Properties

Label 245.4.e.j.226.1
Level $245$
Weight $4$
Character 245.226
Analytic conductor $14.455$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 245 = 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 245.e (of order \(3\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(14.4554679514\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{11})\)
Defining polynomial: \( x^{4} + 11x^{2} + 121 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 226.1
Root \(-1.65831 + 2.87228i\) of defining polynomial
Character \(\chi\) \(=\) 245.226
Dual form 245.4.e.j.116.1

$q$-expansion

\(f(q)\) \(=\) \(q+(-2.15831 + 3.73831i) q^{2} +(-2.50000 - 4.33013i) q^{3} +(-5.31662 - 9.20866i) q^{4} +(-2.50000 + 4.33013i) q^{5} +21.5831 q^{6} +11.3668 q^{8} +(1.00000 - 1.73205i) q^{9} +O(q^{10})\) \(q+(-2.15831 + 3.73831i) q^{2} +(-2.50000 - 4.33013i) q^{3} +(-5.31662 - 9.20866i) q^{4} +(-2.50000 + 4.33013i) q^{5} +21.5831 q^{6} +11.3668 q^{8} +(1.00000 - 1.73205i) q^{9} +(-10.7916 - 18.6915i) q^{10} +(-9.86675 - 17.0897i) q^{11} +(-26.5831 + 46.0433i) q^{12} +71.3325 q^{13} +25.0000 q^{15} +(18.0000 - 31.1769i) q^{16} +(15.6662 + 27.1347i) q^{17} +(4.31662 + 7.47661i) q^{18} +(-68.1662 + 118.067i) q^{19} +53.1662 q^{20} +85.1821 q^{22} +(50.4327 - 87.3521i) q^{23} +(-28.4169 - 49.2195i) q^{24} +(-12.5000 - 21.6506i) q^{25} +(-153.958 + 266.663i) q^{26} -145.000 q^{27} -288.198 q^{29} +(-53.9578 + 93.4577i) q^{30} +(104.499 + 180.997i) q^{31} +(123.166 + 213.330i) q^{32} +(-49.3338 + 85.4486i) q^{33} -135.251 q^{34} -21.2665 q^{36} +(-154.966 + 268.409i) q^{37} +(-294.248 - 509.653i) q^{38} +(-178.331 - 308.879i) q^{39} +(-28.4169 + 49.2195i) q^{40} -181.662 q^{41} -18.2005 q^{43} +(-104.916 + 181.719i) q^{44} +(5.00000 + 8.66025i) q^{45} +(217.699 + 377.066i) q^{46} +(73.8325 - 127.882i) q^{47} -180.000 q^{48} +107.916 q^{50} +(78.3312 - 135.674i) q^{51} +(-379.248 - 656.877i) q^{52} +(63.9975 + 110.847i) q^{53} +(312.955 - 542.054i) q^{54} +98.6675 q^{55} +681.662 q^{57} +(622.021 - 1077.37i) q^{58} +(-161.332 - 279.436i) q^{59} +(-132.916 - 230.217i) q^{60} +(-170.501 + 295.317i) q^{61} -902.164 q^{62} -775.325 q^{64} +(-178.331 + 308.879i) q^{65} +(-212.955 - 368.849i) q^{66} +(42.1980 + 73.0891i) q^{67} +(166.583 - 288.530i) q^{68} -504.327 q^{69} -315.736 q^{71} +(11.3668 - 19.6878i) q^{72} +(546.662 + 946.847i) q^{73} +(-668.929 - 1158.62i) q^{74} +(-62.5000 + 108.253i) q^{75} +1449.66 q^{76} +1539.58 q^{78} +(-616.593 + 1067.97i) q^{79} +(90.0000 + 155.885i) q^{80} +(335.500 + 581.103i) q^{81} +(392.084 - 679.110i) q^{82} -643.325 q^{83} -156.662 q^{85} +(39.2824 - 68.0391i) q^{86} +(720.495 + 1247.93i) q^{87} +(-112.153 - 194.255i) q^{88} +(-570.159 + 987.544i) q^{89} -43.1662 q^{90} -1072.53 q^{92} +(522.494 - 904.986i) q^{93} +(318.707 + 552.017i) q^{94} +(-340.831 - 590.337i) q^{95} +(615.831 - 1066.65i) q^{96} +1411.99 q^{97} -39.4670 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 2 q^{2} - 10 q^{3} - 8 q^{4} - 10 q^{5} + 20 q^{6} + 72 q^{8} + 4 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q - 2 q^{2} - 10 q^{3} - 8 q^{4} - 10 q^{5} + 20 q^{6} + 72 q^{8} + 4 q^{9} - 10 q^{10} - 66 q^{11} - 40 q^{12} + 20 q^{13} + 100 q^{15} + 72 q^{16} - 70 q^{17} + 4 q^{18} - 140 q^{19} + 80 q^{20} - 44 q^{22} + 16 q^{23} - 180 q^{24} - 50 q^{25} - 450 q^{26} - 580 q^{27} - 516 q^{29} - 50 q^{30} + 20 q^{31} + 360 q^{32} - 330 q^{33} - 740 q^{34} - 32 q^{36} - 328 q^{37} - 580 q^{38} - 50 q^{39} - 180 q^{40} + 600 q^{41} - 232 q^{43} - 88 q^{44} + 20 q^{45} + 632 q^{46} + 30 q^{47} - 720 q^{48} + 100 q^{50} - 350 q^{51} - 920 q^{52} - 540 q^{53} + 290 q^{54} + 660 q^{55} + 1400 q^{57} + 1314 q^{58} - 380 q^{59} - 200 q^{60} - 1080 q^{61} - 2680 q^{62} - 448 q^{64} - 50 q^{65} + 110 q^{66} - 468 q^{67} + 600 q^{68} - 160 q^{69} - 2112 q^{71} + 72 q^{72} + 860 q^{73} - 1296 q^{74} - 250 q^{75} + 2880 q^{76} + 4500 q^{78} - 158 q^{79} + 360 q^{80} + 1342 q^{81} + 1900 q^{82} + 80 q^{83} + 700 q^{85} - 148 q^{86} + 1290 q^{87} - 1364 q^{88} + 240 q^{89} - 40 q^{90} - 2592 q^{92} + 100 q^{93} + 910 q^{94} - 700 q^{95} + 1800 q^{96} + 3260 q^{97} - 264 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/245\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(197\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.15831 + 3.73831i −0.763079 + 1.32169i 0.178178 + 0.983998i \(0.442980\pi\)
−0.941256 + 0.337693i \(0.890354\pi\)
\(3\) −2.50000 4.33013i −0.481125 0.833333i 0.518640 0.854993i \(-0.326438\pi\)
−0.999765 + 0.0216593i \(0.993105\pi\)
\(4\) −5.31662 9.20866i −0.664578 1.15108i
\(5\) −2.50000 + 4.33013i −0.223607 + 0.387298i
\(6\) 21.5831 1.46855
\(7\) 0 0
\(8\) 11.3668 0.502344
\(9\) 1.00000 1.73205i 0.0370370 0.0641500i
\(10\) −10.7916 18.6915i −0.341259 0.591078i
\(11\) −9.86675 17.0897i −0.270449 0.468431i 0.698528 0.715583i \(-0.253839\pi\)
−0.968977 + 0.247152i \(0.920505\pi\)
\(12\) −26.5831 + 46.0433i −0.639491 + 1.10763i
\(13\) 71.3325 1.52185 0.760926 0.648839i \(-0.224745\pi\)
0.760926 + 0.648839i \(0.224745\pi\)
\(14\) 0 0
\(15\) 25.0000 0.430331
\(16\) 18.0000 31.1769i 0.281250 0.487139i
\(17\) 15.6662 + 27.1347i 0.223507 + 0.387126i 0.955871 0.293788i \(-0.0949160\pi\)
−0.732363 + 0.680914i \(0.761583\pi\)
\(18\) 4.31662 + 7.47661i 0.0565243 + 0.0979030i
\(19\) −68.1662 + 118.067i −0.823074 + 1.42561i 0.0803080 + 0.996770i \(0.474410\pi\)
−0.903382 + 0.428836i \(0.858924\pi\)
\(20\) 53.1662 0.594417
\(21\) 0 0
\(22\) 85.1821 0.825495
\(23\) 50.4327 87.3521i 0.457215 0.791920i −0.541597 0.840638i \(-0.682180\pi\)
0.998813 + 0.0487178i \(0.0155135\pi\)
\(24\) −28.4169 49.2195i −0.241690 0.418620i
\(25\) −12.5000 21.6506i −0.100000 0.173205i
\(26\) −153.958 + 266.663i −1.16129 + 2.01142i
\(27\) −145.000 −1.03353
\(28\) 0 0
\(29\) −288.198 −1.84541 −0.922707 0.385501i \(-0.874029\pi\)
−0.922707 + 0.385501i \(0.874029\pi\)
\(30\) −53.9578 + 93.4577i −0.328377 + 0.568765i
\(31\) 104.499 + 180.997i 0.605436 + 1.04865i 0.991982 + 0.126376i \(0.0403347\pi\)
−0.386546 + 0.922270i \(0.626332\pi\)
\(32\) 123.166 + 213.330i 0.680404 + 1.17849i
\(33\) −49.3338 + 85.4486i −0.260240 + 0.450748i
\(34\) −135.251 −0.682214
\(35\) 0 0
\(36\) −21.2665 −0.0984560
\(37\) −154.966 + 268.409i −0.688546 + 1.19260i 0.283762 + 0.958895i \(0.408417\pi\)
−0.972308 + 0.233702i \(0.924916\pi\)
\(38\) −294.248 509.653i −1.25614 2.17570i
\(39\) −178.331 308.879i −0.732201 1.26821i
\(40\) −28.4169 + 49.2195i −0.112328 + 0.194557i
\(41\) −181.662 −0.691973 −0.345987 0.938239i \(-0.612456\pi\)
−0.345987 + 0.938239i \(0.612456\pi\)
\(42\) 0 0
\(43\) −18.2005 −0.0645477 −0.0322738 0.999479i \(-0.510275\pi\)
−0.0322738 + 0.999479i \(0.510275\pi\)
\(44\) −104.916 + 181.719i −0.359469 + 0.622618i
\(45\) 5.00000 + 8.66025i 0.0165635 + 0.0286888i
\(46\) 217.699 + 377.066i 0.697783 + 1.20860i
\(47\) 73.8325 127.882i 0.229140 0.396882i −0.728414 0.685138i \(-0.759742\pi\)
0.957553 + 0.288256i \(0.0930753\pi\)
\(48\) −180.000 −0.541266
\(49\) 0 0
\(50\) 107.916 0.305231
\(51\) 78.3312 135.674i 0.215070 0.372512i
\(52\) −379.248 656.877i −1.01139 1.75178i
\(53\) 63.9975 + 110.847i 0.165863 + 0.287283i 0.936961 0.349433i \(-0.113626\pi\)
−0.771099 + 0.636716i \(0.780292\pi\)
\(54\) 312.955 542.054i 0.788663 1.36601i
\(55\) 98.6675 0.241897
\(56\) 0 0
\(57\) 681.662 1.58401
\(58\) 622.021 1077.37i 1.40820 2.43907i
\(59\) −161.332 279.436i −0.355995 0.616601i 0.631293 0.775545i \(-0.282525\pi\)
−0.987288 + 0.158943i \(0.949191\pi\)
\(60\) −132.916 230.217i −0.285989 0.495347i
\(61\) −170.501 + 295.317i −0.357876 + 0.619860i −0.987606 0.156955i \(-0.949832\pi\)
0.629730 + 0.776814i \(0.283166\pi\)
\(62\) −902.164 −1.84798
\(63\) 0 0
\(64\) −775.325 −1.51431
\(65\) −178.331 + 308.879i −0.340296 + 0.589411i
\(66\) −212.955 368.849i −0.397166 0.687912i
\(67\) 42.1980 + 73.0891i 0.0769449 + 0.133272i 0.901930 0.431881i \(-0.142150\pi\)
−0.824986 + 0.565154i \(0.808817\pi\)
\(68\) 166.583 288.530i 0.297076 0.514551i
\(69\) −504.327 −0.879911
\(70\) 0 0
\(71\) −315.736 −0.527760 −0.263880 0.964555i \(-0.585002\pi\)
−0.263880 + 0.964555i \(0.585002\pi\)
\(72\) 11.3668 19.6878i 0.0186053 0.0322254i
\(73\) 546.662 + 946.847i 0.876466 + 1.51808i 0.855193 + 0.518310i \(0.173439\pi\)
0.0212727 + 0.999774i \(0.493228\pi\)
\(74\) −668.929 1158.62i −1.05083 1.82009i
\(75\) −62.5000 + 108.253i −0.0962250 + 0.166667i
\(76\) 1449.66 2.18799
\(77\) 0 0
\(78\) 1539.58 2.23491
\(79\) −616.593 + 1067.97i −0.878128 + 1.52096i −0.0247348 + 0.999694i \(0.507874\pi\)
−0.853393 + 0.521268i \(0.825459\pi\)
\(80\) 90.0000 + 155.885i 0.125779 + 0.217855i
\(81\) 335.500 + 581.103i 0.460219 + 0.797124i
\(82\) 392.084 679.110i 0.528030 0.914575i
\(83\) −643.325 −0.850772 −0.425386 0.905012i \(-0.639862\pi\)
−0.425386 + 0.905012i \(0.639862\pi\)
\(84\) 0 0
\(85\) −156.662 −0.199911
\(86\) 39.2824 68.0391i 0.0492550 0.0853121i
\(87\) 720.495 + 1247.93i 0.887876 + 1.53785i
\(88\) −112.153 194.255i −0.135858 0.235314i
\(89\) −570.159 + 987.544i −0.679064 + 1.17617i 0.296199 + 0.955126i \(0.404281\pi\)
−0.975263 + 0.221047i \(0.929053\pi\)
\(90\) −43.1662 −0.0505569
\(91\) 0 0
\(92\) −1072.53 −1.21542
\(93\) 522.494 904.986i 0.582581 1.00906i
\(94\) 318.707 + 552.017i 0.349704 + 0.605704i
\(95\) −340.831 590.337i −0.368090 0.637551i
\(96\) 615.831 1066.65i 0.654719 1.13401i
\(97\) 1411.99 1.47800 0.739001 0.673705i \(-0.235298\pi\)
0.739001 + 0.673705i \(0.235298\pi\)
\(98\) 0 0
\(99\) −39.4670 −0.0400665
\(100\) −132.916 + 230.217i −0.132916 + 0.230217i
\(101\) 272.836 + 472.566i 0.268794 + 0.465565i 0.968551 0.248816i \(-0.0800415\pi\)
−0.699756 + 0.714381i \(0.746708\pi\)
\(102\) 338.127 + 585.652i 0.328231 + 0.568512i
\(103\) −390.495 + 676.357i −0.373559 + 0.647024i −0.990110 0.140291i \(-0.955196\pi\)
0.616551 + 0.787315i \(0.288529\pi\)
\(104\) 810.819 0.764493
\(105\) 0 0
\(106\) −552.506 −0.506266
\(107\) 310.330 537.507i 0.280381 0.485634i −0.691098 0.722761i \(-0.742873\pi\)
0.971478 + 0.237128i \(0.0762060\pi\)
\(108\) 770.911 + 1335.26i 0.686860 + 1.18968i
\(109\) −2.09397 3.62686i −0.00184005 0.00318707i 0.865104 0.501593i \(-0.167252\pi\)
−0.866944 + 0.498406i \(0.833919\pi\)
\(110\) −212.955 + 368.849i −0.184586 + 0.319713i
\(111\) 1549.66 1.32511
\(112\) 0 0
\(113\) 1413.53 1.17676 0.588379 0.808585i \(-0.299766\pi\)
0.588379 + 0.808585i \(0.299766\pi\)
\(114\) −1471.24 + 2548.26i −1.20872 + 2.09357i
\(115\) 252.164 + 436.760i 0.204473 + 0.354158i
\(116\) 1532.24 + 2653.92i 1.22642 + 2.12423i
\(117\) 71.3325 123.552i 0.0563649 0.0976268i
\(118\) 1392.82 1.08661
\(119\) 0 0
\(120\) 284.169 0.216175
\(121\) 470.794 815.440i 0.353715 0.612652i
\(122\) −735.990 1274.77i −0.546175 0.946004i
\(123\) 454.156 + 786.622i 0.332926 + 0.576645i
\(124\) 1111.16 1924.59i 0.804720 1.39382i
\(125\) 125.000 0.0894427
\(126\) 0 0
\(127\) −2046.26 −1.42974 −0.714868 0.699259i \(-0.753513\pi\)
−0.714868 + 0.699259i \(0.753513\pi\)
\(128\) 688.063 1191.76i 0.475131 0.822951i
\(129\) 45.5013 + 78.8105i 0.0310555 + 0.0537897i
\(130\) −769.789 1333.31i −0.519346 0.899533i
\(131\) −570.159 + 987.544i −0.380267 + 0.658642i −0.991100 0.133117i \(-0.957501\pi\)
0.610833 + 0.791759i \(0.290835\pi\)
\(132\) 1049.16 0.691798
\(133\) 0 0
\(134\) −364.306 −0.234860
\(135\) 362.500 627.868i 0.231104 0.400284i
\(136\) 178.074 + 308.434i 0.112278 + 0.194470i
\(137\) 245.171 + 424.649i 0.152893 + 0.264819i 0.932290 0.361712i \(-0.117808\pi\)
−0.779397 + 0.626531i \(0.784474\pi\)
\(138\) 1088.50 1885.33i 0.671442 1.16297i
\(139\) 2800.00 1.70858 0.854291 0.519795i \(-0.173992\pi\)
0.854291 + 0.519795i \(0.173992\pi\)
\(140\) 0 0
\(141\) −738.325 −0.440980
\(142\) 681.457 1180.32i 0.402723 0.697536i
\(143\) −703.820 1219.05i −0.411583 0.712883i
\(144\) −36.0000 62.3538i −0.0208333 0.0360844i
\(145\) 720.495 1247.93i 0.412647 0.714726i
\(146\) −4719.47 −2.67525
\(147\) 0 0
\(148\) 3295.58 1.83037
\(149\) −583.058 + 1009.89i −0.320577 + 0.555256i −0.980607 0.195983i \(-0.937210\pi\)
0.660030 + 0.751239i \(0.270544\pi\)
\(150\) −269.789 467.288i −0.146855 0.254360i
\(151\) −479.791 831.022i −0.258575 0.447865i 0.707285 0.706928i \(-0.249920\pi\)
−0.965860 + 0.259063i \(0.916586\pi\)
\(152\) −774.829 + 1342.04i −0.413467 + 0.716145i
\(153\) 62.6650 0.0331122
\(154\) 0 0
\(155\) −1044.99 −0.541519
\(156\) −1896.24 + 3284.39i −0.973210 + 1.68565i
\(157\) 510.330 + 883.917i 0.259419 + 0.449327i 0.966086 0.258219i \(-0.0831356\pi\)
−0.706667 + 0.707546i \(0.749802\pi\)
\(158\) −2661.60 4610.03i −1.34016 2.32123i
\(159\) 319.987 554.234i 0.159602 0.276438i
\(160\) −1231.66 −0.608572
\(161\) 0 0
\(162\) −2896.46 −1.40473
\(163\) 783.008 1356.21i 0.376257 0.651696i −0.614257 0.789106i \(-0.710544\pi\)
0.990514 + 0.137410i \(0.0438777\pi\)
\(164\) 965.831 + 1672.87i 0.459870 + 0.796519i
\(165\) −246.669 427.243i −0.116383 0.201581i
\(166\) 1388.50 2404.95i 0.649206 1.12446i
\(167\) −1130.30 −0.523746 −0.261873 0.965102i \(-0.584340\pi\)
−0.261873 + 0.965102i \(0.584340\pi\)
\(168\) 0 0
\(169\) 2891.32 1.31603
\(170\) 338.127 585.652i 0.152548 0.264221i
\(171\) 136.332 + 236.135i 0.0609685 + 0.105600i
\(172\) 96.7652 + 167.602i 0.0428970 + 0.0742997i
\(173\) −1271.67 + 2202.59i −0.558862 + 0.967978i 0.438729 + 0.898619i \(0.355429\pi\)
−0.997592 + 0.0693588i \(0.977905\pi\)
\(174\) −6220.21 −2.71008
\(175\) 0 0
\(176\) −710.406 −0.304255
\(177\) −806.662 + 1397.18i −0.342556 + 0.593325i
\(178\) −2461.16 4262.86i −1.03636 1.79503i
\(179\) 605.325 + 1048.45i 0.252760 + 0.437794i 0.964285 0.264868i \(-0.0853282\pi\)
−0.711524 + 0.702661i \(0.751995\pi\)
\(180\) 53.1662 92.0866i 0.0220154 0.0381319i
\(181\) −3031.32 −1.24484 −0.622421 0.782683i \(-0.713851\pi\)
−0.622421 + 0.782683i \(0.713851\pi\)
\(182\) 0 0
\(183\) 1705.01 0.688733
\(184\) 573.256 992.909i 0.229679 0.397817i
\(185\) −774.829 1342.04i −0.307927 0.533346i
\(186\) 2255.41 + 3906.48i 0.889111 + 1.53999i
\(187\) 309.150 535.463i 0.120895 0.209396i
\(188\) −1570.16 −0.609125
\(189\) 0 0
\(190\) 2942.48 1.12353
\(191\) 1084.32 1878.10i 0.410778 0.711488i −0.584197 0.811612i \(-0.698591\pi\)
0.994975 + 0.100124i \(0.0319239\pi\)
\(192\) 1938.31 + 3357.26i 0.728571 + 1.26192i
\(193\) −745.240 1290.79i −0.277946 0.481416i 0.692928 0.721006i \(-0.256320\pi\)
−0.970874 + 0.239590i \(0.922987\pi\)
\(194\) −3047.52 + 5278.46i −1.12783 + 1.95346i
\(195\) 1783.31 0.654901
\(196\) 0 0
\(197\) 3380.57 1.22262 0.611308 0.791393i \(-0.290644\pi\)
0.611308 + 0.791393i \(0.290644\pi\)
\(198\) 85.1821 147.540i 0.0305739 0.0529555i
\(199\) −2297.66 3979.67i −0.818478 1.41765i −0.906803 0.421554i \(-0.861485\pi\)
0.0883251 0.996092i \(-0.471849\pi\)
\(200\) −142.084 246.097i −0.0502344 0.0870086i
\(201\) 210.990 365.445i 0.0740402 0.128241i
\(202\) −2355.46 −0.820445
\(203\) 0 0
\(204\) −1665.83 −0.571723
\(205\) 454.156 786.622i 0.154730 0.268000i
\(206\) −1685.62 2919.58i −0.570110 0.987460i
\(207\) −100.865 174.704i −0.0338678 0.0586608i
\(208\) 1283.98 2223.93i 0.428021 0.741354i
\(209\) 2690.32 0.890398
\(210\) 0 0
\(211\) −4988.66 −1.62765 −0.813824 0.581112i \(-0.802618\pi\)
−0.813824 + 0.581112i \(0.802618\pi\)
\(212\) 680.501 1178.66i 0.220458 0.381844i
\(213\) 789.340 + 1367.18i 0.253919 + 0.439800i
\(214\) 1339.58 + 2320.22i 0.427905 + 0.741153i
\(215\) 45.5013 78.8105i 0.0144333 0.0249992i
\(216\) −1648.18 −0.519187
\(217\) 0 0
\(218\) 18.0778 0.00561643
\(219\) 2733.31 4734.24i 0.843380 1.46078i
\(220\) −524.578 908.596i −0.160759 0.278443i
\(221\) 1117.51 + 1935.59i 0.340145 + 0.589148i
\(222\) −3344.64 + 5793.09i −1.01116 + 1.75138i
\(223\) 3792.97 1.13900 0.569498 0.821993i \(-0.307138\pi\)
0.569498 + 0.821993i \(0.307138\pi\)
\(224\) 0 0
\(225\) −50.0000 −0.0148148
\(226\) −3050.84 + 5284.21i −0.897960 + 1.55531i
\(227\) −1955.48 3386.99i −0.571762 0.990320i −0.996385 0.0849504i \(-0.972927\pi\)
0.424623 0.905370i \(-0.360407\pi\)
\(228\) −3624.14 6277.20i −1.05270 1.82332i
\(229\) −177.164 + 306.857i −0.0511236 + 0.0885487i −0.890455 0.455072i \(-0.849614\pi\)
0.839331 + 0.543621i \(0.182947\pi\)
\(230\) −2176.99 −0.624116
\(231\) 0 0
\(232\) −3275.87 −0.927033
\(233\) −3246.24 + 5622.65i −0.912739 + 1.58091i −0.102561 + 0.994727i \(0.532704\pi\)
−0.810178 + 0.586184i \(0.800630\pi\)
\(234\) 307.916 + 533.325i 0.0860217 + 0.148994i
\(235\) 369.162 + 639.408i 0.102474 + 0.177491i
\(236\) −1715.49 + 2971.31i −0.473173 + 0.819559i
\(237\) 6165.93 1.68996
\(238\) 0 0
\(239\) −342.688 −0.0927474 −0.0463737 0.998924i \(-0.514766\pi\)
−0.0463737 + 0.998924i \(0.514766\pi\)
\(240\) 450.000 779.423i 0.121031 0.209631i
\(241\) −1156.83 2003.69i −0.309204 0.535557i 0.668984 0.743277i \(-0.266729\pi\)
−0.978189 + 0.207719i \(0.933396\pi\)
\(242\) 2032.24 + 3519.95i 0.539825 + 0.935003i
\(243\) −280.000 + 484.974i −0.0739177 + 0.128029i
\(244\) 3625.96 0.951347
\(245\) 0 0
\(246\) −3920.84 −1.01619
\(247\) −4862.47 + 8422.04i −1.25260 + 2.16956i
\(248\) 1187.81 + 2057.35i 0.304137 + 0.526781i
\(249\) 1608.31 + 2785.68i 0.409328 + 0.708977i
\(250\) −269.789 + 467.288i −0.0682518 + 0.118216i
\(251\) 3989.29 1.00319 0.501597 0.865101i \(-0.332746\pi\)
0.501597 + 0.865101i \(0.332746\pi\)
\(252\) 0 0
\(253\) −1990.43 −0.494614
\(254\) 4416.48 7649.56i 1.09100 1.88967i
\(255\) 391.656 + 678.368i 0.0961822 + 0.166592i
\(256\) −131.188 227.224i −0.0320283 0.0554747i
\(257\) −1145.66 + 1984.34i −0.278071 + 0.481633i −0.970905 0.239463i \(-0.923028\pi\)
0.692834 + 0.721097i \(0.256362\pi\)
\(258\) −392.824 −0.0947912
\(259\) 0 0
\(260\) 3792.48 0.904614
\(261\) −288.198 + 499.174i −0.0683487 + 0.118383i
\(262\) −2461.16 4262.86i −0.580348 1.00519i
\(263\) −3180.24 5508.33i −0.745634 1.29148i −0.949898 0.312560i \(-0.898813\pi\)
0.204264 0.978916i \(-0.434520\pi\)
\(264\) −560.764 + 971.273i −0.130730 + 0.226431i
\(265\) −639.975 −0.148352
\(266\) 0 0
\(267\) 5701.59 1.30686
\(268\) 448.702 777.174i 0.102272 0.177140i
\(269\) 495.673 + 858.530i 0.112348 + 0.194593i 0.916717 0.399538i \(-0.130829\pi\)
−0.804368 + 0.594131i \(0.797496\pi\)
\(270\) 1564.78 + 2710.27i 0.352701 + 0.610896i
\(271\) −365.489 + 633.045i −0.0819257 + 0.141899i −0.904077 0.427370i \(-0.859440\pi\)
0.822151 + 0.569269i \(0.192774\pi\)
\(272\) 1127.97 0.251446
\(273\) 0 0
\(274\) −2116.62 −0.466679
\(275\) −246.669 + 427.243i −0.0540898 + 0.0936862i
\(276\) 2681.32 + 4644.18i 0.584770 + 1.01285i
\(277\) 1769.31 + 3064.54i 0.383783 + 0.664731i 0.991600 0.129346i \(-0.0412878\pi\)
−0.607817 + 0.794077i \(0.707954\pi\)
\(278\) −6043.27 + 10467.3i −1.30378 + 2.25822i
\(279\) 417.995 0.0896943
\(280\) 0 0
\(281\) −4663.20 −0.989975 −0.494988 0.868900i \(-0.664827\pi\)
−0.494988 + 0.868900i \(0.664827\pi\)
\(282\) 1593.54 2760.09i 0.336502 0.582839i
\(283\) 1052.47 + 1822.94i 0.221071 + 0.382906i 0.955134 0.296176i \(-0.0957114\pi\)
−0.734062 + 0.679082i \(0.762378\pi\)
\(284\) 1678.65 + 2907.51i 0.350738 + 0.607496i
\(285\) −1704.16 + 2951.69i −0.354195 + 0.613483i
\(286\) 6076.25 1.25628
\(287\) 0 0
\(288\) 492.665 0.100801
\(289\) 1965.64 3404.58i 0.400089 0.692975i
\(290\) 3110.11 + 5386.86i 0.629765 + 1.09078i
\(291\) −3529.98 6114.11i −0.711104 1.23167i
\(292\) 5812.80 10068.1i 1.16496 2.01777i
\(293\) −6594.66 −1.31489 −0.657447 0.753501i \(-0.728364\pi\)
−0.657447 + 0.753501i \(0.728364\pi\)
\(294\) 0 0
\(295\) 1613.32 0.318412
\(296\) −1761.46 + 3050.93i −0.345887 + 0.599094i
\(297\) 1430.68 + 2478.01i 0.279517 + 0.484137i
\(298\) −2516.84 4359.30i −0.489251 0.847408i
\(299\) 3597.49 6231.04i 0.695814 1.20519i
\(300\) 1329.16 0.255796
\(301\) 0 0
\(302\) 4142.15 0.789252
\(303\) 1364.18 2362.83i 0.258647 0.447990i
\(304\) 2453.98 + 4250.43i 0.462979 + 0.801904i
\(305\) −852.506 1476.58i −0.160047 0.277210i
\(306\) −135.251 + 234.261i −0.0252672 + 0.0437641i
\(307\) −2672.97 −0.496920 −0.248460 0.968642i \(-0.579924\pi\)
−0.248460 + 0.968642i \(0.579924\pi\)
\(308\) 0 0
\(309\) 3904.95 0.718915
\(310\) 2255.41 3906.48i 0.413221 0.715721i
\(311\) 427.849 + 741.056i 0.0780099 + 0.135117i 0.902391 0.430918i \(-0.141810\pi\)
−0.824381 + 0.566035i \(0.808477\pi\)
\(312\) −2027.05 3510.95i −0.367817 0.637078i
\(313\) 1674.99 2901.17i 0.302480 0.523911i −0.674217 0.738533i \(-0.735519\pi\)
0.976697 + 0.214622i \(0.0688521\pi\)
\(314\) −4405.81 −0.791828
\(315\) 0 0
\(316\) 13112.8 2.33434
\(317\) −3816.53 + 6610.42i −0.676206 + 1.17122i 0.299908 + 0.953968i \(0.403044\pi\)
−0.976115 + 0.217256i \(0.930289\pi\)
\(318\) 1381.27 + 2392.42i 0.243577 + 0.421888i
\(319\) 2843.58 + 4925.22i 0.499090 + 0.864450i
\(320\) 1938.31 3357.26i 0.338609 0.586488i
\(321\) −3103.30 −0.539593
\(322\) 0 0
\(323\) −4271.64 −0.735852
\(324\) 3567.46 6179.01i 0.611704 1.05950i
\(325\) −891.656 1544.39i −0.152185 0.263592i
\(326\) 3379.95 + 5854.24i 0.574227 + 0.994591i
\(327\) −10.4698 + 18.1343i −0.00177059 + 0.00306676i
\(328\) −2064.91 −0.347609
\(329\) 0 0
\(330\) 2129.55 0.355236
\(331\) 1660.85 2876.68i 0.275796 0.477693i −0.694539 0.719455i \(-0.744392\pi\)
0.970336 + 0.241761i \(0.0777251\pi\)
\(332\) 3420.32 + 5924.16i 0.565405 + 0.979309i
\(333\) 309.931 + 536.817i 0.0510034 + 0.0883405i
\(334\) 2439.55 4225.43i 0.399660 0.692231i
\(335\) −421.980 −0.0688216
\(336\) 0 0
\(337\) −2233.98 −0.361107 −0.180553 0.983565i \(-0.557789\pi\)
−0.180553 + 0.983565i \(0.557789\pi\)
\(338\) −6240.38 + 10808.7i −1.00424 + 1.73939i
\(339\) −3533.83 6120.77i −0.566168 0.980632i
\(340\) 832.916 + 1442.65i 0.132856 + 0.230114i
\(341\) 2062.13 3571.71i 0.327479 0.567211i
\(342\) −1176.99 −0.186095
\(343\) 0 0
\(344\) −206.881 −0.0324252
\(345\) 1260.82 2183.80i 0.196754 0.340788i
\(346\) −5489.32 9507.78i −0.852912 1.47729i
\(347\) −1264.31 2189.84i −0.195595 0.338781i 0.751500 0.659733i \(-0.229330\pi\)
−0.947095 + 0.320952i \(0.895997\pi\)
\(348\) 7661.20 13269.6i 1.18013 2.04404i
\(349\) 1291.00 0.198011 0.0990054 0.995087i \(-0.468434\pi\)
0.0990054 + 0.995087i \(0.468434\pi\)
\(350\) 0 0
\(351\) −10343.2 −1.57288
\(352\) 2430.50 4209.75i 0.368029 0.637445i
\(353\) 3884.32 + 6727.84i 0.585670 + 1.01441i 0.994792 + 0.101930i \(0.0325019\pi\)
−0.409121 + 0.912480i \(0.634165\pi\)
\(354\) −3482.06 6031.10i −0.522795 0.905507i
\(355\) 789.340 1367.18i 0.118011 0.204401i
\(356\) 12125.3 1.80516
\(357\) 0 0
\(358\) −5225.92 −0.771504
\(359\) 1142.07 1978.12i 0.167900 0.290811i −0.769781 0.638308i \(-0.779635\pi\)
0.937681 + 0.347496i \(0.112968\pi\)
\(360\) 56.8338 + 98.4389i 0.00832056 + 0.0144116i
\(361\) −5863.77 10156.4i −0.854902 1.48073i
\(362\) 6542.54 11332.0i 0.949912 1.64530i
\(363\) −4707.94 −0.680725
\(364\) 0 0
\(365\) −5466.62 −0.783935
\(366\) −3679.95 + 6373.86i −0.525558 + 0.910292i
\(367\) −5353.50 9272.54i −0.761446 1.31886i −0.942105 0.335317i \(-0.891157\pi\)
0.180660 0.983546i \(-0.442177\pi\)
\(368\) −1815.58 3144.67i −0.257184 0.445455i
\(369\) −181.662 + 314.649i −0.0256286 + 0.0443901i
\(370\) 6689.29 0.939891
\(371\) 0 0
\(372\) −11111.6 −1.54868
\(373\) 415.215 719.173i 0.0576381 0.0998321i −0.835767 0.549085i \(-0.814976\pi\)
0.893405 + 0.449253i \(0.148310\pi\)
\(374\) 1334.48 + 2311.39i 0.184504 + 0.319570i
\(375\) −312.500 541.266i −0.0430331 0.0745356i
\(376\) 839.236 1453.60i 0.115107 0.199371i
\(377\) −20557.9 −2.80845
\(378\) 0 0
\(379\) 5253.17 0.711972 0.355986 0.934491i \(-0.384145\pi\)
0.355986 + 0.934491i \(0.384145\pi\)
\(380\) −3624.14 + 6277.20i −0.489249 + 0.847404i
\(381\) 5115.66 + 8860.58i 0.687882 + 1.19145i
\(382\) 4680.60 + 8107.03i 0.626911 + 1.08584i
\(383\) 5621.95 9737.51i 0.750048 1.29912i −0.197750 0.980252i \(-0.563364\pi\)
0.947799 0.318869i \(-0.103303\pi\)
\(384\) −6880.63 −0.914390
\(385\) 0 0
\(386\) 6433.84 0.848378
\(387\) −18.2005 + 31.5242i −0.00239066 + 0.00414074i
\(388\) −7507.03 13002.6i −0.982247 1.70130i
\(389\) 4253.43 + 7367.15i 0.554389 + 0.960230i 0.997951 + 0.0639860i \(0.0203813\pi\)
−0.443562 + 0.896244i \(0.646285\pi\)
\(390\) −3848.95 + 6666.57i −0.499741 + 0.865576i
\(391\) 3160.37 0.408764
\(392\) 0 0
\(393\) 5701.59 0.731824
\(394\) −7296.32 + 12637.6i −0.932952 + 1.61592i
\(395\) −3082.96 5339.85i −0.392711 0.680195i
\(396\) 209.831 + 363.438i 0.0266273 + 0.0461199i
\(397\) −1561.62 + 2704.80i −0.197419 + 0.341940i −0.947691 0.319190i \(-0.896589\pi\)
0.750272 + 0.661130i \(0.229923\pi\)
\(398\) 19836.3 2.49825
\(399\) 0 0
\(400\) −900.000 −0.112500
\(401\) 5627.67 9747.40i 0.700828 1.21387i −0.267348 0.963600i \(-0.586147\pi\)
0.968176 0.250270i \(-0.0805195\pi\)
\(402\) 910.764 + 1577.49i 0.112997 + 0.195717i
\(403\) 7454.16 + 12911.0i 0.921385 + 1.59588i
\(404\) 2901.14 5024.92i 0.357270 0.618809i
\(405\) −3355.00 −0.411633
\(406\) 0 0
\(407\) 6116.03 0.744866
\(408\) 890.372 1542.17i 0.108039 0.187129i
\(409\) 3959.96 + 6858.86i 0.478747 + 0.829214i 0.999703 0.0243694i \(-0.00775778\pi\)
−0.520956 + 0.853584i \(0.674424\pi\)
\(410\) 1960.42 + 3395.55i 0.236142 + 0.409010i
\(411\) 1225.86 2123.25i 0.147122 0.254822i
\(412\) 8304.46 0.993037
\(413\) 0 0
\(414\) 870.797 0.103375
\(415\) 1608.31 2785.68i 0.190238 0.329503i
\(416\) 8785.76 + 15217.4i 1.03547 + 1.79349i
\(417\) −7000.00 12124.4i −0.822042 1.42382i
\(418\) −5806.55 + 10057.2i −0.679444 + 1.17683i
\(419\) −5257.28 −0.612972 −0.306486 0.951875i \(-0.599153\pi\)
−0.306486 + 0.951875i \(0.599153\pi\)
\(420\) 0 0
\(421\) 1457.36 0.168711 0.0843556 0.996436i \(-0.473117\pi\)
0.0843556 + 0.996436i \(0.473117\pi\)
\(422\) 10767.1 18649.2i 1.24202 2.15125i
\(423\) −147.665 255.763i −0.0169733 0.0293987i
\(424\) 727.443 + 1259.97i 0.0833202 + 0.144315i
\(425\) 391.656 678.368i 0.0447014 0.0774252i
\(426\) −6814.57 −0.775040
\(427\) 0 0
\(428\) −6599.63 −0.745339
\(429\) −3519.10 + 6095.26i −0.396046 + 0.685972i
\(430\) 196.412 + 340.195i 0.0220275 + 0.0381527i
\(431\) 7645.59 + 13242.6i 0.854467 + 1.47998i 0.877139 + 0.480237i \(0.159449\pi\)
−0.0226716 + 0.999743i \(0.507217\pi\)
\(432\) −2610.00 + 4520.65i −0.290680 + 0.503472i
\(433\) 187.260 0.0207832 0.0103916 0.999946i \(-0.496692\pi\)
0.0103916 + 0.999946i \(0.496692\pi\)
\(434\) 0 0
\(435\) −7204.95 −0.794140
\(436\) −22.2657 + 38.5653i −0.00244572 + 0.00423611i
\(437\) 6875.62 + 11908.9i 0.752644 + 1.30362i
\(438\) 11798.7 + 20435.9i 1.28713 + 2.22937i
\(439\) −1793.96 + 3107.23i −0.195037 + 0.337813i −0.946912 0.321491i \(-0.895816\pi\)
0.751876 + 0.659305i \(0.229149\pi\)
\(440\) 1121.53 0.121515
\(441\) 0 0
\(442\) −9647.76 −1.03823
\(443\) −2457.82 + 4257.08i −0.263600 + 0.456568i −0.967196 0.254032i \(-0.918243\pi\)
0.703596 + 0.710600i \(0.251577\pi\)
\(444\) −8238.95 14270.3i −0.880638 1.52531i
\(445\) −2850.79 4937.72i −0.303687 0.526001i
\(446\) −8186.41 + 14179.3i −0.869143 + 1.50540i
\(447\) 5830.58 0.616951
\(448\) 0 0
\(449\) 7091.12 0.745324 0.372662 0.927967i \(-0.378445\pi\)
0.372662 + 0.927967i \(0.378445\pi\)
\(450\) 107.916 186.915i 0.0113049 0.0195806i
\(451\) 1792.42 + 3104.56i 0.187143 + 0.324142i
\(452\) −7515.21 13016.7i −0.782048 1.35455i
\(453\) −2398.95 + 4155.11i −0.248814 + 0.430958i
\(454\) 16882.2 1.74520
\(455\) 0 0
\(456\) 7748.29 0.795717
\(457\) −2525.91 + 4375.00i −0.258549 + 0.447820i −0.965853 0.259089i \(-0.916578\pi\)
0.707304 + 0.706909i \(0.249911\pi\)
\(458\) −764.749 1324.58i −0.0780227 0.135139i
\(459\) −2271.61 3934.54i −0.231001 0.400106i
\(460\) 2681.32 4644.18i 0.271776 0.470731i
\(461\) −16681.3 −1.68531 −0.842653 0.538456i \(-0.819008\pi\)
−0.842653 + 0.538456i \(0.819008\pi\)
\(462\) 0 0
\(463\) 15569.6 1.56280 0.781402 0.624027i \(-0.214505\pi\)
0.781402 + 0.624027i \(0.214505\pi\)
\(464\) −5187.56 + 8985.12i −0.519023 + 0.898974i
\(465\) 2612.47 + 4524.93i 0.260538 + 0.451266i
\(466\) −14012.8 24270.9i −1.39298 2.41272i
\(467\) −1664.18 + 2882.44i −0.164901 + 0.285617i −0.936620 0.350346i \(-0.886064\pi\)
0.771719 + 0.635964i \(0.219397\pi\)
\(468\) −1516.99 −0.149835
\(469\) 0 0
\(470\) −3187.07 −0.312784
\(471\) 2551.65 4419.59i 0.249626 0.432365i
\(472\) −1833.83 3176.28i −0.178832 0.309746i
\(473\) 179.580 + 311.041i 0.0174568 + 0.0302361i
\(474\) −13308.0 + 23050.1i −1.28957 + 2.23360i
\(475\) 3408.31 0.329230
\(476\) 0 0
\(477\) 255.990 0.0245723
\(478\) 739.627 1281.07i 0.0707735 0.122583i
\(479\) 7303.75 + 12650.5i 0.696695 + 1.20671i 0.969606 + 0.244672i \(0.0786802\pi\)
−0.272911 + 0.962039i \(0.587986\pi\)
\(480\) 3079.16 + 5333.25i 0.292799 + 0.507143i
\(481\) −11054.1 + 19146.3i −1.04787 + 1.81496i
\(482\) 9987.23 0.943789
\(483\) 0 0
\(484\) −10012.2 −0.940285
\(485\) −3529.98 + 6114.11i −0.330491 + 0.572427i
\(486\) −1208.65 2093.45i −0.112810 0.195393i
\(487\) 939.744 + 1627.68i 0.0874412 + 0.151453i 0.906429 0.422359i \(-0.138798\pi\)
−0.818988 + 0.573811i \(0.805464\pi\)
\(488\) −1938.05 + 3356.79i −0.179777 + 0.311383i
\(489\) −7830.08 −0.724107
\(490\) 0 0
\(491\) 3221.13 0.296064 0.148032 0.988983i \(-0.452706\pi\)
0.148032 + 0.988983i \(0.452706\pi\)
\(492\) 4829.16 8364.34i 0.442511 0.766451i
\(493\) −4514.98 7820.18i −0.412464 0.714408i
\(494\) −20989.5 36354.8i −1.91166 3.31109i
\(495\) 98.6675 170.897i 0.00895914 0.0155177i
\(496\) 7523.91 0.681116
\(497\) 0 0
\(498\) −13885.0 −1.24940
\(499\) −4856.91 + 8412.41i −0.435721 + 0.754692i −0.997354 0.0726950i \(-0.976840\pi\)
0.561633 + 0.827387i \(0.310173\pi\)
\(500\) −664.578 1151.08i −0.0594417 0.102956i
\(501\) 2825.76 + 4894.36i 0.251988 + 0.436455i
\(502\) −8610.13 + 14913.2i −0.765516 + 1.32591i
\(503\) 2078.32 0.184230 0.0921152 0.995748i \(-0.470637\pi\)
0.0921152 + 0.995748i \(0.470637\pi\)
\(504\) 0 0
\(505\) −2728.36 −0.240417
\(506\) 4295.97 7440.84i 0.377429 0.653726i
\(507\) −7228.31 12519.8i −0.633177 1.09669i
\(508\) 10879.2 + 18843.4i 0.950172 + 1.64575i
\(509\) 9487.23 16432.4i 0.826158 1.43095i −0.0748736 0.997193i \(-0.523855\pi\)
0.901031 0.433754i \(-0.142811\pi\)
\(510\) −3381.27 −0.293578
\(511\) 0 0
\(512\) 12141.6 1.04802
\(513\) 9884.11 17119.8i 0.850670 1.47340i
\(514\) −4945.38 8565.66i −0.424380 0.735048i
\(515\) −1952.47 3381.79i −0.167061 0.289358i
\(516\) 483.826 838.012i 0.0412776 0.0714950i
\(517\) −2913.95 −0.247883
\(518\) 0 0
\(519\) 12716.7 1.07553
\(520\) −2027.05 + 3510.95i −0.170946 + 0.296087i
\(521\) −8761.78 15175.9i −0.736777 1.27613i −0.953939 0.299999i \(-0.903014\pi\)
0.217163 0.976135i \(-0.430320\pi\)
\(522\) −1244.04 2154.74i −0.104311 0.180672i
\(523\) −7609.29 + 13179.7i −0.636197 + 1.10193i 0.350063 + 0.936726i \(0.386160\pi\)
−0.986260 + 0.165199i \(0.947173\pi\)
\(524\) 12125.3 1.01087
\(525\) 0 0
\(526\) 27455.8 2.27591
\(527\) −3274.21 + 5671.09i −0.270639 + 0.468760i
\(528\) 1776.02 + 3076.15i 0.146385 + 0.253546i
\(529\) 996.576 + 1726.12i 0.0819081 + 0.141869i
\(530\) 1381.27 2392.42i 0.113204 0.196076i
\(531\) −645.330 −0.0527400
\(532\) 0 0
\(533\) −12958.4 −1.05308
\(534\) −12305.8 + 21314.3i −0.997237 + 1.72726i
\(535\) 1551.65 + 2687.54i 0.125390 + 0.217182i
\(536\) 479.654 + 830.785i 0.0386528 + 0.0669486i
\(537\) 3026.62 5242.27i 0.243219 0.421267i
\(538\) −4279.26 −0.342922
\(539\) 0 0
\(540\) −7709.11 −0.614346
\(541\) 7779.63 13474.7i 0.618249 1.07084i −0.371557 0.928410i \(-0.621176\pi\)
0.989805 0.142428i \(-0.0454909\pi\)
\(542\) −1577.68 2732.62i −0.125031 0.216561i
\(543\) 7578.30 + 13126.0i 0.598924 + 1.03737i
\(544\) −3859.11 + 6684.17i −0.304150 + 0.526804i
\(545\) 20.9397 0.00164579
\(546\) 0 0
\(547\) −8690.70 −0.679319 −0.339660 0.940548i \(-0.610312\pi\)
−0.339660 + 0.940548i \(0.610312\pi\)
\(548\) 2606.97 4515.40i 0.203219 0.351986i
\(549\) 341.003 + 590.634i 0.0265093 + 0.0459155i
\(550\) −1064.78 1844.25i −0.0825495 0.142980i
\(551\) 19645.4 34026.8i 1.51891 2.63083i
\(552\) −5732.56 −0.442018
\(553\) 0 0
\(554\) −15274.9 −1.17143
\(555\) −3874.14 + 6710.21i −0.296303 + 0.513212i
\(556\) −14886.5 25784.3i −1.13549 1.96672i
\(557\) 3688.13 + 6388.03i 0.280559 + 0.485942i 0.971522 0.236948i \(-0.0761469\pi\)
−0.690964 + 0.722889i \(0.742814\pi\)
\(558\) −902.164 + 1562.59i −0.0684438 + 0.118548i
\(559\) −1298.29 −0.0982320
\(560\) 0 0
\(561\) −3091.50 −0.232662
\(562\) 10064.6 17432.5i 0.755429 1.30844i
\(563\) −6437.70 11150.4i −0.481913 0.834697i 0.517872 0.855458i \(-0.326724\pi\)
−0.999784 + 0.0207610i \(0.993391\pi\)
\(564\) 3925.40 + 6798.99i 0.293066 + 0.507605i
\(565\) −3533.83 + 6120.77i −0.263131 + 0.455757i
\(566\) −9086.28 −0.674779
\(567\) 0 0
\(568\) −3588.89 −0.265117
\(569\) 6032.30 10448.2i 0.444441 0.769795i −0.553572 0.832801i \(-0.686736\pi\)
0.998013 + 0.0630067i \(0.0200689\pi\)
\(570\) −7356.20 12741.3i −0.540557 0.936272i
\(571\) −11872.8 20564.3i −0.870158 1.50716i −0.861832 0.507193i \(-0.830683\pi\)
−0.00832580 0.999965i \(-0.502650\pi\)
\(572\) −7483.89 + 12962.5i −0.547058 + 0.947533i
\(573\) −10843.2 −0.790542
\(574\) 0 0
\(575\) −2521.64 −0.182886
\(576\) −775.325 + 1342.90i −0.0560854 + 0.0971428i
\(577\) 4923.04 + 8526.95i 0.355197 + 0.615220i 0.987152 0.159786i \(-0.0510804\pi\)
−0.631954 + 0.775006i \(0.717747\pi\)
\(578\) 8484.92 + 14696.3i 0.610599 + 1.05759i
\(579\) −3726.20 + 6453.97i −0.267453 + 0.463243i
\(580\) −15322.4 −1.09695
\(581\) 0 0
\(582\) 30475.2 2.17051
\(583\) 1262.89 2187.40i 0.0897148 0.155391i
\(584\) 6213.78 + 10762.6i 0.440287 + 0.762600i
\(585\) 356.662 + 617.758i 0.0252071 + 0.0436601i
\(586\) 14233.3 24652.9i 1.00337 1.73788i
\(587\) 10074.7 0.708392 0.354196 0.935171i \(-0.384755\pi\)
0.354196 + 0.935171i \(0.384755\pi\)
\(588\) 0 0
\(589\) −28493.1 −1.99328
\(590\) −3482.06 + 6031.10i −0.242973 + 0.420842i
\(591\) −8451.42 14638.3i −0.588231 1.01885i
\(592\) 5578.77 + 9662.71i 0.387307 + 0.670836i
\(593\) 3693.62 6397.54i 0.255782 0.443028i −0.709325 0.704881i \(-0.751000\pi\)
0.965108 + 0.261853i \(0.0843336\pi\)
\(594\) −12351.4 −0.853172
\(595\) 0 0
\(596\) 12399.6 0.852194
\(597\) −11488.3 + 19898.4i −0.787581 + 1.36413i
\(598\) 15529.0 + 26897.1i 1.06192 + 1.83930i
\(599\) −626.365 1084.90i −0.0427255 0.0740027i 0.843872 0.536545i \(-0.180271\pi\)
−0.886597 + 0.462542i \(0.846937\pi\)
\(600\) −710.422 + 1230.49i −0.0483381 + 0.0837240i
\(601\) −1800.81 −0.122224 −0.0611120 0.998131i \(-0.519465\pi\)
−0.0611120 + 0.998131i \(0.519465\pi\)
\(602\) 0 0
\(603\) 168.792 0.0113992
\(604\) −5101.73 + 8836.46i −0.343686 + 0.595282i
\(605\) 2353.97 + 4077.20i 0.158186 + 0.273986i
\(606\) 5888.66 + 10199.5i 0.394737 + 0.683704i
\(607\) −1248.53 + 2162.51i −0.0834863 + 0.144602i −0.904745 0.425953i \(-0.859939\pi\)
0.821259 + 0.570556i \(0.193272\pi\)
\(608\) −33583.1 −2.24009
\(609\) 0 0
\(610\) 7359.90 0.488514
\(611\) 5266.66 9122.12i 0.348717 0.603996i
\(612\) −333.166 577.061i −0.0220056 0.0381149i
\(613\) 9875.39 + 17104.7i 0.650674 + 1.12700i 0.982960 + 0.183821i \(0.0588468\pi\)
−0.332286 + 0.943179i \(0.607820\pi\)
\(614\) 5769.10 9992.38i 0.379189 0.656775i
\(615\) −4541.56 −0.297778
\(616\) 0 0
\(617\) 16797.4 1.09601 0.548004 0.836476i \(-0.315388\pi\)
0.548004 + 0.836476i \(0.315388\pi\)
\(618\) −8428.10 + 14597.9i −0.548589 + 0.950184i
\(619\) −13273.7 22990.7i −0.861897 1.49285i −0.870096 0.492883i \(-0.835943\pi\)
0.00819917 0.999966i \(-0.497390\pi\)
\(620\) 5555.81 + 9622.94i 0.359882 + 0.623333i
\(621\) −7312.75 + 12666.1i −0.472545 + 0.818472i
\(622\) −3693.73 −0.238111
\(623\) 0 0
\(624\) −12839.8 −0.823727
\(625\) −312.500 + 541.266i −0.0200000 + 0.0346410i
\(626\) 7230.32 + 12523.3i 0.461632 + 0.799570i
\(627\) −6725.79 11649.4i −0.428393 0.741998i
\(628\) 5426.47 9398.91i 0.344808 0.597225i
\(629\) −9710.93 −0.615580
\(630\) 0 0
\(631\) 5394.86 0.340358 0.170179 0.985413i \(-0.445565\pi\)
0.170179 + 0.985413i \(0.445565\pi\)
\(632\) −7008.66 + 12139.3i −0.441122 + 0.764046i
\(633\) 12471.7 + 21601.5i 0.783102 + 1.35637i
\(634\) −16474.5 28534.7i −1.03200 1.78747i
\(635\) 5115.66 8860.58i 0.319699 0.553735i
\(636\) −6805.01 −0.424271
\(637\) 0 0
\(638\) −24549.3 −1.52338
\(639\) −315.736 + 546.871i −0.0195467 + 0.0338558i
\(640\) 3440.32 + 5958.80i 0.212485 + 0.368035i
\(641\) −1226.20 2123.85i −0.0755572 0.130869i 0.825771 0.564005i \(-0.190740\pi\)
−0.901328 + 0.433136i \(0.857407\pi\)
\(642\) 6697.89 11601.1i 0.411752 0.713175i
\(643\) 7074.97 0.433919 0.216959 0.976181i \(-0.430386\pi\)
0.216959 + 0.976181i \(0.430386\pi\)
\(644\) 0 0
\(645\) −455.013 −0.0277769
\(646\) 9219.53 15968.7i 0.561513 0.972569i
\(647\) −1670.69 2893.71i −0.101517 0.175832i 0.810793 0.585333i \(-0.199036\pi\)
−0.912310 + 0.409501i \(0.865703\pi\)
\(648\) 3813.54 + 6605.25i 0.231189 + 0.400430i
\(649\) −3183.65 + 5514.25i −0.192557 + 0.333518i
\(650\) 7697.89 0.464517
\(651\) 0 0
\(652\) −16651.8 −1.00021
\(653\) 11530.8 19971.9i 0.691019 1.19688i −0.280486 0.959858i \(-0.590495\pi\)
0.971504 0.237022i \(-0.0761712\pi\)
\(654\) −45.1944 78.2790i −0.00270220 0.00468035i
\(655\) −2850.79 4937.72i −0.170061 0.294554i
\(656\) −3269.92 + 5663.68i −0.194618 + 0.337087i
\(657\) 2186.65 0.129847
\(658\) 0 0
\(659\) 1742.64 0.103010 0.0515049 0.998673i \(-0.483598\pi\)
0.0515049 + 0.998673i \(0.483598\pi\)
\(660\) −2622.89 + 4542.98i −0.154691 + 0.267932i
\(661\) 6288.26 + 10891.6i 0.370023 + 0.640898i 0.989569 0.144062i \(-0.0460165\pi\)
−0.619546 + 0.784960i \(0.712683\pi\)
\(662\) 7169.27 + 12417.5i 0.420909 + 0.729035i
\(663\) 5587.56 9677.94i 0.327305 0.566908i
\(664\) −7312.51 −0.427380
\(665\) 0 0
\(666\) −2675.72 −0.155679
\(667\) −14534.6 + 25174.7i −0.843752 + 1.46142i
\(668\) 6009.41 + 10408.6i 0.348070 + 0.602875i
\(669\) −9482.42 16424.0i −0.548000 0.949163i
\(670\) 910.764 1577.49i 0.0525163 0.0909608i
\(671\) 6729.17 0.387149
\(672\) 0 0
\(673\) −10680.8 −0.611760 −0.305880 0.952070i \(-0.598951\pi\)
−0.305880 + 0.952070i \(0.598951\pi\)
\(674\) 4821.64 8351.32i 0.275553 0.477271i
\(675\) 1812.50 + 3139.34i 0.103353 + 0.179012i
\(676\) −15372.1 26625.2i −0.874607 1.51486i
\(677\) 14779.6 25599.0i 0.839032 1.45325i −0.0516726 0.998664i \(-0.516455\pi\)
0.890705 0.454582i \(-0.150211\pi\)
\(678\) 30508.4 1.72812
\(679\) 0 0
\(680\) −1780.74 −0.100424
\(681\) −9777.41 + 16935.0i −0.550178 + 0.952936i
\(682\) 8901.42 + 15417.7i 0.499785 + 0.865652i
\(683\) −5125.21 8877.13i −0.287132 0.497327i 0.685992 0.727609i \(-0.259368\pi\)
−0.973124 + 0.230282i \(0.926035\pi\)
\(684\) 1449.66 2510.88i 0.0810366 0.140360i
\(685\) −2451.71 −0.136752
\(686\) 0 0
\(687\) 1771.64 0.0983875
\(688\) −327.609 + 567.436i −0.0181540 + 0.0314437i
\(689\) 4565.10 + 7906.99i 0.252419 + 0.437202i
\(690\) 5442.48 + 9426.65i 0.300278 + 0.520096i
\(691\) 4437.02 7685.14i 0.244272 0.423092i −0.717655 0.696399i \(-0.754784\pi\)
0.961927 + 0.273307i \(0.0881176\pi\)
\(692\) 27043.9 1.48563
\(693\) 0 0
\(694\) 10915.1 0.597018
\(695\) −7000.00 + 12124.4i −0.382051 + 0.661731i
\(696\) 8189.69 + 14185.0i 0.446019 + 0.772528i
\(697\) −2845.97 4929.36i −0.154661 0.267881i
\(698\) −2786.39 + 4826.16i −0.151098 + 0.261709i
\(699\) 32462.4 1.75657
\(700\) 0 0
\(701\) −22086.2 −1.18999 −0.594996 0.803729i \(-0.702846\pi\)
−0.594996 + 0.803729i \(0.702846\pi\)
\(702\) 22323.9 38666.1i 1.20023 2.07886i
\(703\) −21126.9 36592.8i −1.13345 1.96319i
\(704\) 7649.94 + 13250.1i 0.409542 + 0.709348i
\(705\) 1845.81 3197.04i 0.0986061 0.170791i
\(706\) −33534.3 −1.78765
\(707\) 0 0
\(708\) 17154.9 0.910622
\(709\) 13939.4 24143.8i 0.738373 1.27890i −0.214854 0.976646i \(-0.568928\pi\)
0.953228 0.302254i \(-0.0977390\pi\)
\(710\) 3407.28 + 5901.59i 0.180103 + 0.311948i
\(711\) 1233.19 + 2135.94i 0.0650465 + 0.112664i
\(712\) −6480.85 + 11225.2i −0.341124 + 0.590844i
\(713\) 21080.6 1.10726
\(714\) 0 0
\(715\) 7038.20 0.368131
\(716\) 6436.57 11148.5i 0.335958 0.581896i
\(717\) 856.719 + 1483.88i 0.0446231 + 0.0772895i
\(718\) 4929.88 + 8538.80i 0.256242 + 0.443824i
\(719\) −12931.6 + 22398.3i −0.670750 + 1.16177i 0.306942 + 0.951728i \(0.400694\pi\)
−0.977692 + 0.210044i \(0.932639\pi\)
\(720\) 360.000 0.0186339
\(721\) 0 0
\(722\) 50623.4 2.60943
\(723\) −5784.17 + 10018.5i −0.297532 + 0.515340i
\(724\) 16116.4 + 27914.4i 0.827294 + 1.43292i
\(725\) 3602.47 + 6239.67i 0.184541 + 0.319635i
\(726\) 10161.2 17599.7i 0.519446 0.899708i
\(727\) 29157.0 1.48744 0.743722 0.668489i \(-0.233059\pi\)
0.743722 + 0.668489i \(0.233059\pi\)
\(728\) 0 0
\(729\) 20917.0 1.06269
\(730\) 11798.7 20435.9i 0.598204 1.03612i
\(731\) −285.134 493.866i −0.0144269 0.0249881i
\(732\) −9064.91 15700.9i −0.457717 0.792789i
\(733\) −5503.03 + 9531.52i −0.277297 + 0.480293i −0.970712 0.240246i \(-0.922772\pi\)
0.693415 + 0.720539i \(0.256105\pi\)
\(734\) 46218.1 2.32417
\(735\) 0 0
\(736\) 24846.4 1.24436
\(737\) 832.714 1442.30i 0.0416193 0.0720867i
\(738\) −784.169 1358.22i −0.0391133 0.0677463i
\(739\) 18607.2 + 32228.6i 0.926221 + 1.60426i 0.789586 + 0.613640i \(0.210295\pi\)
0.136634 + 0.990622i \(0.456371\pi\)
\(740\) −8238.95 + 14270.3i −0.409283 + 0.708900i
\(741\) 48624.7 2.41062
\(742\) 0 0
\(743\) 11214.5 0.553730 0.276865 0.960909i \(-0.410704\pi\)
0.276865 + 0.960909i \(0.410704\pi\)
\(744\) 5939.06 10286.7i 0.292656 0.506896i
\(745\) −2915.29 5049.43i −0.143367 0.248318i
\(746\) 1792.33 + 3104.40i 0.0879648 + 0.152359i
\(747\) −643.325 + 1114.27i −0.0315101 + 0.0545771i
\(748\) −6574.54 −0.321375
\(749\) 0 0
\(750\) 2697.89 0.131351
\(751\) −3482.63 + 6032.09i −0.169218 + 0.293095i −0.938145 0.346242i \(-0.887458\pi\)
0.768927 + 0.639337i \(0.220791\pi\)
\(752\) −2657.97 4603.74i −0.128891 0.223246i
\(753\) −9973.22 17274.1i −0.482662 0.835995i
\(754\) 44370.3 76851.7i 2.14307 3.71190i
\(755\) 4797.91 0.231276
\(756\) 0 0
\(757\) −19352.8 −0.929180 −0.464590 0.885526i \(-0.653798\pi\)
−0.464590 + 0.885526i \(0.653798\pi\)
\(758\) −11338.0 + 19638.0i −0.543291 + 0.941007i
\(759\) 4976.07 + 8618.81i 0.237971 + 0.412178i
\(760\) −3874.14 6710.21i −0.184908 0.320270i
\(761\) −16191.8 + 28045.0i −0.771291 + 1.33591i 0.165565 + 0.986199i \(0.447055\pi\)
−0.936856 + 0.349716i \(0.886278\pi\)
\(762\) −44164.8 −2.09963
\(763\) 0 0
\(764\) −23059.7 −1.09198
\(765\) −156.662 + 271.347i −0.00740411 + 0.0128243i
\(766\) 24267.9 + 42033.2i 1.14469 + 1.98266i
\(767\) −11508.2 19932.9i −0.541772 0.938376i
\(768\) −655.940 + 1136.12i −0.0308193 + 0.0533805i
\(769\) −25353.9 −1.18893 −0.594463 0.804123i \(-0.702635\pi\)
−0.594463 + 0.804123i \(0.702635\pi\)
\(770\) 0 0
\(771\) 11456.6 0.535148
\(772\) −7924.32 + 13725.3i −0.369433 + 0.639877i
\(773\) −13058.5 22618.0i −0.607610 1.05241i −0.991633 0.129088i \(-0.958795\pi\)
0.384023 0.923323i \(-0.374538\pi\)
\(774\) −78.5647 136.078i −0.00364852 0.00631941i
\(775\) 2612.47 4524.93i 0.121087 0.209729i
\(776\) 16049.8 0.742465
\(777\)