Properties

Label 245.4.e.a
Level $245$
Weight $4$
Character orbit 245.e
Analytic conductor $14.455$
Analytic rank $1$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [245,4,Mod(116,245)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(245, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 4]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("245.116");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 245 = 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 245.e (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(14.4554679514\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 35)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 3 \zeta_{6} q^{2} + (2 \zeta_{6} - 2) q^{3} + (\zeta_{6} - 1) q^{4} + 5 \zeta_{6} q^{5} + 6 q^{6} - 21 q^{8} + 23 \zeta_{6} q^{9} +O(q^{10}) \) Copy content Toggle raw display \( q - 3 \zeta_{6} q^{2} + (2 \zeta_{6} - 2) q^{3} + (\zeta_{6} - 1) q^{4} + 5 \zeta_{6} q^{5} + 6 q^{6} - 21 q^{8} + 23 \zeta_{6} q^{9} + ( - 15 \zeta_{6} + 15) q^{10} + ( - 45 \zeta_{6} + 45) q^{11} - 2 \zeta_{6} q^{12} - 59 q^{13} - 10 q^{15} + 71 \zeta_{6} q^{16} + (54 \zeta_{6} - 54) q^{17} + ( - 69 \zeta_{6} + 69) q^{18} - 121 \zeta_{6} q^{19} - 5 q^{20} - 135 q^{22} - 69 \zeta_{6} q^{23} + ( - 42 \zeta_{6} + 42) q^{24} + (25 \zeta_{6} - 25) q^{25} + 177 \zeta_{6} q^{26} - 100 q^{27} - 162 q^{29} + 30 \zeta_{6} q^{30} + (88 \zeta_{6} - 88) q^{31} + ( - 45 \zeta_{6} + 45) q^{32} + 90 \zeta_{6} q^{33} + 162 q^{34} - 23 q^{36} + 259 \zeta_{6} q^{37} + (363 \zeta_{6} - 363) q^{38} + ( - 118 \zeta_{6} + 118) q^{39} - 105 \zeta_{6} q^{40} - 195 q^{41} - 286 q^{43} + 45 \zeta_{6} q^{44} + (115 \zeta_{6} - 115) q^{45} + (207 \zeta_{6} - 207) q^{46} + 45 \zeta_{6} q^{47} - 142 q^{48} + 75 q^{50} - 108 \zeta_{6} q^{51} + ( - 59 \zeta_{6} + 59) q^{52} + (597 \zeta_{6} - 597) q^{53} + 300 \zeta_{6} q^{54} + 225 q^{55} + 242 q^{57} + 486 \zeta_{6} q^{58} + (360 \zeta_{6} - 360) q^{59} + ( - 10 \zeta_{6} + 10) q^{60} + 392 \zeta_{6} q^{61} + 264 q^{62} + 433 q^{64} - 295 \zeta_{6} q^{65} + ( - 270 \zeta_{6} + 270) q^{66} + ( - 280 \zeta_{6} + 280) q^{67} - 54 \zeta_{6} q^{68} + 138 q^{69} + 48 q^{71} - 483 \zeta_{6} q^{72} + ( - 668 \zeta_{6} + 668) q^{73} + ( - 777 \zeta_{6} + 777) q^{74} - 50 \zeta_{6} q^{75} + 121 q^{76} - 354 q^{78} - 782 \zeta_{6} q^{79} + (355 \zeta_{6} - 355) q^{80} + (421 \zeta_{6} - 421) q^{81} + 585 \zeta_{6} q^{82} - 768 q^{83} - 270 q^{85} + 858 \zeta_{6} q^{86} + ( - 324 \zeta_{6} + 324) q^{87} + (945 \zeta_{6} - 945) q^{88} - 1194 \zeta_{6} q^{89} + 345 q^{90} + 69 q^{92} - 176 \zeta_{6} q^{93} + ( - 135 \zeta_{6} + 135) q^{94} + ( - 605 \zeta_{6} + 605) q^{95} + 90 \zeta_{6} q^{96} - 902 q^{97} + 1035 q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 3 q^{2} - 2 q^{3} - q^{4} + 5 q^{5} + 12 q^{6} - 42 q^{8} + 23 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 3 q^{2} - 2 q^{3} - q^{4} + 5 q^{5} + 12 q^{6} - 42 q^{8} + 23 q^{9} + 15 q^{10} + 45 q^{11} - 2 q^{12} - 118 q^{13} - 20 q^{15} + 71 q^{16} - 54 q^{17} + 69 q^{18} - 121 q^{19} - 10 q^{20} - 270 q^{22} - 69 q^{23} + 42 q^{24} - 25 q^{25} + 177 q^{26} - 200 q^{27} - 324 q^{29} + 30 q^{30} - 88 q^{31} + 45 q^{32} + 90 q^{33} + 324 q^{34} - 46 q^{36} + 259 q^{37} - 363 q^{38} + 118 q^{39} - 105 q^{40} - 390 q^{41} - 572 q^{43} + 45 q^{44} - 115 q^{45} - 207 q^{46} + 45 q^{47} - 284 q^{48} + 150 q^{50} - 108 q^{51} + 59 q^{52} - 597 q^{53} + 300 q^{54} + 450 q^{55} + 484 q^{57} + 486 q^{58} - 360 q^{59} + 10 q^{60} + 392 q^{61} + 528 q^{62} + 866 q^{64} - 295 q^{65} + 270 q^{66} + 280 q^{67} - 54 q^{68} + 276 q^{69} + 96 q^{71} - 483 q^{72} + 668 q^{73} + 777 q^{74} - 50 q^{75} + 242 q^{76} - 708 q^{78} - 782 q^{79} - 355 q^{80} - 421 q^{81} + 585 q^{82} - 1536 q^{83} - 540 q^{85} + 858 q^{86} + 324 q^{87} - 945 q^{88} - 1194 q^{89} + 690 q^{90} + 138 q^{92} - 176 q^{93} + 135 q^{94} + 605 q^{95} + 90 q^{96} - 1804 q^{97} + 2070 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/245\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(197\)
\(\chi(n)\) \(-\zeta_{6}\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
116.1
0.500000 + 0.866025i
0.500000 0.866025i
−1.50000 2.59808i −1.00000 + 1.73205i −0.500000 + 0.866025i 2.50000 + 4.33013i 6.00000 0 −21.0000 11.5000 + 19.9186i 7.50000 12.9904i
226.1 −1.50000 + 2.59808i −1.00000 1.73205i −0.500000 0.866025i 2.50000 4.33013i 6.00000 0 −21.0000 11.5000 19.9186i 7.50000 + 12.9904i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 245.4.e.a 2
7.b odd 2 1 35.4.e.a 2
7.c even 3 1 245.4.a.f 1
7.c even 3 1 inner 245.4.e.a 2
7.d odd 6 1 35.4.e.a 2
7.d odd 6 1 245.4.a.e 1
21.c even 2 1 315.4.j.b 2
21.g even 6 1 315.4.j.b 2
21.g even 6 1 2205.4.a.e 1
21.h odd 6 1 2205.4.a.g 1
28.d even 2 1 560.4.q.b 2
28.f even 6 1 560.4.q.b 2
35.c odd 2 1 175.4.e.b 2
35.f even 4 2 175.4.k.b 4
35.i odd 6 1 175.4.e.b 2
35.i odd 6 1 1225.4.a.b 1
35.j even 6 1 1225.4.a.a 1
35.k even 12 2 175.4.k.b 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
35.4.e.a 2 7.b odd 2 1
35.4.e.a 2 7.d odd 6 1
175.4.e.b 2 35.c odd 2 1
175.4.e.b 2 35.i odd 6 1
175.4.k.b 4 35.f even 4 2
175.4.k.b 4 35.k even 12 2
245.4.a.e 1 7.d odd 6 1
245.4.a.f 1 7.c even 3 1
245.4.e.a 2 1.a even 1 1 trivial
245.4.e.a 2 7.c even 3 1 inner
315.4.j.b 2 21.c even 2 1
315.4.j.b 2 21.g even 6 1
560.4.q.b 2 28.d even 2 1
560.4.q.b 2 28.f even 6 1
1225.4.a.a 1 35.j even 6 1
1225.4.a.b 1 35.i odd 6 1
2205.4.a.e 1 21.g even 6 1
2205.4.a.g 1 21.h odd 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(245, [\chi])\):

\( T_{2}^{2} + 3T_{2} + 9 \) Copy content Toggle raw display
\( T_{3}^{2} + 2T_{3} + 4 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} + 3T + 9 \) Copy content Toggle raw display
$3$ \( T^{2} + 2T + 4 \) Copy content Toggle raw display
$5$ \( T^{2} - 5T + 25 \) Copy content Toggle raw display
$7$ \( T^{2} \) Copy content Toggle raw display
$11$ \( T^{2} - 45T + 2025 \) Copy content Toggle raw display
$13$ \( (T + 59)^{2} \) Copy content Toggle raw display
$17$ \( T^{2} + 54T + 2916 \) Copy content Toggle raw display
$19$ \( T^{2} + 121T + 14641 \) Copy content Toggle raw display
$23$ \( T^{2} + 69T + 4761 \) Copy content Toggle raw display
$29$ \( (T + 162)^{2} \) Copy content Toggle raw display
$31$ \( T^{2} + 88T + 7744 \) Copy content Toggle raw display
$37$ \( T^{2} - 259T + 67081 \) Copy content Toggle raw display
$41$ \( (T + 195)^{2} \) Copy content Toggle raw display
$43$ \( (T + 286)^{2} \) Copy content Toggle raw display
$47$ \( T^{2} - 45T + 2025 \) Copy content Toggle raw display
$53$ \( T^{2} + 597T + 356409 \) Copy content Toggle raw display
$59$ \( T^{2} + 360T + 129600 \) Copy content Toggle raw display
$61$ \( T^{2} - 392T + 153664 \) Copy content Toggle raw display
$67$ \( T^{2} - 280T + 78400 \) Copy content Toggle raw display
$71$ \( (T - 48)^{2} \) Copy content Toggle raw display
$73$ \( T^{2} - 668T + 446224 \) Copy content Toggle raw display
$79$ \( T^{2} + 782T + 611524 \) Copy content Toggle raw display
$83$ \( (T + 768)^{2} \) Copy content Toggle raw display
$89$ \( T^{2} + 1194 T + 1425636 \) Copy content Toggle raw display
$97$ \( (T + 902)^{2} \) Copy content Toggle raw display
show more
show less