107.866i −0.246170 + 0.426379i
\(41\) −95.2784 −0.362927 −0.181463 0.983398i \(-0.558083\pi\)
−0.181463 + 0.983398i \(0.558083\pi\)
\(42\) 0 0
\(43\) −298.646 −1.05914 −0.529571 0.848266i \(-0.677647\pi\)
−0.529571 + 0.848266i \(0.677647\pi\)
\(44\) 201.546 349.088i 0.690551 1.19607i
\(45\) 108.337 + 187.646i 0.358889 + 0.621614i
\(46\) 46.8653 + 81.1730i 0.150215 + 0.260181i
\(47\) −64.5268 + 111.764i −0.200260 + 0.346860i −0.948612 0.316442i \(-0.897512\pi\)
0.748352 + 0.663301i \(0.230845\pi\)
\(48\) 68.0000 0.204478
\(49\) 0 0
\(50\) −115.614 −0.327006
\(51\) −19.8636 + 34.4048i −0.0545385 + 0.0944635i
\(52\) 595.232 + 1030.97i 1.58738 + 2.74942i
\(53\) −194.214 336.389i −0.503347 0.871823i −0.999993 0.00386911i \(-0.998768\pi\)
0.496646 0.867953i \(-0.334565\pi\)
\(54\) 316.771 548.663i 0.798279 1.38266i
\(55\) 150.558 0.369114
\(56\) 0 0
\(57\) −1046.80 −2.43248
\(58\) 310.049 537.020i 0.701921 1.21576i
\(59\) 419.250 + 726.163i 0.925114 + 1.60235i 0.791377 + 0.611329i \(0.209365\pi\)
0.133738 + 0.991017i \(0.457302\pi\)
\(60\) 280.670 + 486.135i 0.603905 + 1.04599i
\(61\) 194.711 337.250i 0.408692 0.707875i −0.586051 0.810274i \(-0.699318\pi\)
0.994743 + 0.102399i \(0.0326517\pi\)
\(62\) −9.42333 −0.0193027
\(63\) 0 0
\(64\) −813.067 −1.58802
\(65\) −222.324 + 385.076i −0.424244 + 0.734812i
\(66\) −583.931 1011.40i −1.08904 1.88628i
\(67\) −348.897 604.307i −0.636187 1.10191i −0.986262 0.165187i \(-0.947177\pi\)
0.350075 0.936722i \(-0.386156\pi\)
\(68\) −31.7061 + 54.9166i −0.0565431 + 0.0979355i
\(69\) 169.979 0.296567
\(70\) 0 0
\(71\) −523.450 −0.874959 −0.437479 0.899228i \(-0.644129\pi\)
−0.437479 + 0.899228i \(0.644129\pi\)
\(72\) 539.752 934.877i 0.883477 1.53023i
\(73\) 33.2342 + 57.5633i 0.0532845 + 0.0922915i 0.891437 0.453144i \(-0.149698\pi\)
−0.838153 + 0.545435i \(0.816364\pi\)
\(74\) −326.350 565.254i −0.512667 0.887965i
\(75\) −104.832 + 181.575i −0.161400 + 0.279553i
\(76\) −1670.89 −2.52189
\(77\) 0 0
\(78\) 3449.07 5.00680
\(79\) 263.491 456.380i 0.375254 0.649959i −0.615111 0.788440i \(-0.710889\pi\)
0.990365 + 0.138482i \(0.0442222\pi\)
\(80\) 20.2704 + 35.1094i 0.0283288 + 0.0490669i
\(81\) 10.5618 + 18.2936i 0.0144881 + 0.0250941i
\(82\) −220.311 + 381.589i −0.296698 + 0.513896i
\(83\) −70.0265 −0.0926074 −0.0463037 0.998927i \(-0.514744\pi\)
−0.0463037 + 0.998927i \(0.514744\pi\)
\(84\) 0 0
\(85\) −23.6850 −0.0302235
\(86\) −690.554 + 1196.07i −0.865864 + 1.49972i
\(87\) −562.270 973.880i −0.692893 1.20013i
\(88\) −375.051 649.607i −0.454324 0.786913i
\(89\) −4.63963 + 8.03607i −0.00552584 + 0.00957103i −0.868775 0.495207i \(-0.835092\pi\)
0.863249 + 0.504778i \(0.168426\pi\)
\(90\) 1002.03 1.17359
\(91\) 0 0
\(92\) 271.319 0.307467
\(93\) −8.54456 + 14.7996i −0.00952720 + 0.0165016i
\(94\) 298.408 + 516.858i 0.327431 + 0.567126i
\(95\) −312.045 540.477i −0.337001 0.583703i
\(96\) −678.427 + 1175.07i −0.721268 + 1.24927i
\(97\) 4.19493 0.00439104 0.00219552 0.999998i \(-0.499301\pi\)
0.00219552 + 0.999998i \(0.499301\pi\)
\(98\) 0 0
\(99\) −1304.89 −1.32471
\(100\) −167.332 + 289.828i −0.167332 + 0.289828i
\(101\) −432.922 749.843i −0.426508 0.738734i 0.570052 0.821609i \(-0.306923\pi\)
−0.996560 + 0.0828749i \(0.973590\pi\)
\(102\) 91.8606 + 159.107i 0.0891721 + 0.154451i
\(103\) −583.058 + 1009.89i −0.557771 + 0.966088i 0.439911 + 0.898042i \(0.355010\pi\)
−0.997682 + 0.0680469i \(0.978323\pi\)
\(104\) 2215.29 2.08872
\(105\) 0 0
\(106\) −1796.31 −1.64598
\(107\) −28.4826 + 49.3333i −0.0257338 + 0.0445722i −0.878606 0.477548i \(-0.841526\pi\)
0.852872 + 0.522121i \(0.174859\pi\)
\(108\) −916.948 1588.20i −0.816975 1.41504i
\(109\) 679.445 + 1176.83i 0.597055 + 1.03413i 0.993253 + 0.115965i \(0.0369959\pi\)
−0.396198 + 0.918165i \(0.629671\pi\)
\(110\) 348.133 602.985i 0.301756 0.522657i
\(111\) −1183.66 −1.01215
\(112\) 0 0
\(113\) 436.038 0.363000 0.181500 0.983391i \(-0.441905\pi\)
0.181500 + 0.983391i \(0.441905\pi\)
\(114\) −2420.49 + 4192.41i −1.98859 + 3.44434i
\(115\) 50.6699 + 87.7629i 0.0410869 + 0.0711646i
\(116\) −897.490 1554.50i −0.718361 1.24424i
\(117\) 1926.88 3337.45i 1.52256 2.63716i
\(118\) 3877.70 3.02518
\(119\) 0 0
\(120\) 1044.58 0.794637
\(121\) 212.144 367.444i 0.159387 0.276066i
\(122\) −900.454 1559.63i −0.668224 1.15740i
\(123\) 399.531 + 692.008i 0.292882 + 0.507286i
\(124\) −13.6387 + 23.6230i −0.00987737 + 0.0171081i
\(125\) −125.000 −0.0894427
\(126\) 0 0
\(127\) 1186.69 0.829144 0.414572 0.910017i \(-0.363931\pi\)
0.414572 + 0.910017i \(0.363931\pi\)
\(128\) −1232.89 + 2135.42i −0.851349 + 1.47458i
\(129\) 1252.31 + 2169.07i 0.854728 + 1.48043i
\(130\) 1028.15 + 1780.81i 0.693652 + 1.20144i
\(131\) 517.278 895.952i 0.344999 0.597555i −0.640355 0.768079i \(-0.721213\pi\)
0.985354 + 0.170524i \(0.0545460\pi\)
\(132\) −3380.57 −2.22910
\(133\) 0 0
\(134\) −3226.99 −2.08037
\(135\) 342.487 593.205i 0.218345 0.378185i
\(136\) 59.0008 + 102.192i 0.0372006 + 0.0644333i
\(137\) −323.109 559.642i −0.201497 0.349003i 0.747514 0.664246i \(-0.231247\pi\)
−0.949011 + 0.315243i \(0.897914\pi\)
\(138\) 393.040 680.765i 0.242448 0.419932i
\(139\) −506.484 −0.309061 −0.154530 0.987988i \(-0.549386\pi\)
−0.154530 + 0.987988i \(0.549386\pi\)
\(140\) 0 0
\(141\) 1082.32 0.646439
\(142\) −1210.36 + 2096.41i −0.715292 + 1.23892i
\(143\) −1338.91 2319.06i −0.782972 1.35615i
\(144\) −175.684 304.293i −0.101669 0.176096i
\(145\) 335.220 580.617i 0.191989 0.332535i
\(146\) 307.387 0.174244
\(147\) 0 0
\(148\) −1889.35 −1.04935
\(149\) 914.058 1583.19i 0.502567 0.870472i −0.497428 0.867505i \(-0.665722\pi\)
0.999996 0.00296704i \(-0.000944438\pi\)
\(150\) 484.804 + 839.706i 0.263894 + 0.457078i
\(151\) −1487.58 2576.57i −0.801708 1.38860i −0.918491 0.395441i \(-0.870592\pi\)
0.116783 0.993157i \(-0.462742\pi\)
\(152\) −1554.65 + 2692.73i −0.829596 + 1.43690i
\(153\) 205.278 0.108469
\(154\) 0 0
\(155\) −10.1883 −0.00527966
\(156\) 4991.97 8646.34i 2.56203 4.43757i
\(157\) −1065.87 1846.14i −0.541820 0.938459i −0.998800 0.0489821i \(-0.984402\pi\)
0.456980 0.889477i \(-0.348931\pi\)
\(158\) −1218.53 2110.56i −0.613551 1.06270i
\(159\) −1628.80 + 2821.16i −0.812403 + 1.40712i
\(160\) −808.942 −0.399703
\(161\) 0 0
\(162\) 97.6876 0.0473769
\(163\) 296.969 514.366i 0.142702 0.247167i −0.785811 0.618466i \(-0.787754\pi\)
0.928513 + 0.371299i \(0.121088\pi\)
\(164\) 637.727 + 1104.58i 0.303647 + 0.525932i
\(165\) −631.336 1093.51i −0.297875 0.515935i
\(166\) −161.921 + 280.456i −0.0757079 + 0.131130i
\(167\) 2936.30 1.36059 0.680293 0.732941i \(-0.261853\pi\)
0.680293 + 0.732941i \(0.261853\pi\)
\(168\) 0 0
\(169\) 5711.45 2.59966
\(170\) −54.7663 + 94.8581i −0.0247081 + 0.0427958i
\(171\) 2704.49 + 4684.31i 1.20946 + 2.09484i
\(172\) 1998.93 + 3462.24i 0.886144 + 1.53485i
\(173\) 1173.65 2032.83i 0.515788 0.893371i −0.484044 0.875044i \(-0.660833\pi\)
0.999832 0.0183273i \(-0.00583410\pi\)
\(174\) −5200.51 −2.26580
\(175\) 0 0
\(176\) −244.151 −0.104566
\(177\) 3516.08 6090.04i 1.49314 2.58619i
\(178\) 21.4562 + 37.1633i 0.00903491 + 0.0156489i
\(179\) −1518.28 2629.74i −0.633975 1.09808i −0.986731 0.162362i \(-0.948089\pi\)
0.352756 0.935715i \(-0.385244\pi\)
\(180\) 1450.27 2511.94i 0.600537 1.04016i
\(181\) 899.776 0.369502 0.184751 0.982785i \(-0.440852\pi\)
0.184751 + 0.982785i \(0.440852\pi\)
\(182\) 0 0
\(183\) −3265.93 −1.31926
\(184\) 252.444 437.246i 0.101144 0.175186i
\(185\) −352.844 611.143i −0.140225 0.242876i
\(186\) 39.5148 + 68.4417i 0.0155773 + 0.0269806i
\(187\) 71.3194 123.529i 0.0278898 0.0483065i
\(188\) 1727.59 0.670199
\(189\) 0 0
\(190\) −2886.14 −1.10201
\(191\) −208.084 + 360.412i −0.0788294 + 0.136537i −0.902745 0.430176i \(-0.858452\pi\)
0.823916 + 0.566712i \(0.191785\pi\)
\(192\) 3409.43 + 5905.31i 1.28153 + 2.21968i
\(193\) 2590.52 + 4486.92i 0.966166 + 1.67345i 0.706450 + 0.707763i \(0.250296\pi\)
0.259716 + 0.965685i \(0.416371\pi\)
\(194\) 9.69986 16.8007i 0.00358974 0.00621761i
\(195\) 3729.08 1.36946
\(196\) 0 0
\(197\) 1452.34 0.525255 0.262627 0.964897i \(-0.415411\pi\)
0.262627 + 0.964897i \(0.415411\pi\)
\(198\) −3017.27 + 5226.07i −1.08297 + 1.87576i
\(199\) −638.616 1106.12i −0.227489 0.394023i 0.729574 0.683902i \(-0.239718\pi\)
−0.957063 + 0.289879i \(0.906385\pi\)
\(200\) 311.383 + 539.332i 0.110091 + 0.190683i
\(201\) −2926.06 + 5068.08i −1.02681 + 1.77848i
\(202\) −4004.15 −1.39471
\(203\) 0 0
\(204\) 531.813 0.182521
\(205\) −238.196 + 412.568i −0.0811528 + 0.140561i
\(206\) 2696.39 + 4670.29i 0.911973 + 1.57958i
\(207\) −439.156 760.640i −0.147456 0.255402i
\(208\) 360.528 624.453i 0.120183 0.208164i
\(209\) 3758.47 1.24392
\(210\) 0 0
\(211\) −3259.09 −1.06334 −0.531670 0.846951i \(-0.678436\pi\)
−0.531670 + 0.846951i \(0.678436\pi\)
\(212\) −2599.87 + 4503.10i −0.842263 + 1.45884i
\(213\) 2194.98 + 3801.82i 0.706092 + 1.22299i
\(214\) 131.720 + 228.145i 0.0420755 + 0.0728770i
\(215\) −746.615 + 1293.18i −0.236831 + 0.410204i
\(216\) −3412.63 −1.07500
\(217\) 0 0
\(218\) 6284.27 1.95241
\(219\) 278.722 482.760i 0.0860012 0.148959i
\(220\) −1007.73 1745.44i −0.308824 0.534899i
\(221\) 210.629 + 364.820i 0.0641107 + 0.111043i
\(222\) −2736.96 + 4740.56i −0.827445 + 1.43318i
\(223\) −4373.35 −1.31328 −0.656639 0.754205i \(-0.728023\pi\)
−0.656639 + 0.754205i \(0.728023\pi\)
\(224\) 0 0
\(225\) 1083.37 0.321000
\(226\) 1008.24 1746.33i 0.296758 0.514000i
\(227\) −30.5573 52.9267i −0.00893461 0.0154752i 0.861524 0.507718i \(-0.169511\pi\)
−0.870458 + 0.492242i \(0.836177\pi\)
\(228\) 7006.52 + 12135.7i 2.03517 + 3.52501i
\(229\) 1509.71 2614.89i 0.435651 0.754570i −0.561697 0.827343i \(-0.689851\pi\)
0.997349 + 0.0727728i \(0.0231848\pi\)
\(230\) 468.653 0.134357
\(231\) 0 0
\(232\) −3340.22 −0.945241
\(233\) 1765.58 3058.08i 0.496426 0.859834i −0.503566 0.863957i \(-0.667979\pi\)
0.999992 + 0.00412242i \(0.00131221\pi\)
\(234\) −8910.98 15434.3i −2.48944 4.31184i
\(235\) 322.634 + 558.819i 0.0895588 + 0.155120i
\(236\) 5612.34 9720.85i 1.54802 2.68124i
\(237\) −4419.58 −1.21132
\(238\) 0 0
\(239\) 2282.62 0.617785 0.308893 0.951097i \(-0.400042\pi\)
0.308893 + 0.951097i \(0.400042\pi\)
\(240\) 170.000 294.449i 0.0457227 0.0791941i
\(241\) −1107.84 1918.83i −0.296109 0.512875i 0.679134 0.734015i \(-0.262356\pi\)
−0.975242 + 0.221140i \(0.929022\pi\)
\(242\) −981.073 1699.27i −0.260602 0.451377i
\(243\) 1938.01 3356.73i 0.511619 0.886150i
\(244\) −5213.04 −1.36775
\(245\) 0 0
\(246\) 3695.31 0.957742
\(247\) −5549.99 + 9612.87i −1.42971 + 2.47633i
\(248\) 25.3798 + 43.9592i 0.00649848 + 0.0112557i
\(249\) 293.642 + 508.603i 0.0747342 + 0.129443i
\(250\) −289.035 + 500.624i −0.0731208 + 0.126649i
\(251\) 3082.55 0.775174 0.387587 0.921833i \(-0.373309\pi\)
0.387587 + 0.921833i \(0.373309\pi\)
\(252\) 0 0
\(253\) −610.302 −0.151658
\(254\) 2743.95 4752.66i 0.677838 1.17405i
\(255\) 99.3181 + 172.024i 0.0243904 + 0.0422453i
\(256\) 2449.29 + 4242.30i 0.597972 + 1.03572i
\(257\) −3016.20 + 5224.21i −0.732083 + 1.26801i 0.223908 + 0.974610i \(0.428118\pi\)
−0.955991 + 0.293395i \(0.905215\pi\)
\(258\) 11582.8 2.79501
\(259\) 0 0
\(260\) 5952.32 1.41980
\(261\) −2905.35 + 5032.21i −0.689029 + 1.19343i
\(262\) −2392.19 4143.39i −0.564083 0.977021i
\(263\) −2961.91 5130.17i −0.694445 1.20281i −0.970368 0.241634i \(-0.922317\pi\)
0.275923 0.961180i \(-0.411017\pi\)
\(264\) −3145.40 + 5447.99i −0.733280 + 1.27008i
\(265\) −1942.14 −0.450207
\(266\) 0 0
\(267\) 77.8213 0.0178374
\(268\) −4670.54 + 8089.62i −1.06455 + 1.84385i
\(269\) 1626.40 + 2817.00i 0.368637 + 0.638497i 0.989353 0.145538i \(-0.0464914\pi\)
−0.620716 + 0.784035i \(0.713158\pi\)
\(270\) −1583.85 2743.32i −0.357001 0.618344i
\(271\) −3123.13 + 5409.42i −0.700061 + 1.21254i 0.268383 + 0.963312i \(0.413511\pi\)
−0.968444 + 0.249230i \(0.919823\pi\)
\(272\) 38.4084 0.00856195
\(273\) 0 0
\(274\) −2988.48 −0.658907
\(275\) 376.396 651.937i 0.0825364 0.142957i
\(276\) −1137.72 1970.59i −0.248126 0.429767i
\(277\) 786.084 + 1361.54i 0.170510 + 0.295332i 0.938598 0.345012i \(-0.112125\pi\)
−0.768088 + 0.640344i \(0.778792\pi\)
\(278\) −1171.13 + 2028.47i −0.252662 + 0.437623i
\(279\) 88.3024 0.0189481
\(280\) 0 0
\(281\) −7846.03 −1.66567 −0.832837 0.553518i \(-0.813285\pi\)
−0.832837 + 0.553518i \(0.813285\pi\)
\(282\) 2502.63 4334.68i 0.528473 0.915343i
\(283\) 3132.79 + 5426.15i 0.658039 + 1.13976i 0.981123 + 0.193386i \(0.0619470\pi\)
−0.323084 + 0.946370i \(0.604720\pi\)
\(284\) 3503.61 + 6068.42i 0.732045 + 1.26794i
\(285\) −2616.99 + 4532.76i −0.543920 + 0.942097i
\(286\) −12383.7 −2.56037
\(287\) 0 0
\(288\) 7011.10 1.43449
\(289\) 2445.28 4235.35i 0.497716 0.862070i
\(290\) −1550.24 2685.10i −0.313909 0.543706i
\(291\) −17.5906 30.4678i −0.00354357 0.00613764i
\(292\) 444.893 770.577i 0.0891623 0.154434i
\(293\) 7264.99 1.44855 0.724276 0.689511i \(-0.242174\pi\)
0.724276 + 0.689511i \(0.242174\pi\)
\(294\) 0 0
\(295\) 4192.50 0.827448
\(296\) −1757.91 + 3044.79i −0.345191 + 0.597889i
\(297\) 2062.57 + 3572.48i 0.402972 + 0.697967i
\(298\) −4227.12 7321.59i −0.821713 1.42325i
\(299\) 901.210 1560.94i 0.174309 0.301912i
\(300\) 2806.70 0.540149
\(301\) 0 0
\(302\) −13758.9 −2.62163
\(303\) −3630.74 + 6288.63i −0.688385 + 1.19232i
\(304\) 506.023 + 876.457i 0.0954684 + 0.165356i
\(305\) −973.556 1686.25i −0.182773 0.316571i
\(306\) 474.660 822.135i 0.0886748 0.153589i
\(307\) −1328.32 −0.246943 −0.123471 0.992348i \(-0.539403\pi\)
−0.123471 + 0.992348i \(0.539403\pi\)
\(308\) 0 0
\(309\) 9779.75 1.80049
\(310\) −23.5583 + 40.8042i −0.00431621 + 0.00747589i
\(311\) 2434.34 + 4216.40i 0.443855 + 0.768779i 0.997972 0.0636600i \(-0.0202773\pi\)
−0.554117 + 0.832439i \(0.686944\pi\)
\(312\) −9289.38 16089.7i −1.68560 2.91955i
\(313\) 3866.69 6697.31i 0.698270 1.20944i −0.270796 0.962637i \(-0.587287\pi\)
0.969066 0.246802i \(-0.0793798\pi\)
\(314\) −9858.37 −1.77178
\(315\) 0 0
\(316\) −7054.49 −1.25584
\(317\) 4087.51 7079.78i 0.724220 1.25439i −0.235075 0.971977i \(-0.575534\pi\)
0.959294 0.282408i \(-0.0911331\pi\)
\(318\) 7532.48 + 13046.6i 1.32830 + 2.30069i
\(319\) 2018.80 + 3496.67i 0.354330 + 0.613718i
\(320\) −2032.67 + 3520.68i −0.355092 + 0.615038i
\(321\) 477.744 0.0830688
\(322\) 0 0
\(323\) −591.261 −0.101853
\(324\) 141.387 244.889i 0.0242433 0.0419906i
\(325\) 1111.62 + 1925.38i 0.189728 + 0.328618i
\(326\) −1373.35 2378.72i −0.233322 0.404126i
\(327\) 5698.23 9869.62i 0.963647 1.66909i
\(328\) 2373.45 0.399548
\(329\) 0 0
\(330\) −5839.31 −0.974070
\(331\) 1020.38 1767.35i 0.169442 0.293482i −0.768782 0.639511i \(-0.779137\pi\)
0.938224 + 0.346029i \(0.112470\pi\)
\(332\) 468.709 + 811.827i 0.0774811 + 0.134201i
\(333\) 3058.09 + 5296.77i 0.503251 + 0.871656i
\(334\) 6789.56 11759.9i 1.11230 1.92656i
\(335\) −3488.97 −0.569023
\(336\) 0 0
\(337\) 7349.73 1.18803 0.594013 0.804455i \(-0.297543\pi\)
0.594013 + 0.804455i \(0.297543\pi\)
\(338\) 13206.5 22874.3i 2.12526 3.68106i
\(339\) −1828.44 3166.94i −0.292941 0.507389i
\(340\) 158.531 + 274.583i 0.0252868 + 0.0437981i
\(341\) 30.6788 53.1373i 0.00487200 0.00843855i
\(342\) 25014.2 3.95500
\(343\) 0 0
\(344\) 7439.47 1.16602
\(345\) 424.948 736.032i 0.0663143 0.114860i
\(346\) −5427.64 9400.95i −0.843329 1.46069i
\(347\) 6034.96 + 10452.9i 0.933642 + 1.61712i 0.777037 + 0.629454i \(0.216722\pi\)
0.156605 + 0.987661i \(0.449945\pi\)
\(348\) −7526.88 + 13036.9i −1.15943 + 2.00820i
\(349\) 4484.96 0.687892 0.343946 0.938989i \(-0.388236\pi\)
0.343946 + 0.938989i \(0.388236\pi\)
\(350\) 0 0
\(351\) −12182.9 −1.85263
\(352\) 2435.86 4219.03i 0.368840 0.638850i
\(353\) −6381.24 11052.6i −0.962151 1.66649i −0.717082 0.696989i \(-0.754523\pi\)
−0.245069 0.969506i \(-0.578811\pi\)
\(354\) −16260.4 28163.8i −2.44132 4.22849i
\(355\) −1308.62 + 2266.60i −0.195647 + 0.338870i
\(356\) 124.218 0.0184930
\(357\) 0 0
\(358\) −14042.8 −2.07314
\(359\) 1209.71 2095.28i 0.177844 0.308036i −0.763298 0.646047i \(-0.776421\pi\)
0.941142 + 0.338011i \(0.109754\pi\)
\(360\) −2698.76 4674.39i −0.395103 0.684338i
\(361\) −4360.25 7552.17i −0.635697 1.10106i
\(362\) 2080.54 3603.60i 0.302073 0.523207i
\(363\) −3558.33 −0.514501
\(364\) 0 0
\(365\) 332.342 0.0476591
\(366\) −7551.75 + 13080.0i −1.07851 + 1.86804i
\(367\) −3564.87 6174.54i −0.507043 0.878224i −0.999967 0.00815152i \(-0.997405\pi\)
0.492924 0.870072i \(-0.335928\pi\)
\(368\) −82.1681 142.319i −0.0116394 0.0201601i
\(369\) 2064.44 3575.72i 0.291248 0.504457i
\(370\) −3263.50 −0.458543
\(371\) 0 0
\(372\) 228.765 0.0318842
\(373\) −5798.46 + 10043.2i −0.804914 + 1.39415i 0.111435 + 0.993772i \(0.464455\pi\)
−0.916349 + 0.400380i \(0.868878\pi\)
\(374\) −329.821 571.267i −0.0456006 0.0789826i
\(375\) 524.162 + 907.876i 0.0721803 + 0.125020i
\(376\) 1607.41 2784.11i 0.220467 0.381860i
\(377\) −11924.4 −1.62901
\(378\) 0 0
\(379\) −12770.8 −1.73085 −0.865424 0.501040i \(-0.832951\pi\)
−0.865424 + 0.501040i \(0.832951\pi\)
\(380\) −4177.21 + 7235.15i −0.563912 + 0.976724i
\(381\) −4976.12 8618.90i −0.669120 1.15895i
\(382\) 962.297 + 1666.75i 0.128888 + 0.223241i
\(383\) 3735.05 6469.30i 0.498308 0.863096i −0.501690 0.865048i \(-0.667288\pi\)
0.999998 + 0.00195209i \(0.000621369\pi\)
\(384\) 20679.4 2.74816
\(385\) 0 0
\(386\) 23960.1 3.15942
\(387\) 6470.91 11207.9i 0.849961 1.47218i
\(388\) −28.0779 48.6324i −0.00367381 0.00636323i
\(389\) −4374.89 7577.53i −0.570220 0.987650i −0.996543 0.0830789i \(-0.973525\pi\)
0.426323 0.904571i \(-0.359809\pi\)
\(390\) 8622.68 14934.9i 1.11956 1.93913i
\(391\) 96.0092 0.0124179
\(392\) 0 0
\(393\) −8676.41 −1.11366
\(394\) 3358.23 5816.62i 0.429404 0.743749i
\(395\) −1317.45 2281.90i −0.167819 0.290670i
\(396\) 8734.01 + 15127.7i 1.10833 + 1.91969i
\(397\) 2687.63 4655.11i 0.339769 0.588496i −0.644621 0.764503i \(-0.722985\pi\)
0.984389 + 0.176006i \(0.0563179\pi\)
\(398\) −5906.65 −0.743903
\(399\) 0 0
\(400\) 202.704 0.0253381
\(401\) −3680.67 + 6375.10i −0.458363 + 0.793909i −0.998875 0.0474281i \(-0.984897\pi\)
0.540511 + 0.841337i \(0.318231\pi\)
\(402\) 13531.7 + 23437.7i 1.67886 + 2.90787i
\(403\) 90.6045 + 156.932i 0.0111993 + 0.0193978i
\(404\) −5795.35 + 10037.8i −0.713687 + 1.23614i
\(405\) 105.618 0.0129585
\(406\) 0 0
\(407\) 4249.88 0.517589
\(408\) 494.816 857.046i 0.0600418 0.103995i
\(409\) −1306.23 2262.45i −0.157919 0.273523i 0.776199 0.630488i \(-0.217145\pi\)
−0.934118 + 0.356964i \(0.883812\pi\)
\(410\) 1101.55 + 1907.95i 0.132687 + 0.229821i
\(411\) −2709.79 + 4693.49i −0.325216 + 0.563291i
\(412\) 15610.3 1.86667
\(413\) 0 0
\(414\) −4061.81 −0.482191
\(415\) −175.066 + 303.224i −0.0207076 + 0.0358667i
\(416\) 7193.88 + 12460.2i 0.847859 + 1.46853i
\(417\) 2123.84 + 3678.60i 0.249412 + 0.431995i
\(418\) 8690.65 15052.6i 1.01692 1.76136i
\(419\) −4398.21 −0.512808 −0.256404 0.966570i \(-0.582538\pi\)
−0.256404 + 0.966570i \(0.582538\pi\)
\(420\) 0 0
\(421\) 9723.32 1.12562 0.562810 0.826587i \(-0.309720\pi\)
0.562810 + 0.826587i \(0.309720\pi\)
\(422\) −7535.93 + 13052.6i −0.869297 + 1.50567i
\(423\) −2796.27 4843.28i −0.321417 0.556710i
\(424\) 4838.01 + 8379.67i 0.554138 + 0.959795i
\(425\) −59.2124 + 102.559i −0.00675817 + 0.0117055i
\(426\) 20301.7 2.30896
\(427\) 0 0
\(428\) 762.570 0.0861220
\(429\) −11228.9 + 19449.0i −1.26372 + 2.18882i
\(430\) 3452.77 + 5980.37i 0.387226 + 0.670696i
\(431\) 7157.27 + 12396.7i 0.799892 + 1.38545i 0.919686 + 0.392655i \(0.128443\pi\)
−0.119794 + 0.992799i \(0.538223\pi\)
\(432\) −555.390 + 961.963i −0.0618546 + 0.107135i
\(433\) 2373.62 0.263438 0.131719 0.991287i \(-0.457950\pi\)
0.131719 + 0.991287i \(0.457950\pi\)
\(434\) 0 0
\(435\) −5622.70 −0.619742
\(436\) 9095.45 15753.8i 0.999067 1.73043i
\(437\) 1264.90 + 2190.87i 0.138463 + 0.239825i
\(438\) −1288.97 2232.56i −0.140615 0.243552i
\(439\) −4766.73 + 8256.22i −0.518231 + 0.897603i 0.481544 + 0.876422i \(0.340076\pi\)
−0.999776 + 0.0211814i \(0.993257\pi\)
\(440\) −3750.51 −0.406360
\(441\) 0 0
\(442\) 1948.14 0.209646
\(443\) −3323.97 + 5757.29i −0.356493 + 0.617465i −0.987372 0.158416i \(-0.949361\pi\)
0.630879 + 0.775881i \(0.282694\pi\)
\(444\) 7922.60 + 13722.4i 0.846825 + 1.46674i
\(445\) 23.1981 + 40.1803i 0.00247123 + 0.00428029i
\(446\) −10112.4 + 17515.2i −1.07363 + 1.85957i
\(447\) −15331.7 −1.62229
\(448\) 0 0
\(449\) −768.256 −0.0807489 −0.0403744 0.999185i \(-0.512855\pi\)
−0.0403744 + 0.999185i \(0.512855\pi\)
\(450\) 2505.07 4338.90i 0.262422 0.454529i
\(451\) −1434.50 2484.62i −0.149773 0.259415i
\(452\) −2918.53 5055.04i −0.303708 0.526038i
\(453\) −12475.8 + 21608.7i −1.29396 + 2.24120i
\(454\) −282.628 −0.0292167
\(455\) 0 0
\(456\) 26076.4 2.67794
\(457\) 1661.75 2878.23i 0.170095 0.294613i −0.768358 0.640020i \(-0.778926\pi\)
0.938453 + 0.345407i \(0.112259\pi\)
\(458\) −6981.73 12092.7i −0.712303 1.23374i
\(459\) −324.472 562.002i −0.0329958 0.0571503i
\(460\) 678.298 1174.85i 0.0687517 0.119081i
\(461\) 18840.7 1.90347 0.951733 0.306926i \(-0.0993004\pi\)
0.951733 + 0.306926i \(0.0993004\pi\)
\(462\) 0 0
\(463\) −10759.1 −1.07995 −0.539977 0.841679i \(-0.681567\pi\)
−0.539977 + 0.841679i \(0.681567\pi\)
\(464\) −543.604 + 941.549i −0.0543883 + 0.0942033i
\(465\) 42.7228 + 73.9980i 0.00426069 + 0.00737973i
\(466\) −8165.05 14142.3i −0.811671 1.40586i
\(467\) 3720.85 6444.71i 0.368695 0.638598i −0.620667 0.784074i \(-0.713138\pi\)
0.989362 + 0.145476i \(0.0464714\pi\)
\(468\) −51588.7 −5.09549
\(469\) 0 0
\(470\) 2984.08 0.292863
\(471\) −8939.02 + 15482.8i −0.874497 + 1.51467i
\(472\) −10443.8 18089.2i −1.01846 1.76403i
\(473\) −4496.36 7787.93i −0.437089 0.757060i
\(474\) −10219.3 + 17700.4i −0.990273 + 1.71520i
\(475\) −3120.45 −0.301423
\(476\) 0 0
\(477\) 16832.6 1.61574
\(478\) 5278.07 9141.88i 0.505049 0.874770i
\(479\) 2845.99 + 4929.39i 0.271475 + 0.470208i 0.969240 0.246119i \(-0.0791553\pi\)
−0.697765 + 0.716327i \(0.745822\pi\)
\(480\) 3392.14 + 5875.35i 0.322561 + 0.558692i
\(481\) −6275.64 + 10869.7i −0.594895 + 1.03039i
\(482\) −10246.5 −0.968293
\(483\) 0 0
\(484\) −5679.77 −0.533412
\(485\) 10.4873 18.1646i 0.000981866 0.00170064i
\(486\) −8962.45 15523.4i −0.836512 1.44888i
\(487\) 1010.12 + 1749.59i 0.0939899 + 0.162795i 0.909187 0.416389i \(-0.136705\pi\)
−0.815197 + 0.579184i \(0.803371\pi\)
\(488\) −4850.38 + 8401.11i −0.449931 + 0.779304i
\(489\) −4981.12 −0.460642
\(490\) 0 0
\(491\) 7636.02 0.701851 0.350925 0.936403i \(-0.385867\pi\)
0.350925 + 0.936403i \(0.385867\pi\)
\(492\) 5348.36 9263.63i 0.490086 0.848855i
\(493\) −317.587 550.076i −0.0290129 0.0502519i
\(494\) 25666.3 + 44455.3i 2.33761 + 4.04887i
\(495\) −3262.22 + 5650.33i −0.296214 + 0.513058i
\(496\) 16.5218 0.00149567
\(497\) 0 0
\(498\) 2715.93 0.244385
\(499\) −3142.28 + 5442.59i −0.281900 + 0.488264i −0.971853 0.235590i \(-0.924298\pi\)
0.689953 + 0.723854i \(0.257631\pi\)
\(500\) 836.662 + 1449.14i 0.0748333 + 0.129615i
\(501\) −12312.8 21326.4i −1.09799 1.90178i
\(502\) 7127.72 12345.6i 0.633716 1.09763i
\(503\) −11310.9 −1.00264 −0.501319 0.865262i \(-0.667152\pi\)
−0.501319 + 0.865262i \(0.667152\pi\)
\(504\) 0 0
\(505\) −4329.22 −0.381481
\(506\) −1411.19 + 2444.25i −0.123982 + 0.214744i
\(507\) −23949.8 41482.3i −2.09793 3.63372i
\(508\) −7942.84 13757.4i −0.693713 1.20155i
\(509\) 5356.37 9277.50i 0.466438 0.807894i −0.532827 0.846224i \(-0.678870\pi\)
0.999265 + 0.0383299i \(0.0122038\pi\)
\(510\) 918.606 0.0797580
\(511\) 0 0
\(512\) 2927.65 0.252705
\(513\) 8549.70 14808.5i 0.735826 1.27449i
\(514\) 13948.6 + 24159.7i 1.19698 + 2.07323i
\(515\) 2915.29 + 5049.43i 0.249443 + 0.432048i
\(516\) 16764.2 29036.4i 1.43024 2.47724i
\(517\) −3886.02 −0.330574
\(518\) 0 0
\(519\) −19685.9 −1.66496
\(520\) 5538.23 9592.50i 0.467053 0.808959i
\(521\) 8860.95 + 15347.6i 0.745116 + 1.29058i 0.950141 + 0.311821i \(0.100939\pi\)
−0.205025 + 0.978757i \(0.565728\pi\)
\(522\) 13436.0 + 23271.8i 1.12658 + 1.95130i
\(523\) 118.597 205.415i 0.00991562 0.0171744i −0.861025 0.508563i \(-0.830177\pi\)
0.870941 + 0.491388i \(0.163510\pi\)
\(524\) −13849.2 −1.15459
\(525\) 0 0
\(526\) −27395.0 −2.27088
\(527\) −4.82621 + 8.35925i −0.000398924 + 0.000690957i
\(528\) 1023.80 + 1773.27i 0.0843845 + 0.146158i
\(529\) 5878.10 + 10181.2i 0.483119 + 0.836786i
\(530\) −4490.78 + 7778.27i −0.368051 + 0.637484i
\(531\) −36336.4 −2.96962
\(532\) 0 0
\(533\) 8473.06 0.688572
\(534\) 179.945 311.674i 0.0145824 0.0252574i
\(535\) 142.413 + 246.667i 0.0115085 + 0.0199333i
\(536\) 8691.26 + 15053.7i 0.700383 + 1.21310i
\(537\) −12733.2 + 22054.5i −1.02324 + 1.77230i
\(538\) 15042.8 1.20546
\(539\) 0 0
\(540\) −9169.48 −0.730725
\(541\) 2676.47 4635.78i 0.212699 0.368406i −0.739859 0.672762i \(-0.765108\pi\)
0.952558 + 0.304356i \(0.0984412\pi\)
\(542\) 14443.1 + 25016.2i 1.14462 + 1.98254i
\(543\) −3773.03 6535.08i −0.298188 0.516477i
\(544\) −383.195 + 663.714i −0.0302010 + 0.0523098i
\(545\) 6794.45 0.534022
\(546\) 0 0
\(547\) −192.162 −0.0150206 −0.00751030 0.999972i \(-0.502391\pi\)
−0.00751030 + 0.999972i \(0.502391\pi\)
\(548\) −4325.33 + 7491.70i −0.337170 + 0.583995i
\(549\) 8437.81 + 14614.7i 0.655950 + 1.13614i
\(550\) −1740.67 3014.92i −0.134950 0.233740i
\(551\) 8368.27 14494.3i 0.647006 1.12065i
\(552\) −4234.29 −0.326492
\(553\) 0 0
\(554\) 7270.60 0.557578
\(555\) −2959.16 + 5125.41i −0.226323 + 0.392003i
\(556\) 3390.05 + 5871.74i 0.258579 + 0.447873i
\(557\) 2425.31 + 4200.76i 0.184495 + 0.319554i 0.943406 0.331640i \(-0.107602\pi\)
−0.758911 + 0.651194i \(0.774268\pi\)
\(558\) 204.180 353.650i 0.0154904 0.0268301i
\(559\) 26558.4 2.00949
\(560\) 0 0
\(561\) −1196.25 −0.0900283
\(562\) −18142.2 + 31423.3i −1.36171 + 2.35856i
\(563\) 4849.56 + 8399.68i 0.363027 + 0.628782i 0.988458 0.151498i \(-0.0484098\pi\)
−0.625430 + 0.780280i \(0.715076\pi\)
\(564\) −7244.29 12547.5i −0.540851 0.936781i
\(565\) 1090.09 1888.10i 0.0811692 0.140589i
\(566\) 28975.6 2.15183
\(567\) 0 0
\(568\) 13039.5 0.963247
\(569\) −1554.76 + 2692.93i −0.114550 + 0.198407i −0.917600 0.397505i \(-0.869876\pi\)
0.803050 + 0.595912i \(0.203209\pi\)
\(570\) 12102.4 + 20962.1i 0.889326 + 1.54036i
\(571\) 7238.12 + 12536.8i 0.530483 + 0.918824i 0.999367 + 0.0355645i \(0.0113229\pi\)
−0.468884 + 0.883260i \(0.655344\pi\)
\(572\) −17923.4 + 31044.3i −1.31017 + 2.26928i
\(573\) 3490.23 0.254461
\(574\) 0 0
\(575\) 506.699 0.0367492
\(576\) 17617.1 30513.7i 1.27439 2.20730i
\(577\) −1104.11 1912.38i −0.0796617 0.137978i 0.823442 0.567400i \(-0.192051\pi\)
−0.903104 + 0.429422i \(0.858717\pi\)
\(578\) −11308.4 19586.6i −0.813781 1.40951i
\(579\) 21725.7 37630.0i 1.55939 2.70095i
\(580\) −8974.90 −0.642521
\(581\) 0 0
\(582\) −162.698 −0.0115877
\(583\) 5848.12 10129.2i 0.415445 0.719571i
\(584\) −827.886 1433.94i −0.0586612 0.101604i
\(585\) −9634.40 16687.3i −0.680912 1.17937i
\(586\) 16798.7 29096.2i 1.18421 2.05112i
\(587\) 23988.7 1.68675 0.843374 0.537327i \(-0.180566\pi\)
0.843374 + 0.537327i \(0.180566\pi\)
\(588\) 0 0
\(589\) −254.338 −0.0177925
\(590\) 9694.25 16790.9i 0.676451 1.17165i
\(591\) −6090.11 10548.4i −0.423881 0.734183i
\(592\) 572.184 + 991.051i 0.0397240 + 0.0688040i
\(593\) −7934.68 + 13743.3i −0.549474 + 0.951717i 0.448837 + 0.893614i \(0.351839\pi\)
−0.998311 + 0.0581031i \(0.981495\pi\)
\(594\) 19077.0 1.31774
\(595\) 0 0
\(596\) −24472.2 −1.68192
\(597\) −5355.82 + 9276.55i −0.367168 + 0.635953i
\(598\) −4167.70 7218.67i −0.285000 0.493635i
\(599\) 7618.32 + 13195.3i 0.519660 + 0.900077i 0.999739 + 0.0228519i \(0.00727462\pi\)
−0.480079 + 0.877225i \(0.659392\pi\)
\(600\) 2611.45 4523.16i 0.177686 0.307762i
\(601\) −12258.8 −0.832026 −0.416013 0.909359i \(-0.636573\pi\)
−0.416013 + 0.909359i \(0.636573\pi\)
\(602\) 0 0
\(603\) 30238.9 2.04216
\(604\) −19913.7 + 34491.5i −1.34152 + 2.32358i
\(605\) −1060.72 1837.22i −0.0712800 0.123461i
\(606\) 16790.6 + 29082.2i 1.12553 + 1.94948i
\(607\) 11743.6 20340.5i 0.785269 1.36013i −0.143569 0.989640i \(-0.545858\pi\)
0.928838 0.370486i \(-0.120809\pi\)
\(608\) −20194.1 −1.34700
\(609\) 0 0
\(610\) −9004.54 −0.597678
\(611\) 5738.34 9939.09i 0.379948 0.658089i
\(612\) −1373.98 2379.81i −0.0907516 0.157186i
\(613\) 11152.6 + 19316.9i 0.734830 + 1.27276i 0.954798 + 0.297256i \(0.0960715\pi\)
−0.219968 + 0.975507i \(0.570595\pi\)
\(614\) −3071.46 + 5319.92i −0.201879 + 0.349666i
\(615\) 3995.31 0.261962
\(616\) 0 0
\(617\) 3285.91 0.214402 0.107201 0.994237i \(-0.465811\pi\)
0.107201 + 0.994237i \(0.465811\pi\)
\(618\) 22613.5 39167.8i 1.47193 2.54945i
\(619\) −5806.54 10057.2i −0.377035 0.653043i 0.613595 0.789621i \(-0.289723\pi\)
−0.990629 + 0.136578i \(0.956390\pi\)
\(620\) 68.1937 + 118.115i 0.00441730 + 0.00765098i
\(621\) −1388.30 + 2404.61i −0.0897113 + 0.155385i
\(622\) 22515.5 1.45143
\(623\) 0 0
\(624\) −6047.21 −0.387952
\(625\) −312.500 + 541.266i −0.0200000 + 0.0346410i
\(626\) −17881.8 30972.1i −1.14169 1.97747i
\(627\) −15760.4 27297.8i −1.00384 1.73871i
\(628\) −14268.4 + 24713.5i −0.906640 + 1.57035i
\(629\) −668.567 −0.0423808
\(630\) 0 0
\(631\) 6890.91 0.434743 0.217372 0.976089i \(-0.430252\pi\)
0.217372 + 0.976089i \(0.430252\pi\)
\(632\) −6563.73 + 11368.7i −0.413119 + 0.715543i
\(633\) 13666.3 + 23670.8i 0.858117 + 1.48630i
\(634\) −18903.0 32740.9i −1.18412 2.05096i
\(635\) 2966.71 5138.50i 0.185402 0.321126i
\(636\) 43608.1 2.71883
\(637\) 0 0
\(638\) 18672.2 1.15868
\(639\) 11341.8 19644.7i 0.702154 1.21617i
\(640\) 6164.43 + 10677.1i 0.380735 + 0.659452i
\(641\) −9384.63 16254.7i −0.578269 1.00159i −0.995678 0.0928728i \(-0.970395\pi\)
0.417409 0.908719i \(-0.362938\pi\)
\(642\) 1104.68 1913.36i 0.0679100 0.117624i
\(643\) 3142.30 0.192722 0.0963609 0.995346i \(-0.469280\pi\)
0.0963609 + 0.995346i \(0.469280\pi\)
\(644\) 0 0
\(645\) 12523.1 0.764492
\(646\) −1367.16 + 2368.00i −0.0832667 + 0.144222i
\(647\) 9519.07 + 16487.5i 0.578413 + 1.00184i 0.995662 + 0.0930486i \(0.0296612\pi\)
−0.417248 + 0.908793i \(0.637005\pi\)
\(648\) −263.102 455.706i −0.0159500 0.0276262i
\(649\) −12624.3 + 21866.0i −0.763557 + 1.32252i
\(650\) 10281.5 0.620421
\(651\) 0 0
\(652\) −7950.82 −0.477574
\(653\) 10269.3 17787.0i 0.615420 1.06594i −0.374890 0.927069i \(-0.622320\pi\)
0.990311 0.138870i \(-0.0443471\pi\)
\(654\) −26351.8 45642.7i −1.57559 2.72901i
\(655\) −2586.39 4479.76i −0.154288 0.267235i
\(656\) 386.267 669.034i 0.0229896 0.0398192i
\(657\) −2880.41 −0.171043
\(658\) 0 0
\(659\) −937.046 −0.0553902 −0.0276951 0.999616i \(-0.508817\pi\)
−0.0276951 + 0.999616i \(0.508817\pi\)
\(660\) −8451.44 + 14638.3i −0.498442 + 0.863327i
\(661\) 10558.3 + 18287.4i 0.621283 + 1.07609i 0.989247 + 0.146254i \(0.0467218\pi\)
−0.367964 + 0.929840i \(0.619945\pi\)
\(662\) −4718.82 8173.24i −0.277043 0.479852i
\(663\) 1766.46 3059.60i 0.103475 0.179223i
\(664\) 1744.41 0.101952
\(665\) 0 0
\(666\) 28284.7 1.64566
\(667\) −1358.84 + 2353.59i −0.0788825 + 0.136628i
\(668\) −19653.5 34040.9i −1.13835 1.97168i
\(669\) 18338.8 + 31763.7i 1.05982 + 1.83566i
\(670\) −8067.48 + 13973.3i −0.465185 + 0.805725i
\(671\) 11726.2 0.674640
\(672\) 0 0
\(673\) 13825.9 0.791903 0.395952 0.918271i \(-0.370415\pi\)
0.395952 + 0.918271i \(0.370415\pi\)
\(674\) 16994.6 29435.6i 0.971230 1.68222i
\(675\) −1712.44 2966.03i −0.0976470 0.169130i
\(676\) −38228.5 66213.6i −2.17504 3.76728i
\(677\) −8464.20 + 14660.4i −0.480510 + 0.832269i −0.999750 0.0223602i \(-0.992882\pi\)
0.519240 + 0.854629i \(0.326215\pi\)
\(678\) −16911.4 −0.957935
\(679\) 0 0
\(680\) 590.008 0.0332732
\(681\) −256.271 + 443.875i −0.0144205 + 0.0249770i
\(682\) −141.876 245.737i −0.00796586 0.0137973i
\(683\) 6908.65 + 11966.1i 0.387045 + 0.670382i 0.992051 0.125839i \(-0.0401623\pi\)
−0.605005 + 0.796222i \(0.706829\pi\)
\(684\) 36203.9 62707.0i 2.02382 3.50535i
\(685\) −3231.09 −0.180224
\(686\) 0 0
\(687\) −25322.6 −1.40628
\(688\) 1210.74 2097.06i 0.0670915 0.116206i
\(689\) 17271.4 + 29914.9i 0.954989 + 1.65409i
\(690\) −1965.20 3403.83i −0.108426 0.187799i
\(691\) −11835.8 + 20500.2i −0.651600 + 1.12860i 0.331134 + 0.943584i \(0.392569\pi\)
−0.982735 + 0.185021i \(0.940765\pi\)
\(692\) −31422.5 −1.72616
\(693\) 0 0
\(694\) 55818.2 3.05307
\(695\) −1266.21 + 2193.14i −0.0691081 + 0.119699i
\(696\) 14006.5 + 24260.0i 0.762810 + 1.32123i
\(697\) 225.667 + 390.866i 0.0122636 + 0.0212412i
\(698\) 10370.5 17962.2i 0.562362 0.974040i
\(699\) −29614.5 −1.60246
\(700\) 0 0
\(701\) −17009.7 −0.916472 −0.458236 0.888831i \(-0.651519\pi\)
−0.458236 + 0.888831i \(0.651519\pi\)
\(702\) −28170.3 + 48792.3i −1.51456 + 2.62329i
\(703\) −8808.23 15256.3i −0.472559 0.818496i
\(704\) −12241.4 21202.7i −0.655348 1.13510i
\(705\) 2705.80 4686.59i 0.144548 0.250365i
\(706\) −59020.9 −3.14629
\(707\) 0 0
\(708\) −94136.8 −4.99700
\(709\) −11019.5 + 19086.2i −0.583701 + 1.01100i 0.411335 + 0.911484i \(0.365063\pi\)
−0.995036 + 0.0995158i \(0.968271\pi\)
\(710\) 6051.82 + 10482.1i 0.319888 + 0.554063i
\(711\) 11418.4 + 19777.2i 0.602282 + 1.04318i
\(712\) 115.576 200.184i 0.00608343 0.0105368i
\(713\) 41.2994 0.00216925
\(714\) 0 0
\(715\) −13389.1 −0.700312
\(716\) −20324.6 + 35203.2i −1.06085 + 1.83744i
\(717\) −9571.72 16578.7i −0.498553 0.863519i
\(718\) −5594.39 9689.77i −0.290781 0.503648i
\(719\) 3643.72 6311.11i 0.188996 0.327350i −0.755920 0.654664i \(-0.772810\pi\)
0.944916 + 0.327314i \(0.106143\pi\)
\(720\) −1756.84 −0.0909354
\(721\) 0 0
\(722\) −40328.5 −2.07877
\(723\) −9290.99 + 16092.5i −0.477919 + 0.827781i
\(724\) −6022.47 10431.2i −0.309148 0.535461i
\(725\) −1676.10 2903.09i −0.0858603 0.148714i
\(726\) −8227.86 + 14251.1i −0.420612 + 0.728522i
\(727\) 29676.7 1.51396 0.756980 0.653438i \(-0.226674\pi\)
0.756980 + 0.653438i \(0.226674\pi\)
\(728\) 0 0
\(729\) −31936.3 −1.62253
\(730\) 768.468 1331.03i 0.0389620 0.0674842i
\(731\) 707.342 + 1225.15i 0.0357893 + 0.0619889i
\(732\) 21859.8 + 37862.3i 1.10377 + 1.91179i
\(733\) 11555.9 20015.4i 0.582300 1.00857i −0.412906 0.910774i \(-0.635486\pi\)
0.995206 0.0977999i \(-0.0311805\pi\)
\(734\) −32971.9 −1.65806
\(735\) 0 0
\(736\) 3279.12 0.164226
\(737\) 10505.9 18196.7i 0.525086 0.909476i
\(738\) −9547.16 16536.2i −0.476200 0.824803i
\(739\) 15585.7 + 26995.2i 0.775818 + 1.34376i 0.934334 + 0.356399i \(0.115996\pi\)
−0.158516 + 0.987356i \(0.550671\pi\)
\(740\) −4723.37 + 8181.12i −0.234641 + 0.406411i
\(741\) 93091.1 4.61510
\(742\) 0 0
\(743\) −31324.4 −1.54668 −0.773338 0.633993i \(-0.781415\pi\)
−0.773338 + 0.633993i \(0.781415\pi\)
\(744\) 212.851 368.668i 0.0104885 0.0181667i
\(745\) −4570.29 7915.97i −0.224755 0.389287i
\(746\) 26815.4 + 46445.6i 1.31606 + 2.27948i
\(747\) 1517.30 2628.04i 0.0743174 0.128722i
\(748\) −1909.45 −0.0933373
\(749\) 0 0
\(750\) 4848.04 0.236034
\(751\) −2016.10 + 3491.99i −0.0979608 + 0.169673i −0.910840 0.412759i \(-0.864565\pi\)
0.812880 + 0.582432i \(0.197899\pi\)
\(752\) −523.195 906.200i −0.0253709 0.0439438i
\(753\) −12926.0 22388.5i −0.625566 1.08351i
\(754\) −27572.5 + 47756.9i −1.33174 + 2.30664i
\(755\) −14875.8 −0.717069
\(756\) 0 0
\(757\) 34263.7 1.64509 0.822546 0.568699i \(-0.192553\pi\)
0.822546 + 0.568699i \(0.192553\pi\)
\(758\) −29529.7 + 51146.9i −1.41499 + 2.45084i
\(759\) 2559.18 + 4432.63i 0.122388 + 0.211982i
\(760\) 7773.24 + 13463.6i 0.371006 + 0.642602i
\(761\) 3632.94 6292.44i 0.173054 0.299738i −0.766432 0.642325i \(-0.777970\pi\)
0.939486 + 0.342587i \(0.111303\pi\)
\(762\) −46024.8 −2.18806
\(763\) 0 0
\(764\) 5571.07 0.263814
\(765\) 513.194 888.878i 0.0242543 0.0420097i
\(766\) −17273.0 29917.7i −0.814750 1.41119i
\(767\) −37283.7 64577.3i −1.75520 3.04009i
\(768\) 20541.2 35578.4i 0.965127 1.67165i
\(769\) −38116.2 −1.78739 −0.893695 0.448674i \(-0.851896\pi\)
−0.893695 + 0.448674i \(0.851896\pi\)
\(770\) 0 0
\(771\) 50591.3 2.36317
\(772\) 34678.3 60064.6i 1.61671 2.80022i
\(773\) 8079.11 + 13993.4i 0.375919 + 0.651111i 0.990464 0.137771i \(-0.0439937\pi\)
−0.614545 + 0.788882i \(0.710660\pi\)
\(774\) −29925.1 51831.9i −1.38971 2.40705i