Properties

Label 245.4.e.n.116.3
Level $245$
Weight $4$
Character 245.116
Analytic conductor $14.455$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [245,4,Mod(116,245)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(245, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 4]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("245.116");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 245 = 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 245.e (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(14.4554679514\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{3})\)
Coefficient field: 6.0.5567659200.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} + 17x^{4} - 28x^{3} + 289x^{2} - 238x + 196 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 35)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 116.3
Root \(1.81228 - 3.13896i\) of defining polynomial
Character \(\chi\) \(=\) 245.116
Dual form 245.4.e.n.226.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.31228 + 4.00499i) q^{2} +(-4.19330 + 7.26300i) q^{3} +(-6.69330 + 11.5931i) q^{4} +(2.50000 + 4.33013i) q^{5} -38.7844 q^{6} -24.9107 q^{8} +(-21.6675 - 37.5292i) q^{9} +(-11.5614 + 20.0250i) q^{10} +(15.0558 - 26.0775i) q^{11} +(-56.1340 - 97.2269i) q^{12} -88.9295 q^{13} -41.9330 q^{15} +(-4.05409 - 7.02189i) q^{16} +(-2.36850 + 4.10236i) q^{17} +(100.203 - 173.556i) q^{18} +(62.4089 + 108.095i) q^{19} -66.9330 q^{20} +139.253 q^{22} +(-10.1340 - 17.5526i) q^{23} +(104.458 - 180.926i) q^{24} +(-12.5000 + 21.6506i) q^{25} +(-205.630 - 356.162i) q^{26} +136.995 q^{27} +134.088 q^{29} +(-96.9609 - 167.941i) q^{30} +(-1.01883 + 1.76467i) q^{31} +(-80.8942 + 140.113i) q^{32} +(126.267 + 218.701i) q^{33} -21.9065 q^{34} +580.108 q^{36} +(70.5687 + 122.229i) q^{37} +(-288.614 + 499.894i) q^{38} +(372.908 - 645.895i) q^{39} +(-62.2766 - 107.866i) q^{40} -95.2784 q^{41} -298.646 q^{43} +(201.546 + 349.088i) q^{44} +(108.337 - 187.646i) q^{45} +(46.8653 - 81.1730i) q^{46} +(-64.5268 - 111.764i) q^{47} +68.0000 q^{48} -115.614 q^{50} +(-19.8636 - 34.4048i) q^{51} +(595.232 - 1030.97i) q^{52} +(-194.214 + 336.389i) q^{53} +(316.771 + 548.663i) q^{54} +150.558 q^{55} -1046.80 q^{57} +(310.049 + 537.020i) q^{58} +(419.250 - 726.163i) q^{59} +(280.670 - 486.135i) q^{60} +(194.711 + 337.250i) q^{61} -9.42333 q^{62} -813.067 q^{64} +(-222.324 - 385.076i) q^{65} +(-583.931 + 1011.40i) q^{66} +(-348.897 + 604.307i) q^{67} +(-31.7061 - 54.9166i) q^{68} +169.979 q^{69} -523.450 q^{71} +(539.752 + 934.877i) q^{72} +(33.2342 - 57.5633i) q^{73} +(-326.350 + 565.254i) q^{74} +(-104.832 - 181.575i) q^{75} -1670.89 q^{76} +3449.07 q^{78} +(263.491 + 456.380i) q^{79} +(20.2704 - 35.1094i) q^{80} +(10.5618 - 18.2936i) q^{81} +(-220.311 - 381.589i) q^{82} -70.0265 q^{83} -23.6850 q^{85} +(-690.554 - 1196.07i) q^{86} +(-562.270 + 973.880i) q^{87} +(-375.051 + 649.607i) q^{88} +(-4.63963 - 8.03607i) q^{89} +1002.03 q^{90} +271.319 q^{92} +(-8.54456 - 14.7996i) q^{93} +(298.408 - 516.858i) q^{94} +(-312.045 + 540.477i) q^{95} +(-678.427 - 1175.07i) q^{96} +4.19493 q^{97} -1304.89 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 3 q^{2} + 2 q^{3} - 13 q^{4} + 15 q^{5} - 48 q^{6} - 30 q^{8} - 81 q^{9} - 15 q^{10} + 74 q^{11} - 152 q^{12} - 88 q^{13} + 20 q^{15} + 79 q^{16} - 52 q^{17} + 411 q^{18} + 168 q^{19} - 130 q^{20}+ \cdots - 6976 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/245\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(197\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.31228 + 4.00499i 0.817515 + 1.41598i 0.907508 + 0.420035i \(0.137982\pi\)
−0.0899925 + 0.995942i \(0.528684\pi\)
\(3\) −4.19330 + 7.26300i −0.807001 + 1.39777i 0.107932 + 0.994158i \(0.465577\pi\)
−0.914932 + 0.403608i \(0.867756\pi\)
\(4\) −6.69330 + 11.5931i −0.836662 + 1.44914i
\(5\) 2.50000 + 4.33013i 0.223607 + 0.387298i
\(6\) −38.7844 −2.63894
\(7\) 0 0
\(8\) −24.9107 −1.10091
\(9\) −21.6675 37.5292i −0.802500 1.38997i
\(10\) −11.5614 + 20.0250i −0.365604 + 0.633245i
\(11\) 15.0558 26.0775i 0.412682 0.714786i −0.582500 0.812831i \(-0.697925\pi\)
0.995182 + 0.0980443i \(0.0312587\pi\)
\(12\) −56.1340 97.2269i −1.35037 2.33892i
\(13\) −88.9295 −1.89728 −0.948639 0.316362i \(-0.897539\pi\)
−0.948639 + 0.316362i \(0.897539\pi\)
\(14\) 0 0
\(15\) −41.9330 −0.721803
\(16\) −4.05409 7.02189i −0.0633451 0.109717i
\(17\) −2.36850 + 4.10236i −0.0337909 + 0.0585275i −0.882426 0.470451i \(-0.844091\pi\)
0.848635 + 0.528978i \(0.177425\pi\)
\(18\) 100.203 173.556i 1.31211 2.27264i
\(19\) 62.4089 + 108.095i 0.753557 + 1.30520i 0.946088 + 0.323909i \(0.104997\pi\)
−0.192531 + 0.981291i \(0.561670\pi\)
\(20\) −66.9330 −0.748333
\(21\) 0 0
\(22\) 139.253 1.34950
\(23\) −10.1340 17.5526i −0.0918731 0.159129i 0.816426 0.577450i \(-0.195952\pi\)
−0.908299 + 0.418321i \(0.862619\pi\)
\(24\) 104.458 180.926i 0.888432 1.53881i
\(25\) −12.5000 + 21.6506i −0.100000 + 0.173205i
\(26\) −205.630 356.162i −1.55105 2.68650i
\(27\) 136.995 0.976470
\(28\) 0 0
\(29\) 134.088 0.858603 0.429301 0.903161i \(-0.358760\pi\)
0.429301 + 0.903161i \(0.358760\pi\)
\(30\) −96.9609 167.941i −0.590085 1.02206i
\(31\) −1.01883 + 1.76467i −0.00590284 + 0.0102240i −0.868962 0.494879i \(-0.835212\pi\)
0.863059 + 0.505103i \(0.168546\pi\)
\(32\) −80.8942 + 140.113i −0.446882 + 0.774022i
\(33\) 126.267 + 218.701i 0.666069 + 1.15367i
\(34\) −21.9065 −0.110498
\(35\) 0 0
\(36\) 580.108 2.68568
\(37\) 70.5687 + 122.229i 0.313552 + 0.543088i 0.979129 0.203242i \(-0.0651477\pi\)
−0.665577 + 0.746329i \(0.731814\pi\)
\(38\) −288.614 + 499.894i −1.23209 + 2.13404i
\(39\) 372.908 645.895i 1.53110 2.65195i
\(40\) −62.2766 107.866i −0.246170 0.426379i
\(41\) −95.2784 −0.362927 −0.181463 0.983398i \(-0.558083\pi\)
−0.181463 + 0.983398i \(0.558083\pi\)
\(42\) 0 0
\(43\) −298.646 −1.05914 −0.529571 0.848266i \(-0.677647\pi\)
−0.529571 + 0.848266i \(0.677647\pi\)
\(44\) 201.546 + 349.088i 0.690551 + 1.19607i
\(45\) 108.337 187.646i 0.358889 0.621614i
\(46\) 46.8653 81.1730i 0.150215 0.260181i
\(47\) −64.5268 111.764i −0.200260 0.346860i 0.748352 0.663301i \(-0.230845\pi\)
−0.948612 + 0.316442i \(0.897512\pi\)
\(48\) 68.0000 0.204478
\(49\) 0 0
\(50\) −115.614 −0.327006
\(51\) −19.8636 34.4048i −0.0545385 0.0944635i
\(52\) 595.232 1030.97i 1.58738 2.74942i
\(53\) −194.214 + 336.389i −0.503347 + 0.871823i 0.496646 + 0.867953i \(0.334565\pi\)
−0.999993 + 0.00386911i \(0.998768\pi\)
\(54\) 316.771 + 548.663i 0.798279 + 1.38266i
\(55\) 150.558 0.369114
\(56\) 0 0
\(57\) −1046.80 −2.43248
\(58\) 310.049 + 537.020i 0.701921 + 1.21576i
\(59\) 419.250 726.163i 0.925114 1.60235i 0.133738 0.991017i \(-0.457302\pi\)
0.791377 0.611329i \(-0.209365\pi\)
\(60\) 280.670 486.135i 0.603905 1.04599i
\(61\) 194.711 + 337.250i 0.408692 + 0.707875i 0.994743 0.102399i \(-0.0326517\pi\)
−0.586051 + 0.810274i \(0.699318\pi\)
\(62\) −9.42333 −0.0193027
\(63\) 0 0
\(64\) −813.067 −1.58802
\(65\) −222.324 385.076i −0.424244 0.734812i
\(66\) −583.931 + 1011.40i −1.08904 + 1.88628i
\(67\) −348.897 + 604.307i −0.636187 + 1.10191i 0.350075 + 0.936722i \(0.386156\pi\)
−0.986262 + 0.165187i \(0.947177\pi\)
\(68\) −31.7061 54.9166i −0.0565431 0.0979355i
\(69\) 169.979 0.296567
\(70\) 0 0
\(71\) −523.450 −0.874959 −0.437479 0.899228i \(-0.644129\pi\)
−0.437479 + 0.899228i \(0.644129\pi\)
\(72\) 539.752 + 934.877i 0.883477 + 1.53023i
\(73\) 33.2342 57.5633i 0.0532845 0.0922915i −0.838153 0.545435i \(-0.816364\pi\)
0.891437 + 0.453144i \(0.149698\pi\)
\(74\) −326.350 + 565.254i −0.512667 + 0.887965i
\(75\) −104.832 181.575i −0.161400 0.279553i
\(76\) −1670.89 −2.52189
\(77\) 0 0
\(78\) 3449.07 5.00680
\(79\) 263.491 + 456.380i 0.375254 + 0.649959i 0.990365 0.138482i \(-0.0442222\pi\)
−0.615111 + 0.788440i \(0.710889\pi\)
\(80\) 20.2704 35.1094i 0.0283288 0.0490669i
\(81\) 10.5618 18.2936i 0.0144881 0.0250941i
\(82\) −220.311 381.589i −0.296698 0.513896i
\(83\) −70.0265 −0.0926074 −0.0463037 0.998927i \(-0.514744\pi\)
−0.0463037 + 0.998927i \(0.514744\pi\)
\(84\) 0 0
\(85\) −23.6850 −0.0302235
\(86\) −690.554 1196.07i −0.865864 1.49972i
\(87\) −562.270 + 973.880i −0.692893 + 1.20013i
\(88\) −375.051 + 649.607i −0.454324 + 0.786913i
\(89\) −4.63963 8.03607i −0.00552584 0.00957103i 0.863249 0.504778i \(-0.168426\pi\)
−0.868775 + 0.495207i \(0.835092\pi\)
\(90\) 1002.03 1.17359
\(91\) 0 0
\(92\) 271.319 0.307467
\(93\) −8.54456 14.7996i −0.00952720 0.0165016i
\(94\) 298.408 516.858i 0.327431 0.567126i
\(95\) −312.045 + 540.477i −0.337001 + 0.583703i
\(96\) −678.427 1175.07i −0.721268 1.24927i
\(97\) 4.19493 0.00439104 0.00219552 0.999998i \(-0.499301\pi\)
0.00219552 + 0.999998i \(0.499301\pi\)
\(98\) 0 0
\(99\) −1304.89 −1.32471
\(100\) −167.332 289.828i −0.167332 0.289828i
\(101\) −432.922 + 749.843i −0.426508 + 0.738734i −0.996560 0.0828749i \(-0.973590\pi\)
0.570052 + 0.821609i \(0.306923\pi\)
\(102\) 91.8606 159.107i 0.0891721 0.154451i
\(103\) −583.058 1009.89i −0.557771 0.966088i −0.997682 0.0680469i \(-0.978323\pi\)
0.439911 0.898042i \(-0.355010\pi\)
\(104\) 2215.29 2.08872
\(105\) 0 0
\(106\) −1796.31 −1.64598
\(107\) −28.4826 49.3333i −0.0257338 0.0445722i 0.852872 0.522121i \(-0.174859\pi\)
−0.878606 + 0.477548i \(0.841526\pi\)
\(108\) −916.948 + 1588.20i −0.816975 + 1.41504i
\(109\) 679.445 1176.83i 0.597055 1.03413i −0.396198 0.918165i \(-0.629671\pi\)
0.993253 0.115965i \(-0.0369959\pi\)
\(110\) 348.133 + 602.985i 0.301756 + 0.522657i
\(111\) −1183.66 −1.01215
\(112\) 0 0
\(113\) 436.038 0.363000 0.181500 0.983391i \(-0.441905\pi\)
0.181500 + 0.983391i \(0.441905\pi\)
\(114\) −2420.49 4192.41i −1.98859 3.44434i
\(115\) 50.6699 87.7629i 0.0410869 0.0711646i
\(116\) −897.490 + 1554.50i −0.718361 + 1.24424i
\(117\) 1926.88 + 3337.45i 1.52256 + 2.63716i
\(118\) 3877.70 3.02518
\(119\) 0 0
\(120\) 1044.58 0.794637
\(121\) 212.144 + 367.444i 0.159387 + 0.276066i
\(122\) −900.454 + 1559.63i −0.668224 + 1.15740i
\(123\) 399.531 692.008i 0.292882 0.507286i
\(124\) −13.6387 23.6230i −0.00987737 0.0171081i
\(125\) −125.000 −0.0894427
\(126\) 0 0
\(127\) 1186.69 0.829144 0.414572 0.910017i \(-0.363931\pi\)
0.414572 + 0.910017i \(0.363931\pi\)
\(128\) −1232.89 2135.42i −0.851349 1.47458i
\(129\) 1252.31 2169.07i 0.854728 1.48043i
\(130\) 1028.15 1780.81i 0.693652 1.20144i
\(131\) 517.278 + 895.952i 0.344999 + 0.597555i 0.985354 0.170524i \(-0.0545460\pi\)
−0.640355 + 0.768079i \(0.721213\pi\)
\(132\) −3380.57 −2.22910
\(133\) 0 0
\(134\) −3226.99 −2.08037
\(135\) 342.487 + 593.205i 0.218345 + 0.378185i
\(136\) 59.0008 102.192i 0.0372006 0.0644333i
\(137\) −323.109 + 559.642i −0.201497 + 0.349003i −0.949011 0.315243i \(-0.897914\pi\)
0.747514 + 0.664246i \(0.231247\pi\)
\(138\) 393.040 + 680.765i 0.242448 + 0.419932i
\(139\) −506.484 −0.309061 −0.154530 0.987988i \(-0.549386\pi\)
−0.154530 + 0.987988i \(0.549386\pi\)
\(140\) 0 0
\(141\) 1082.32 0.646439
\(142\) −1210.36 2096.41i −0.715292 1.23892i
\(143\) −1338.91 + 2319.06i −0.782972 + 1.35615i
\(144\) −175.684 + 304.293i −0.101669 + 0.176096i
\(145\) 335.220 + 580.617i 0.191989 + 0.332535i
\(146\) 307.387 0.174244
\(147\) 0 0
\(148\) −1889.35 −1.04935
\(149\) 914.058 + 1583.19i 0.502567 + 0.870472i 0.999996 + 0.00296704i \(0.000944438\pi\)
−0.497428 + 0.867505i \(0.665722\pi\)
\(150\) 484.804 839.706i 0.263894 0.457078i
\(151\) −1487.58 + 2576.57i −0.801708 + 1.38860i 0.116783 + 0.993157i \(0.462742\pi\)
−0.918491 + 0.395441i \(0.870592\pi\)
\(152\) −1554.65 2692.73i −0.829596 1.43690i
\(153\) 205.278 0.108469
\(154\) 0 0
\(155\) −10.1883 −0.00527966
\(156\) 4991.97 + 8646.34i 2.56203 + 4.43757i
\(157\) −1065.87 + 1846.14i −0.541820 + 0.938459i 0.456980 + 0.889477i \(0.348931\pi\)
−0.998800 + 0.0489821i \(0.984402\pi\)
\(158\) −1218.53 + 2110.56i −0.613551 + 1.06270i
\(159\) −1628.80 2821.16i −0.812403 1.40712i
\(160\) −808.942 −0.399703
\(161\) 0 0
\(162\) 97.6876 0.0473769
\(163\) 296.969 + 514.366i 0.142702 + 0.247167i 0.928513 0.371299i \(-0.121088\pi\)
−0.785811 + 0.618466i \(0.787754\pi\)
\(164\) 637.727 1104.58i 0.303647 0.525932i
\(165\) −631.336 + 1093.51i −0.297875 + 0.515935i
\(166\) −161.921 280.456i −0.0757079 0.131130i
\(167\) 2936.30 1.36059 0.680293 0.732941i \(-0.261853\pi\)
0.680293 + 0.732941i \(0.261853\pi\)
\(168\) 0 0
\(169\) 5711.45 2.59966
\(170\) −54.7663 94.8581i −0.0247081 0.0427958i
\(171\) 2704.49 4684.31i 1.20946 2.09484i
\(172\) 1998.93 3462.24i 0.886144 1.53485i
\(173\) 1173.65 + 2032.83i 0.515788 + 0.893371i 0.999832 + 0.0183273i \(0.00583410\pi\)
−0.484044 + 0.875044i \(0.660833\pi\)
\(174\) −5200.51 −2.26580
\(175\) 0 0
\(176\) −244.151 −0.104566
\(177\) 3516.08 + 6090.04i 1.49314 + 2.58619i
\(178\) 21.4562 37.1633i 0.00903491 0.0156489i
\(179\) −1518.28 + 2629.74i −0.633975 + 1.09808i 0.352756 + 0.935715i \(0.385244\pi\)
−0.986731 + 0.162362i \(0.948089\pi\)
\(180\) 1450.27 + 2511.94i 0.600537 + 1.04016i
\(181\) 899.776 0.369502 0.184751 0.982785i \(-0.440852\pi\)
0.184751 + 0.982785i \(0.440852\pi\)
\(182\) 0 0
\(183\) −3265.93 −1.31926
\(184\) 252.444 + 437.246i 0.101144 + 0.175186i
\(185\) −352.844 + 611.143i −0.140225 + 0.242876i
\(186\) 39.5148 68.4417i 0.0155773 0.0269806i
\(187\) 71.3194 + 123.529i 0.0278898 + 0.0483065i
\(188\) 1727.59 0.670199
\(189\) 0 0
\(190\) −2886.14 −1.10201
\(191\) −208.084 360.412i −0.0788294 0.136537i 0.823916 0.566712i \(-0.191785\pi\)
−0.902745 + 0.430176i \(0.858452\pi\)
\(192\) 3409.43 5905.31i 1.28153 2.21968i
\(193\) 2590.52 4486.92i 0.966166 1.67345i 0.259716 0.965685i \(-0.416371\pi\)
0.706450 0.707763i \(-0.250296\pi\)
\(194\) 9.69986 + 16.8007i 0.00358974 + 0.00621761i
\(195\) 3729.08 1.36946
\(196\) 0 0
\(197\) 1452.34 0.525255 0.262627 0.964897i \(-0.415411\pi\)
0.262627 + 0.964897i \(0.415411\pi\)
\(198\) −3017.27 5226.07i −1.08297 1.87576i
\(199\) −638.616 + 1106.12i −0.227489 + 0.394023i −0.957063 0.289879i \(-0.906385\pi\)
0.729574 + 0.683902i \(0.239718\pi\)
\(200\) 311.383 539.332i 0.110091 0.190683i
\(201\) −2926.06 5068.08i −1.02681 1.77848i
\(202\) −4004.15 −1.39471
\(203\) 0 0
\(204\) 531.813 0.182521
\(205\) −238.196 412.568i −0.0811528 0.140561i
\(206\) 2696.39 4670.29i 0.911973 1.57958i
\(207\) −439.156 + 760.640i −0.147456 + 0.255402i
\(208\) 360.528 + 624.453i 0.120183 + 0.208164i
\(209\) 3758.47 1.24392
\(210\) 0 0
\(211\) −3259.09 −1.06334 −0.531670 0.846951i \(-0.678436\pi\)
−0.531670 + 0.846951i \(0.678436\pi\)
\(212\) −2599.87 4503.10i −0.842263 1.45884i
\(213\) 2194.98 3801.82i 0.706092 1.22299i
\(214\) 131.720 228.145i 0.0420755 0.0728770i
\(215\) −746.615 1293.18i −0.236831 0.410204i
\(216\) −3412.63 −1.07500
\(217\) 0 0
\(218\) 6284.27 1.95241
\(219\) 278.722 + 482.760i 0.0860012 + 0.148959i
\(220\) −1007.73 + 1745.44i −0.308824 + 0.534899i
\(221\) 210.629 364.820i 0.0641107 0.111043i
\(222\) −2736.96 4740.56i −0.827445 1.43318i
\(223\) −4373.35 −1.31328 −0.656639 0.754205i \(-0.728023\pi\)
−0.656639 + 0.754205i \(0.728023\pi\)
\(224\) 0 0
\(225\) 1083.37 0.321000
\(226\) 1008.24 + 1746.33i 0.296758 + 0.514000i
\(227\) −30.5573 + 52.9267i −0.00893461 + 0.0154752i −0.870458 0.492242i \(-0.836177\pi\)
0.861524 + 0.507718i \(0.169511\pi\)
\(228\) 7006.52 12135.7i 2.03517 3.52501i
\(229\) 1509.71 + 2614.89i 0.435651 + 0.754570i 0.997349 0.0727728i \(-0.0231848\pi\)
−0.561697 + 0.827343i \(0.689851\pi\)
\(230\) 468.653 0.134357
\(231\) 0 0
\(232\) −3340.22 −0.945241
\(233\) 1765.58 + 3058.08i 0.496426 + 0.859834i 0.999992 0.00412242i \(-0.00131221\pi\)
−0.503566 + 0.863957i \(0.667979\pi\)
\(234\) −8910.98 + 15434.3i −2.48944 + 4.31184i
\(235\) 322.634 558.819i 0.0895588 0.155120i
\(236\) 5612.34 + 9720.85i 1.54802 + 2.68124i
\(237\) −4419.58 −1.21132
\(238\) 0 0
\(239\) 2282.62 0.617785 0.308893 0.951097i \(-0.400042\pi\)
0.308893 + 0.951097i \(0.400042\pi\)
\(240\) 170.000 + 294.449i 0.0457227 + 0.0791941i
\(241\) −1107.84 + 1918.83i −0.296109 + 0.512875i −0.975242 0.221140i \(-0.929022\pi\)
0.679134 + 0.734015i \(0.262356\pi\)
\(242\) −981.073 + 1699.27i −0.260602 + 0.451377i
\(243\) 1938.01 + 3356.73i 0.511619 + 0.886150i
\(244\) −5213.04 −1.36775
\(245\) 0 0
\(246\) 3695.31 0.957742
\(247\) −5549.99 9612.87i −1.42971 2.47633i
\(248\) 25.3798 43.9592i 0.00649848 0.0112557i
\(249\) 293.642 508.603i 0.0747342 0.129443i
\(250\) −289.035 500.624i −0.0731208 0.126649i
\(251\) 3082.55 0.775174 0.387587 0.921833i \(-0.373309\pi\)
0.387587 + 0.921833i \(0.373309\pi\)
\(252\) 0 0
\(253\) −610.302 −0.151658
\(254\) 2743.95 + 4752.66i 0.677838 + 1.17405i
\(255\) 99.3181 172.024i 0.0243904 0.0422453i
\(256\) 2449.29 4242.30i 0.597972 1.03572i
\(257\) −3016.20 5224.21i −0.732083 1.26801i −0.955991 0.293395i \(-0.905215\pi\)
0.223908 0.974610i \(-0.428118\pi\)
\(258\) 11582.8 2.79501
\(259\) 0 0
\(260\) 5952.32 1.41980
\(261\) −2905.35 5032.21i −0.689029 1.19343i
\(262\) −2392.19 + 4143.39i −0.564083 + 0.977021i
\(263\) −2961.91 + 5130.17i −0.694445 + 1.20281i 0.275923 + 0.961180i \(0.411017\pi\)
−0.970368 + 0.241634i \(0.922317\pi\)
\(264\) −3145.40 5447.99i −0.733280 1.27008i
\(265\) −1942.14 −0.450207
\(266\) 0 0
\(267\) 77.8213 0.0178374
\(268\) −4670.54 8089.62i −1.06455 1.84385i
\(269\) 1626.40 2817.00i 0.368637 0.638497i −0.620716 0.784035i \(-0.713158\pi\)
0.989353 + 0.145538i \(0.0464914\pi\)
\(270\) −1583.85 + 2743.32i −0.357001 + 0.618344i
\(271\) −3123.13 5409.42i −0.700061 1.21254i −0.968444 0.249230i \(-0.919823\pi\)
0.268383 0.963312i \(-0.413511\pi\)
\(272\) 38.4084 0.00856195
\(273\) 0 0
\(274\) −2988.48 −0.658907
\(275\) 376.396 + 651.937i 0.0825364 + 0.142957i
\(276\) −1137.72 + 1970.59i −0.248126 + 0.429767i
\(277\) 786.084 1361.54i 0.170510 0.295332i −0.768088 0.640344i \(-0.778792\pi\)
0.938598 + 0.345012i \(0.112125\pi\)
\(278\) −1171.13 2028.47i −0.252662 0.437623i
\(279\) 88.3024 0.0189481
\(280\) 0 0
\(281\) −7846.03 −1.66567 −0.832837 0.553518i \(-0.813285\pi\)
−0.832837 + 0.553518i \(0.813285\pi\)
\(282\) 2502.63 + 4334.68i 0.528473 + 0.915343i
\(283\) 3132.79 5426.15i 0.658039 1.13976i −0.323084 0.946370i \(-0.604720\pi\)
0.981123 0.193386i \(-0.0619470\pi\)
\(284\) 3503.61 6068.42i 0.732045 1.26794i
\(285\) −2616.99 4532.76i −0.543920 0.942097i
\(286\) −12383.7 −2.56037
\(287\) 0 0
\(288\) 7011.10 1.43449
\(289\) 2445.28 + 4235.35i 0.497716 + 0.862070i
\(290\) −1550.24 + 2685.10i −0.313909 + 0.543706i
\(291\) −17.5906 + 30.4678i −0.00354357 + 0.00613764i
\(292\) 444.893 + 770.577i 0.0891623 + 0.154434i
\(293\) 7264.99 1.44855 0.724276 0.689511i \(-0.242174\pi\)
0.724276 + 0.689511i \(0.242174\pi\)
\(294\) 0 0
\(295\) 4192.50 0.827448
\(296\) −1757.91 3044.79i −0.345191 0.597889i
\(297\) 2062.57 3572.48i 0.402972 0.697967i
\(298\) −4227.12 + 7321.59i −0.821713 + 1.42325i
\(299\) 901.210 + 1560.94i 0.174309 + 0.301912i
\(300\) 2806.70 0.540149
\(301\) 0 0
\(302\) −13758.9 −2.62163
\(303\) −3630.74 6288.63i −0.688385 1.19232i
\(304\) 506.023 876.457i 0.0954684 0.165356i
\(305\) −973.556 + 1686.25i −0.182773 + 0.316571i
\(306\) 474.660 + 822.135i 0.0886748 + 0.153589i
\(307\) −1328.32 −0.246943 −0.123471 0.992348i \(-0.539403\pi\)
−0.123471 + 0.992348i \(0.539403\pi\)
\(308\) 0 0
\(309\) 9779.75 1.80049
\(310\) −23.5583 40.8042i −0.00431621 0.00747589i
\(311\) 2434.34 4216.40i 0.443855 0.768779i −0.554117 0.832439i \(-0.686944\pi\)
0.997972 + 0.0636600i \(0.0202773\pi\)
\(312\) −9289.38 + 16089.7i −1.68560 + 2.91955i
\(313\) 3866.69 + 6697.31i 0.698270 + 1.20944i 0.969066 + 0.246802i \(0.0793798\pi\)
−0.270796 + 0.962637i \(0.587287\pi\)
\(314\) −9858.37 −1.77178
\(315\) 0 0
\(316\) −7054.49 −1.25584
\(317\) 4087.51 + 7079.78i 0.724220 + 1.25439i 0.959294 + 0.282408i \(0.0911331\pi\)
−0.235075 + 0.971977i \(0.575534\pi\)
\(318\) 7532.48 13046.6i 1.32830 2.30069i
\(319\) 2018.80 3496.67i 0.354330 0.613718i
\(320\) −2032.67 3520.68i −0.355092 0.615038i
\(321\) 477.744 0.0830688
\(322\) 0 0
\(323\) −591.261 −0.101853
\(324\) 141.387 + 244.889i 0.0242433 + 0.0419906i
\(325\) 1111.62 1925.38i 0.189728 0.328618i
\(326\) −1373.35 + 2378.72i −0.233322 + 0.404126i
\(327\) 5698.23 + 9869.62i 0.963647 + 1.66909i
\(328\) 2373.45 0.399548
\(329\) 0 0
\(330\) −5839.31 −0.974070
\(331\) 1020.38 + 1767.35i 0.169442 + 0.293482i 0.938224 0.346029i \(-0.112470\pi\)
−0.768782 + 0.639511i \(0.779137\pi\)
\(332\) 468.709 811.827i 0.0774811 0.134201i
\(333\) 3058.09 5296.77i 0.503251 0.871656i
\(334\) 6789.56 + 11759.9i 1.11230 + 1.92656i
\(335\) −3488.97 −0.569023
\(336\) 0 0
\(337\) 7349.73 1.18803 0.594013 0.804455i \(-0.297543\pi\)
0.594013 + 0.804455i \(0.297543\pi\)
\(338\) 13206.5 + 22874.3i 2.12526 + 3.68106i
\(339\) −1828.44 + 3166.94i −0.292941 + 0.507389i
\(340\) 158.531 274.583i 0.0252868 0.0437981i
\(341\) 30.6788 + 53.1373i 0.00487200 + 0.00843855i
\(342\) 25014.2 3.95500
\(343\) 0 0
\(344\) 7439.47 1.16602
\(345\) 424.948 + 736.032i 0.0663143 + 0.114860i
\(346\) −5427.64 + 9400.95i −0.843329 + 1.46069i
\(347\) 6034.96 10452.9i 0.933642 1.61712i 0.156605 0.987661i \(-0.449945\pi\)
0.777037 0.629454i \(-0.216722\pi\)
\(348\) −7526.88 13036.9i −1.15943 2.00820i
\(349\) 4484.96 0.687892 0.343946 0.938989i \(-0.388236\pi\)
0.343946 + 0.938989i \(0.388236\pi\)
\(350\) 0 0
\(351\) −12182.9 −1.85263
\(352\) 2435.86 + 4219.03i 0.368840 + 0.638850i
\(353\) −6381.24 + 11052.6i −0.962151 + 1.66649i −0.245069 + 0.969506i \(0.578811\pi\)
−0.717082 + 0.696989i \(0.754523\pi\)
\(354\) −16260.4 + 28163.8i −2.44132 + 4.22849i
\(355\) −1308.62 2266.60i −0.195647 0.338870i
\(356\) 124.218 0.0184930
\(357\) 0 0
\(358\) −14042.8 −2.07314
\(359\) 1209.71 + 2095.28i 0.177844 + 0.308036i 0.941142 0.338011i \(-0.109754\pi\)
−0.763298 + 0.646047i \(0.776421\pi\)
\(360\) −2698.76 + 4674.39i −0.395103 + 0.684338i
\(361\) −4360.25 + 7552.17i −0.635697 + 1.10106i
\(362\) 2080.54 + 3603.60i 0.302073 + 0.523207i
\(363\) −3558.33 −0.514501
\(364\) 0 0
\(365\) 332.342 0.0476591
\(366\) −7551.75 13080.0i −1.07851 1.86804i
\(367\) −3564.87 + 6174.54i −0.507043 + 0.878224i 0.492924 + 0.870072i \(0.335928\pi\)
−0.999967 + 0.00815152i \(0.997405\pi\)
\(368\) −82.1681 + 142.319i −0.0116394 + 0.0201601i
\(369\) 2064.44 + 3575.72i 0.291248 + 0.504457i
\(370\) −3263.50 −0.458543
\(371\) 0 0
\(372\) 228.765 0.0318842
\(373\) −5798.46 10043.2i −0.804914 1.39415i −0.916349 0.400380i \(-0.868878\pi\)
0.111435 0.993772i \(-0.464455\pi\)
\(374\) −329.821 + 571.267i −0.0456006 + 0.0789826i
\(375\) 524.162 907.876i 0.0721803 0.125020i
\(376\) 1607.41 + 2784.11i 0.220467 + 0.381860i
\(377\) −11924.4 −1.62901
\(378\) 0 0
\(379\) −12770.8 −1.73085 −0.865424 0.501040i \(-0.832951\pi\)
−0.865424 + 0.501040i \(0.832951\pi\)
\(380\) −4177.21 7235.15i −0.563912 0.976724i
\(381\) −4976.12 + 8618.90i −0.669120 + 1.15895i
\(382\) 962.297 1666.75i 0.128888 0.223241i
\(383\) 3735.05 + 6469.30i 0.498308 + 0.863096i 0.999998 0.00195209i \(-0.000621369\pi\)
−0.501690 + 0.865048i \(0.667288\pi\)
\(384\) 20679.4 2.74816
\(385\) 0 0
\(386\) 23960.1 3.15942
\(387\) 6470.91 + 11207.9i 0.849961 + 1.47218i
\(388\) −28.0779 + 48.6324i −0.00367381 + 0.00636323i
\(389\) −4374.89 + 7577.53i −0.570220 + 0.987650i 0.426323 + 0.904571i \(0.359809\pi\)
−0.996543 + 0.0830789i \(0.973525\pi\)
\(390\) 8622.68 + 14934.9i 1.11956 + 1.93913i
\(391\) 96.0092 0.0124179
\(392\) 0 0
\(393\) −8676.41 −1.11366
\(394\) 3358.23 + 5816.62i 0.429404 + 0.743749i
\(395\) −1317.45 + 2281.90i −0.167819 + 0.290670i
\(396\) 8734.01 15127.7i 1.10833 1.91969i
\(397\) 2687.63 + 4655.11i 0.339769 + 0.588496i 0.984389 0.176006i \(-0.0563179\pi\)
−0.644621 + 0.764503i \(0.722985\pi\)
\(398\) −5906.65 −0.743903
\(399\) 0 0
\(400\) 202.704 0.0253381
\(401\) −3680.67 6375.10i −0.458363 0.793909i 0.540511 0.841337i \(-0.318231\pi\)
−0.998875 + 0.0474281i \(0.984897\pi\)
\(402\) 13531.7 23437.7i 1.67886 2.90787i
\(403\) 90.6045 156.932i 0.0111993 0.0193978i
\(404\) −5795.35 10037.8i −0.713687 1.23614i
\(405\) 105.618 0.0129585
\(406\) 0 0
\(407\) 4249.88 0.517589
\(408\) 494.816 + 857.046i 0.0600418 + 0.103995i
\(409\) −1306.23 + 2262.45i −0.157919 + 0.273523i −0.934118 0.356964i \(-0.883812\pi\)
0.776199 + 0.630488i \(0.217145\pi\)
\(410\) 1101.55 1907.95i 0.132687 0.229821i
\(411\) −2709.79 4693.49i −0.325216 0.563291i
\(412\) 15610.3 1.86667
\(413\) 0 0
\(414\) −4061.81 −0.482191
\(415\) −175.066 303.224i −0.0207076 0.0358667i
\(416\) 7193.88 12460.2i 0.847859 1.46853i
\(417\) 2123.84 3678.60i 0.249412 0.431995i
\(418\) 8690.65 + 15052.6i 1.01692 + 1.76136i
\(419\) −4398.21 −0.512808 −0.256404 0.966570i \(-0.582538\pi\)
−0.256404 + 0.966570i \(0.582538\pi\)
\(420\) 0 0
\(421\) 9723.32 1.12562 0.562810 0.826587i \(-0.309720\pi\)
0.562810 + 0.826587i \(0.309720\pi\)
\(422\) −7535.93 13052.6i −0.869297 1.50567i
\(423\) −2796.27 + 4843.28i −0.321417 + 0.556710i
\(424\) 4838.01 8379.67i 0.554138 0.959795i
\(425\) −59.2124 102.559i −0.00675817 0.0117055i
\(426\) 20301.7 2.30896
\(427\) 0 0
\(428\) 762.570 0.0861220
\(429\) −11228.9 19449.0i −1.26372 2.18882i
\(430\) 3452.77 5980.37i 0.387226 0.670696i
\(431\) 7157.27 12396.7i 0.799892 1.38545i −0.119794 0.992799i \(-0.538223\pi\)
0.919686 0.392655i \(-0.128443\pi\)
\(432\) −555.390 961.963i −0.0618546 0.107135i
\(433\) 2373.62 0.263438 0.131719 0.991287i \(-0.457950\pi\)
0.131719 + 0.991287i \(0.457950\pi\)
\(434\) 0 0
\(435\) −5622.70 −0.619742
\(436\) 9095.45 + 15753.8i 0.999067 + 1.73043i
\(437\) 1264.90 2190.87i 0.138463 0.239825i
\(438\) −1288.97 + 2232.56i −0.140615 + 0.243552i
\(439\) −4766.73 8256.22i −0.518231 0.897603i −0.999776 0.0211814i \(-0.993257\pi\)
0.481544 0.876422i \(-0.340076\pi\)
\(440\) −3750.51 −0.406360
\(441\) 0 0
\(442\) 1948.14 0.209646
\(443\) −3323.97 5757.29i −0.356493 0.617465i 0.630879 0.775881i \(-0.282694\pi\)
−0.987372 + 0.158416i \(0.949361\pi\)
\(444\) 7922.60 13722.4i 0.846825 1.46674i
\(445\) 23.1981 40.1803i 0.00247123 0.00428029i
\(446\) −10112.4 17515.2i −1.07363 1.85957i
\(447\) −15331.7 −1.62229
\(448\) 0 0
\(449\) −768.256 −0.0807489 −0.0403744 0.999185i \(-0.512855\pi\)
−0.0403744 + 0.999185i \(0.512855\pi\)
\(450\) 2505.07 + 4338.90i 0.262422 + 0.454529i
\(451\) −1434.50 + 2484.62i −0.149773 + 0.259415i
\(452\) −2918.53 + 5055.04i −0.303708 + 0.526038i
\(453\) −12475.8 21608.7i −1.29396 2.24120i
\(454\) −282.628 −0.0292167
\(455\) 0 0
\(456\) 26076.4 2.67794
\(457\) 1661.75 + 2878.23i 0.170095 + 0.294613i 0.938453 0.345407i \(-0.112259\pi\)
−0.768358 + 0.640020i \(0.778926\pi\)
\(458\) −6981.73 + 12092.7i −0.712303 + 1.23374i
\(459\) −324.472 + 562.002i −0.0329958 + 0.0571503i
\(460\) 678.298 + 1174.85i 0.0687517 + 0.119081i
\(461\) 18840.7 1.90347 0.951733 0.306926i \(-0.0993004\pi\)
0.951733 + 0.306926i \(0.0993004\pi\)
\(462\) 0 0
\(463\) −10759.1 −1.07995 −0.539977 0.841679i \(-0.681567\pi\)
−0.539977 + 0.841679i \(0.681567\pi\)
\(464\) −543.604 941.549i −0.0543883 0.0942033i
\(465\) 42.7228 73.9980i 0.00426069 0.00737973i
\(466\) −8165.05 + 14142.3i −0.811671 + 1.40586i
\(467\) 3720.85 + 6444.71i 0.368695 + 0.638598i 0.989362 0.145476i \(-0.0464714\pi\)
−0.620667 + 0.784074i \(0.713138\pi\)
\(468\) −51588.7 −5.09549
\(469\) 0 0
\(470\) 2984.08 0.292863
\(471\) −8939.02 15482.8i −0.874497 1.51467i
\(472\) −10443.8 + 18089.2i −1.01846 + 1.76403i
\(473\) −4496.36 + 7787.93i −0.437089 + 0.757060i
\(474\) −10219.3 17700.4i −0.990273 1.71520i
\(475\) −3120.45 −0.301423
\(476\) 0 0
\(477\) 16832.6 1.61574
\(478\) 5278.07 + 9141.88i 0.505049 + 0.874770i
\(479\) 2845.99 4929.39i 0.271475 0.470208i −0.697765 0.716327i \(-0.745822\pi\)
0.969240 + 0.246119i \(0.0791553\pi\)
\(480\) 3392.14 5875.35i 0.322561 0.558692i
\(481\) −6275.64 10869.7i −0.594895 1.03039i
\(482\) −10246.5 −0.968293
\(483\) 0 0
\(484\) −5679.77 −0.533412
\(485\) 10.4873 + 18.1646i 0.000981866 + 0.00170064i
\(486\) −8962.45 + 15523.4i −0.836512 + 1.44888i
\(487\) 1010.12 1749.59i 0.0939899 0.162795i −0.815197 0.579184i \(-0.803371\pi\)
0.909187 + 0.416389i \(0.136705\pi\)
\(488\) −4850.38 8401.11i −0.449931 0.779304i
\(489\) −4981.12 −0.460642
\(490\) 0 0
\(491\) 7636.02 0.701851 0.350925 0.936403i \(-0.385867\pi\)
0.350925 + 0.936403i \(0.385867\pi\)
\(492\) 5348.36 + 9263.63i 0.490086 + 0.848855i
\(493\) −317.587 + 550.076i −0.0290129 + 0.0502519i
\(494\) 25666.3 44455.3i 2.33761 4.04887i
\(495\) −3262.22 5650.33i −0.296214 0.513058i
\(496\) 16.5218 0.00149567
\(497\) 0 0
\(498\) 2715.93 0.244385
\(499\) −3142.28 5442.59i −0.281900 0.488264i 0.689953 0.723854i \(-0.257631\pi\)
−0.971853 + 0.235590i \(0.924298\pi\)
\(500\) 836.662 1449.14i 0.0748333 0.129615i
\(501\) −12312.8 + 21326.4i −1.09799 + 1.90178i
\(502\) 7127.72 + 12345.6i 0.633716 + 1.09763i
\(503\) −11310.9 −1.00264 −0.501319 0.865262i \(-0.667152\pi\)
−0.501319 + 0.865262i \(0.667152\pi\)
\(504\) 0 0
\(505\) −4329.22 −0.381481
\(506\) −1411.19 2444.25i −0.123982 0.214744i
\(507\) −23949.8 + 41482.3i −2.09793 + 3.63372i
\(508\) −7942.84 + 13757.4i −0.693713 + 1.20155i
\(509\) 5356.37 + 9277.50i 0.466438 + 0.807894i 0.999265 0.0383299i \(-0.0122038\pi\)
−0.532827 + 0.846224i \(0.678870\pi\)
\(510\) 918.606 0.0797580
\(511\) 0 0
\(512\) 2927.65 0.252705
\(513\) 8549.70 + 14808.5i 0.735826 + 1.27449i
\(514\) 13948.6 24159.7i 1.19698 2.07323i
\(515\) 2915.29 5049.43i 0.249443 0.432048i
\(516\) 16764.2 + 29036.4i 1.43024 + 2.47724i
\(517\) −3886.02 −0.330574
\(518\) 0 0
\(519\) −19685.9 −1.66496
\(520\) 5538.23 + 9592.50i 0.467053 + 0.808959i
\(521\) 8860.95 15347.6i 0.745116 1.29058i −0.205025 0.978757i \(-0.565728\pi\)
0.950141 0.311821i \(-0.100939\pi\)
\(522\) 13436.0 23271.8i 1.12658 1.95130i
\(523\) 118.597 + 205.415i 0.00991562 + 0.0171744i 0.870941 0.491388i \(-0.163510\pi\)
−0.861025 + 0.508563i \(0.830177\pi\)
\(524\) −13849.2 −1.15459
\(525\) 0 0
\(526\) −27395.0 −2.27088
\(527\) −4.82621 8.35925i −0.000398924 0.000690957i
\(528\) 1023.80 1773.27i 0.0843845 0.146158i
\(529\) 5878.10 10181.2i 0.483119 0.836786i
\(530\) −4490.78 7778.27i −0.368051 0.637484i
\(531\) −36336.4 −2.96962
\(532\) 0 0
\(533\) 8473.06 0.688572
\(534\) 179.945 + 311.674i 0.0145824 + 0.0252574i
\(535\) 142.413 246.667i 0.0115085 0.0199333i
\(536\) 8691.26 15053.7i 0.700383 1.21310i
\(537\) −12733.2 22054.5i −1.02324 1.77230i
\(538\) 15042.8 1.20546
\(539\) 0 0
\(540\) −9169.48 −0.730725
\(541\) 2676.47 + 4635.78i 0.212699 + 0.368406i 0.952558 0.304356i \(-0.0984412\pi\)
−0.739859 + 0.672762i \(0.765108\pi\)
\(542\) 14443.1 25016.2i 1.14462 1.98254i
\(543\) −3773.03 + 6535.08i −0.298188 + 0.516477i
\(544\) −383.195 663.714i −0.0302010 0.0523098i
\(545\) 6794.45 0.534022
\(546\) 0 0
\(547\) −192.162 −0.0150206 −0.00751030 0.999972i \(-0.502391\pi\)
−0.00751030 + 0.999972i \(0.502391\pi\)
\(548\) −4325.33 7491.70i −0.337170 0.583995i
\(549\) 8437.81 14614.7i 0.655950 1.13614i
\(550\) −1740.67 + 3014.92i −0.134950 + 0.233740i
\(551\) 8368.27 + 14494.3i 0.647006 + 1.12065i
\(552\) −4234.29 −0.326492
\(553\) 0 0
\(554\) 7270.60 0.557578
\(555\) −2959.16 5125.41i −0.226323 0.392003i
\(556\) 3390.05 5871.74i 0.258579 0.447873i
\(557\) 2425.31 4200.76i 0.184495 0.319554i −0.758911 0.651194i \(-0.774268\pi\)
0.943406 + 0.331640i \(0.107602\pi\)
\(558\) 204.180 + 353.650i 0.0154904 + 0.0268301i
\(559\) 26558.4 2.00949
\(560\) 0 0
\(561\) −1196.25 −0.0900283
\(562\) −18142.2 31423.3i −1.36171 2.35856i
\(563\) 4849.56 8399.68i 0.363027 0.628782i −0.625430 0.780280i \(-0.715076\pi\)
0.988458 + 0.151498i \(0.0484098\pi\)
\(564\) −7244.29 + 12547.5i −0.540851 + 0.936781i
\(565\) 1090.09 + 1888.10i 0.0811692 + 0.140589i
\(566\) 28975.6 2.15183
\(567\) 0 0
\(568\) 13039.5 0.963247
\(569\) −1554.76 2692.93i −0.114550 0.198407i 0.803050 0.595912i \(-0.203209\pi\)
−0.917600 + 0.397505i \(0.869876\pi\)
\(570\) 12102.4 20962.1i 0.889326 1.54036i
\(571\) 7238.12 12536.8i 0.530483 0.918824i −0.468884 0.883260i \(-0.655344\pi\)
0.999367 0.0355645i \(-0.0113229\pi\)
\(572\) −17923.4 31044.3i −1.31017 2.26928i
\(573\) 3490.23 0.254461
\(574\) 0 0
\(575\) 506.699 0.0367492
\(576\) 17617.1 + 30513.7i 1.27439 + 2.20730i
\(577\) −1104.11 + 1912.38i −0.0796617 + 0.137978i −0.903104 0.429422i \(-0.858717\pi\)
0.823442 + 0.567400i \(0.192051\pi\)
\(578\) −11308.4 + 19586.6i −0.813781 + 1.40951i
\(579\) 21725.7 + 37630.0i 1.55939 + 2.70095i
\(580\) −8974.90 −0.642521
\(581\) 0 0
\(582\) −162.698 −0.0115877
\(583\) 5848.12 + 10129.2i 0.415445 + 0.719571i
\(584\) −827.886 + 1433.94i −0.0586612 + 0.101604i
\(585\) −9634.40 + 16687.3i −0.680912 + 1.17937i
\(586\) 16798.7 + 29096.2i 1.18421 + 2.05112i
\(587\) 23988.7 1.68675 0.843374 0.537327i \(-0.180566\pi\)
0.843374 + 0.537327i \(0.180566\pi\)
\(588\) 0 0
\(589\) −254.338 −0.0177925
\(590\) 9694.25 + 16790.9i 0.676451 + 1.17165i
\(591\) −6090.11 + 10548.4i −0.423881 + 0.734183i
\(592\) 572.184 991.051i 0.0397240 0.0688040i
\(593\) −7934.68 13743.3i −0.549474 0.951717i −0.998311 0.0581031i \(-0.981495\pi\)
0.448837 0.893614i \(-0.351839\pi\)
\(594\) 19077.0 1.31774
\(595\) 0 0
\(596\) −24472.2 −1.68192
\(597\) −5355.82 9276.55i −0.367168 0.635953i
\(598\) −4167.70 + 7218.67i −0.285000 + 0.493635i
\(599\) 7618.32 13195.3i 0.519660 0.900077i −0.480079 0.877225i \(-0.659392\pi\)
0.999739 0.0228519i \(-0.00727462\pi\)
\(600\) 2611.45 + 4523.16i 0.177686 + 0.307762i
\(601\) −12258.8 −0.832026 −0.416013 0.909359i \(-0.636573\pi\)
−0.416013 + 0.909359i \(0.636573\pi\)
\(602\) 0 0
\(603\) 30238.9 2.04216
\(604\) −19913.7 34491.5i −1.34152 2.32358i
\(605\) −1060.72 + 1837.22i −0.0712800 + 0.123461i
\(606\) 16790.6 29082.2i 1.12553 1.94948i
\(607\) 11743.6 + 20340.5i 0.785269 + 1.36013i 0.928838 + 0.370486i \(0.120809\pi\)
−0.143569 + 0.989640i \(0.545858\pi\)
\(608\) −20194.1 −1.34700
\(609\) 0 0
\(610\) −9004.54 −0.597678
\(611\) 5738.34 + 9939.09i 0.379948 + 0.658089i
\(612\) −1373.98 + 2379.81i −0.0907516 + 0.157186i
\(613\) 11152.6 19316.9i 0.734830 1.27276i −0.219968 0.975507i \(-0.570595\pi\)
0.954798 0.297256i \(-0.0960715\pi\)
\(614\) −3071.46 5319.92i −0.201879 0.349666i
\(615\) 3995.31 0.261962
\(616\) 0 0
\(617\) 3285.91 0.214402 0.107201 0.994237i \(-0.465811\pi\)
0.107201 + 0.994237i \(0.465811\pi\)
\(618\) 22613.5 + 39167.8i 1.47193 + 2.54945i
\(619\) −5806.54 + 10057.2i −0.377035 + 0.653043i −0.990629 0.136578i \(-0.956390\pi\)
0.613595 + 0.789621i \(0.289723\pi\)
\(620\) 68.1937 118.115i 0.00441730 0.00765098i
\(621\) −1388.30 2404.61i −0.0897113 0.155385i
\(622\) 22515.5 1.45143
\(623\) 0 0
\(624\) −6047.21 −0.387952
\(625\) −312.500 541.266i −0.0200000 0.0346410i
\(626\) −17881.8 + 30972.1i −1.14169 + 1.97747i
\(627\) −15760.4 + 27297.8i −1.00384 + 1.73871i
\(628\) −14268.4 24713.5i −0.906640 1.57035i
\(629\) −668.567 −0.0423808
\(630\) 0 0
\(631\) 6890.91 0.434743 0.217372 0.976089i \(-0.430252\pi\)
0.217372 + 0.976089i \(0.430252\pi\)
\(632\) −6563.73 11368.7i −0.413119 0.715543i
\(633\) 13666.3 23670.8i 0.858117 1.48630i
\(634\) −18903.0 + 32740.9i −1.18412 + 2.05096i
\(635\) 2966.71 + 5138.50i 0.185402 + 0.321126i
\(636\) 43608.1 2.71883
\(637\) 0 0
\(638\) 18672.2 1.15868
\(639\) 11341.8 + 19644.7i 0.702154 + 1.21617i
\(640\) 6164.43 10677.1i 0.380735 0.659452i
\(641\) −9384.63 + 16254.7i −0.578269 + 1.00159i 0.417409 + 0.908719i \(0.362938\pi\)
−0.995678 + 0.0928728i \(0.970395\pi\)
\(642\) 1104.68 + 1913.36i 0.0679100 + 0.117624i
\(643\) 3142.30 0.192722 0.0963609 0.995346i \(-0.469280\pi\)
0.0963609 + 0.995346i \(0.469280\pi\)
\(644\) 0 0
\(645\) 12523.1 0.764492
\(646\) −1367.16 2368.00i −0.0832667 0.144222i
\(647\) 9519.07 16487.5i 0.578413 1.00184i −0.417248 0.908793i \(-0.637005\pi\)
0.995662 0.0930486i \(-0.0296612\pi\)
\(648\) −263.102 + 455.706i −0.0159500 + 0.0276262i
\(649\) −12624.3 21866.0i −0.763557 1.32252i
\(650\) 10281.5 0.620421
\(651\) 0 0
\(652\) −7950.82 −0.477574
\(653\) 10269.3 + 17787.0i 0.615420 + 1.06594i 0.990311 + 0.138870i \(0.0443471\pi\)
−0.374890 + 0.927069i \(0.622320\pi\)
\(654\) −26351.8 + 45642.7i −1.57559 + 2.72901i
\(655\) −2586.39 + 4479.76i −0.154288 + 0.267235i
\(656\) 386.267 + 669.034i 0.0229896 + 0.0398192i
\(657\) −2880.41 −0.171043
\(658\) 0 0
\(659\) −937.046 −0.0553902 −0.0276951 0.999616i \(-0.508817\pi\)
−0.0276951 + 0.999616i \(0.508817\pi\)
\(660\) −8451.44 14638.3i −0.498442 0.863327i
\(661\) 10558.3 18287.4i 0.621283 1.07609i −0.367964 0.929840i \(-0.619945\pi\)
0.989247 0.146254i \(-0.0467218\pi\)
\(662\) −4718.82 + 8173.24i −0.277043 + 0.479852i
\(663\) 1766.46 + 3059.60i 0.103475 + 0.179223i
\(664\) 1744.41 0.101952
\(665\) 0 0
\(666\) 28284.7 1.64566
\(667\) −1358.84 2353.59i −0.0788825 0.136628i
\(668\) −19653.5 + 34040.9i −1.13835 + 1.97168i
\(669\) 18338.8 31763.7i 1.05982 1.83566i
\(670\) −8067.48 13973.3i −0.465185 0.805725i
\(671\) 11726.2 0.674640
\(672\) 0 0
\(673\) 13825.9 0.791903 0.395952 0.918271i \(-0.370415\pi\)
0.395952 + 0.918271i \(0.370415\pi\)
\(674\) 16994.6 + 29435.6i 0.971230 + 1.68222i
\(675\) −1712.44 + 2966.03i −0.0976470 + 0.169130i
\(676\) −38228.5 + 66213.6i −2.17504 + 3.76728i
\(677\) −8464.20 14660.4i −0.480510 0.832269i 0.519240 0.854629i \(-0.326215\pi\)
−0.999750 + 0.0223602i \(0.992882\pi\)
\(678\) −16911.4 −0.957935
\(679\) 0 0
\(680\) 590.008 0.0332732
\(681\) −256.271 443.875i −0.0144205 0.0249770i
\(682\) −141.876 + 245.737i −0.00796586 + 0.0137973i
\(683\) 6908.65 11966.1i 0.387045 0.670382i −0.605005 0.796222i \(-0.706829\pi\)
0.992051 + 0.125839i \(0.0401623\pi\)
\(684\) 36203.9 + 62707.0i 2.02382 + 3.50535i
\(685\) −3231.09 −0.180224
\(686\) 0 0
\(687\) −25322.6 −1.40628
\(688\) 1210.74 + 2097.06i 0.0670915 + 0.116206i
\(689\) 17271.4 29914.9i 0.954989 1.65409i
\(690\) −1965.20 + 3403.83i −0.108426 + 0.187799i
\(691\) −11835.8 20500.2i −0.651600 1.12860i −0.982735 0.185021i \(-0.940765\pi\)
0.331134 0.943584i \(-0.392569\pi\)
\(692\) −31422.5 −1.72616
\(693\) 0 0
\(694\) 55818.2 3.05307
\(695\) −1266.21 2193.14i −0.0691081 0.119699i
\(696\) 14006.5 24260.0i 0.762810 1.32123i
\(697\) 225.667 390.866i 0.0122636 0.0212412i
\(698\) 10370.5 + 17962.2i 0.562362 + 0.974040i
\(699\) −29614.5 −1.60246
\(700\) 0 0
\(701\) −17009.7 −0.916472 −0.458236 0.888831i \(-0.651519\pi\)
−0.458236 + 0.888831i \(0.651519\pi\)
\(702\) −28170.3 48792.3i −1.51456 2.62329i
\(703\) −8808.23 + 15256.3i −0.472559 + 0.818496i
\(704\) −12241.4 + 21202.7i −0.655348 + 1.13510i
\(705\) 2705.80 + 4686.59i 0.144548 + 0.250365i
\(706\) −59020.9 −3.14629
\(707\) 0 0
\(708\) −94136.8 −4.99700
\(709\) −11019.5 19086.2i −0.583701 1.01100i −0.995036 0.0995158i \(-0.968271\pi\)
0.411335 0.911484i \(-0.365063\pi\)
\(710\) 6051.82 10482.1i 0.319888 0.554063i
\(711\) 11418.4 19777.2i 0.602282 1.04318i
\(712\) 115.576 + 200.184i 0.00608343 + 0.0105368i
\(713\) 41.2994 0.00216925
\(714\) 0 0
\(715\) −13389.1 −0.700312
\(716\) −20324.6 35203.2i −1.06085 1.83744i
\(717\) −9571.72 + 16578.7i −0.498553 + 0.863519i
\(718\) −5594.39 + 9689.77i −0.290781 + 0.503648i
\(719\) 3643.72 + 6311.11i 0.188996 + 0.327350i 0.944916 0.327314i \(-0.106143\pi\)
−0.755920 + 0.654664i \(0.772810\pi\)
\(720\) −1756.84 −0.0909354
\(721\) 0 0
\(722\) −40328.5 −2.07877
\(723\) −9290.99 16092.5i −0.477919 0.827781i
\(724\) −6022.47 + 10431.2i −0.309148 + 0.535461i
\(725\) −1676.10 + 2903.09i −0.0858603 + 0.148714i
\(726\) −8227.86 14251.1i −0.420612 0.728522i
\(727\) 29676.7 1.51396 0.756980 0.653438i \(-0.226674\pi\)
0.756980 + 0.653438i \(0.226674\pi\)
\(728\) 0 0
\(729\) −31936.3 −1.62253
\(730\) 768.468 + 1331.03i 0.0389620 + 0.0674842i
\(731\) 707.342 1225.15i 0.0357893 0.0619889i
\(732\) 21859.8 37862.3i 1.10377 1.91179i
\(733\) 11555.9 + 20015.4i 0.582300 + 1.00857i 0.995206 + 0.0977999i \(0.0311805\pi\)
−0.412906 + 0.910774i \(0.635486\pi\)
\(734\) −32971.9 −1.65806
\(735\) 0 0
\(736\) 3279.12 0.164226
\(737\) 10505.9 + 18196.7i 0.525086 + 0.909476i
\(738\) −9547.16 + 16536.2i −0.476200 + 0.824803i
\(739\) 15585.7 26995.2i 0.775818 1.34376i −0.158516 0.987356i \(-0.550671\pi\)
0.934334 0.356399i \(-0.115996\pi\)
\(740\) −4723.37 8181.12i −0.234641 0.406411i
\(741\) 93091.1 4.61510
\(742\) 0 0
\(743\) −31324.4 −1.54668 −0.773338 0.633993i \(-0.781415\pi\)
−0.773338 + 0.633993i \(0.781415\pi\)
\(744\) 212.851 + 368.668i 0.0104885 + 0.0181667i
\(745\) −4570.29 + 7915.97i −0.224755 + 0.389287i
\(746\) 26815.4 46445.6i 1.31606 2.27948i
\(747\) 1517.30 + 2628.04i 0.0743174 + 0.128722i
\(748\) −1909.45 −0.0933373
\(749\) 0 0
\(750\) 4848.04 0.236034
\(751\) −2016.10 3491.99i −0.0979608 0.169673i 0.812880 0.582432i \(-0.197899\pi\)
−0.910840 + 0.412759i \(0.864565\pi\)
\(752\) −523.195 + 906.200i −0.0253709 + 0.0439438i
\(753\) −12926.0 + 22388.5i −0.625566 + 1.08351i
\(754\) −27572.5 47756.9i −1.33174 2.30664i
\(755\) −14875.8 −0.717069
\(756\) 0 0
\(757\) 34263.7 1.64509 0.822546 0.568699i \(-0.192553\pi\)
0.822546 + 0.568699i \(0.192553\pi\)
\(758\) −29529.7 51146.9i −1.41499 2.45084i
\(759\) 2559.18 4432.63i 0.122388 0.211982i
\(760\) 7773.24 13463.6i 0.371006 0.642602i
\(761\) 3632.94 + 6292.44i 0.173054 + 0.299738i 0.939486 0.342587i \(-0.111303\pi\)
−0.766432 + 0.642325i \(0.777970\pi\)
\(762\) −46024.8 −2.18806
\(763\) 0 0
\(764\) 5571.07 0.263814
\(765\) 513.194 + 888.878i 0.0242543 + 0.0420097i
\(766\) −17273.0 + 29917.7i −0.814750 + 1.41119i
\(767\) −37283.7 + 64577.3i −1.75520 + 3.04009i
\(768\) 20541.2 + 35578.4i 0.965127 + 1.67165i
\(769\) −38116.2 −1.78739 −0.893695 0.448674i \(-0.851896\pi\)
−0.893695 + 0.448674i \(0.851896\pi\)
\(770\) 0 0
\(771\) 50591.3 2.36317
\(772\) 34678.3 + 60064.6i 1.61671 + 2.80022i
\(773\) 8079.11 13993.4i 0.375919 0.651111i −0.614545 0.788882i \(-0.710660\pi\)
0.990464 + 0.137771i \(0.0439937\pi\)
\(774\) −29925.1 + 51831.9i −1.38971 + 2.40705i