Properties

Label 245.4.b.d.99.10
Level $245$
Weight $4$
Character 245.99
Analytic conductor $14.455$
Analytic rank $0$
Dimension $10$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [245,4,Mod(99,245)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(245, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("245.99");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 245 = 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 245.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(14.4554679514\)
Analytic rank: \(0\)
Dimension: \(10\)
Coefficient field: \(\mathbb{Q}[x]/(x^{10} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} + 55x^{8} + 983x^{6} + 6409x^{4} + 13560x^{2} + 3600 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{3}\cdot 7^{4} \)
Twist minimal: no (minimal twist has level 35)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 99.10
Root \(4.31366i\) of defining polynomial
Character \(\chi\) \(=\) 245.99
Dual form 245.4.b.d.99.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+5.31366i q^{2} +1.93939i q^{3} -20.2350 q^{4} +(2.32771 - 10.9353i) q^{5} -10.3052 q^{6} -65.0123i q^{8} +23.2388 q^{9} +(58.1067 + 12.3686i) q^{10} +25.5420 q^{11} -39.2434i q^{12} -64.1014i q^{13} +(21.2079 + 4.51433i) q^{15} +183.574 q^{16} +27.6952i q^{17} +123.483i q^{18} +0.792436 q^{19} +(-47.1011 + 221.276i) q^{20} +135.721i q^{22} -108.606i q^{23} +126.084 q^{24} +(-114.164 - 50.9086i) q^{25} +340.613 q^{26} +97.4324i q^{27} +234.000 q^{29} +(-23.9876 + 112.691i) q^{30} -129.204 q^{31} +455.349i q^{32} +49.5357i q^{33} -147.163 q^{34} -470.236 q^{36} +38.3108i q^{37} +4.21073i q^{38} +124.317 q^{39} +(-710.932 - 151.330i) q^{40} +403.216 q^{41} -172.895i q^{43} -516.840 q^{44} +(54.0931 - 254.124i) q^{45} +577.097 q^{46} -206.943i q^{47} +356.020i q^{48} +(270.511 - 606.626i) q^{50} -53.7117 q^{51} +1297.09i q^{52} -144.031i q^{53} -517.722 q^{54} +(59.4542 - 279.310i) q^{55} +1.53684i q^{57} +1243.40i q^{58} -679.086 q^{59} +(-429.140 - 91.3471i) q^{60} +574.717 q^{61} -686.544i q^{62} -950.977 q^{64} +(-700.971 - 149.209i) q^{65} -263.216 q^{66} +515.640i q^{67} -560.411i q^{68} +210.630 q^{69} +556.612 q^{71} -1510.81i q^{72} -173.243i q^{73} -203.571 q^{74} +(98.7314 - 221.407i) q^{75} -16.0349 q^{76} +660.580i q^{78} -79.3290 q^{79} +(427.306 - 2007.44i) q^{80} +438.488 q^{81} +2142.55i q^{82} +1043.56i q^{83} +(302.856 + 64.4663i) q^{85} +918.703 q^{86} +453.817i q^{87} -1660.54i q^{88} +652.060 q^{89} +(1350.33 + 287.432i) q^{90} +2197.65i q^{92} -250.576i q^{93} +1099.62 q^{94} +(1.84456 - 8.66556i) q^{95} -883.097 q^{96} -515.714i q^{97} +593.564 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q - 36 q^{4} - 6 q^{5} - 12 q^{6} - 46 q^{9} + 16 q^{10} + 84 q^{11} + 8 q^{15} + 148 q^{16} - 72 q^{19} + 68 q^{20} - 72 q^{24} - 362 q^{25} + 620 q^{26} + 88 q^{29} + 52 q^{30} - 120 q^{31} - 964 q^{34}+ \cdots - 5304 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/245\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(197\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 5.31366i 1.87866i 0.343013 + 0.939331i \(0.388553\pi\)
−0.343013 + 0.939331i \(0.611447\pi\)
\(3\) 1.93939i 0.373235i 0.982433 + 0.186617i \(0.0597525\pi\)
−0.982433 + 0.186617i \(0.940247\pi\)
\(4\) −20.2350 −2.52937
\(5\) 2.32771 10.9353i 0.208197 0.978087i
\(6\) −10.3052 −0.701182
\(7\) 0 0
\(8\) 65.0123i 2.87317i
\(9\) 23.2388 0.860696
\(10\) 58.1067 + 12.3686i 1.83749 + 0.391131i
\(11\) 25.5420 0.700108 0.350054 0.936730i \(-0.386163\pi\)
0.350054 + 0.936730i \(0.386163\pi\)
\(12\) 39.2434i 0.944049i
\(13\) 64.1014i 1.36758i −0.729679 0.683790i \(-0.760330\pi\)
0.729679 0.683790i \(-0.239670\pi\)
\(14\) 0 0
\(15\) 21.2079 + 4.51433i 0.365056 + 0.0777063i
\(16\) 183.574 2.86834
\(17\) 27.6952i 0.395122i 0.980291 + 0.197561i \(0.0633020\pi\)
−0.980291 + 0.197561i \(0.936698\pi\)
\(18\) 123.483i 1.61696i
\(19\) 0.792436 0.00956828 0.00478414 0.999989i \(-0.498477\pi\)
0.00478414 + 0.999989i \(0.498477\pi\)
\(20\) −47.1011 + 221.276i −0.526606 + 2.47394i
\(21\) 0 0
\(22\) 135.721i 1.31527i
\(23\) 108.606i 0.984609i −0.870423 0.492305i \(-0.836155\pi\)
0.870423 0.492305i \(-0.163845\pi\)
\(24\) 126.084 1.07237
\(25\) −114.164 50.9086i −0.913308 0.407269i
\(26\) 340.613 2.56922
\(27\) 97.4324i 0.694477i
\(28\) 0 0
\(29\) 234.000 1.49837 0.749186 0.662360i \(-0.230445\pi\)
0.749186 + 0.662360i \(0.230445\pi\)
\(30\) −23.9876 + 112.691i −0.145984 + 0.685817i
\(31\) −129.204 −0.748570 −0.374285 0.927314i \(-0.622112\pi\)
−0.374285 + 0.927314i \(0.622112\pi\)
\(32\) 455.349i 2.51547i
\(33\) 49.5357i 0.261305i
\(34\) −147.163 −0.742300
\(35\) 0 0
\(36\) −470.236 −2.17702
\(37\) 38.3108i 0.170223i 0.996371 + 0.0851116i \(0.0271247\pi\)
−0.996371 + 0.0851116i \(0.972875\pi\)
\(38\) 4.21073i 0.0179756i
\(39\) 124.317 0.510429
\(40\) −710.932 151.330i −2.81021 0.598183i
\(41\) 403.216 1.53590 0.767949 0.640511i \(-0.221278\pi\)
0.767949 + 0.640511i \(0.221278\pi\)
\(42\) 0 0
\(43\) 172.895i 0.613167i −0.951844 0.306584i \(-0.900814\pi\)
0.951844 0.306584i \(-0.0991859\pi\)
\(44\) −516.840 −1.77083
\(45\) 54.0931 254.124i 0.179194 0.841835i
\(46\) 577.097 1.84975
\(47\) 206.943i 0.642250i −0.947037 0.321125i \(-0.895939\pi\)
0.947037 0.321125i \(-0.104061\pi\)
\(48\) 356.020i 1.07056i
\(49\) 0 0
\(50\) 270.511 606.626i 0.765120 1.71580i
\(51\) −53.7117 −0.147473
\(52\) 1297.09i 3.45911i
\(53\) 144.031i 0.373287i −0.982428 0.186643i \(-0.940239\pi\)
0.982428 0.186643i \(-0.0597609\pi\)
\(54\) −517.722 −1.30469
\(55\) 59.4542 279.310i 0.145760 0.684767i
\(56\) 0 0
\(57\) 1.53684i 0.00357122i
\(58\) 1243.40i 2.81493i
\(59\) −679.086 −1.49846 −0.749232 0.662307i \(-0.769577\pi\)
−0.749232 + 0.662307i \(0.769577\pi\)
\(60\) −429.140 91.3471i −0.923362 0.196548i
\(61\) 574.717 1.20631 0.603155 0.797624i \(-0.293910\pi\)
0.603155 + 0.797624i \(0.293910\pi\)
\(62\) 686.544i 1.40631i
\(63\) 0 0
\(64\) −950.977 −1.85738
\(65\) −700.971 149.209i −1.33761 0.284725i
\(66\) −263.216 −0.490903
\(67\) 515.640i 0.940230i 0.882605 + 0.470115i \(0.155788\pi\)
−0.882605 + 0.470115i \(0.844212\pi\)
\(68\) 560.411i 0.999409i
\(69\) 210.630 0.367491
\(70\) 0 0
\(71\) 556.612 0.930391 0.465195 0.885208i \(-0.345984\pi\)
0.465195 + 0.885208i \(0.345984\pi\)
\(72\) 1510.81i 2.47292i
\(73\) 173.243i 0.277762i −0.990309 0.138881i \(-0.955650\pi\)
0.990309 0.138881i \(-0.0443505\pi\)
\(74\) −203.571 −0.319792
\(75\) 98.7314 221.407i 0.152007 0.340879i
\(76\) −16.0349 −0.0242017
\(77\) 0 0
\(78\) 660.580i 0.958923i
\(79\) −79.3290 −0.112977 −0.0564887 0.998403i \(-0.517990\pi\)
−0.0564887 + 0.998403i \(0.517990\pi\)
\(80\) 427.306 2007.44i 0.597178 2.80548i
\(81\) 438.488 0.601493
\(82\) 2142.55i 2.88543i
\(83\) 1043.56i 1.38007i 0.723777 + 0.690034i \(0.242404\pi\)
−0.723777 + 0.690034i \(0.757596\pi\)
\(84\) 0 0
\(85\) 302.856 + 64.4663i 0.386463 + 0.0822630i
\(86\) 918.703 1.15193
\(87\) 453.817i 0.559245i
\(88\) 1660.54i 2.01153i
\(89\) 652.060 0.776609 0.388304 0.921531i \(-0.373061\pi\)
0.388304 + 0.921531i \(0.373061\pi\)
\(90\) 1350.33 + 287.432i 1.58152 + 0.336645i
\(91\) 0 0
\(92\) 2197.65i 2.49044i
\(93\) 250.576i 0.279393i
\(94\) 1099.62 1.20657
\(95\) 1.84456 8.66556i 0.00199208 0.00935861i
\(96\) −883.097 −0.938861
\(97\) 515.714i 0.539823i −0.962885 0.269912i \(-0.913005\pi\)
0.962885 0.269912i \(-0.0869945\pi\)
\(98\) 0 0
\(99\) 593.564 0.602580
\(100\) 2310.09 + 1030.13i 2.31009 + 1.03013i
\(101\) 536.339 0.528394 0.264197 0.964469i \(-0.414893\pi\)
0.264197 + 0.964469i \(0.414893\pi\)
\(102\) 285.405i 0.277052i
\(103\) 381.693i 0.365139i 0.983193 + 0.182570i \(0.0584415\pi\)
−0.983193 + 0.182570i \(0.941559\pi\)
\(104\) −4167.38 −3.92928
\(105\) 0 0
\(106\) 765.332 0.701279
\(107\) 1381.12i 1.24783i −0.781492 0.623915i \(-0.785541\pi\)
0.781492 0.623915i \(-0.214459\pi\)
\(108\) 1971.54i 1.75659i
\(109\) 390.582 0.343220 0.171610 0.985165i \(-0.445103\pi\)
0.171610 + 0.985165i \(0.445103\pi\)
\(110\) 1484.16 + 315.919i 1.28644 + 0.273834i
\(111\) −74.2995 −0.0635333
\(112\) 0 0
\(113\) 1643.15i 1.36792i −0.729521 0.683958i \(-0.760257\pi\)
0.729521 0.683958i \(-0.239743\pi\)
\(114\) −8.16624 −0.00670911
\(115\) −1187.65 252.804i −0.963033 0.204992i
\(116\) −4734.99 −3.78994
\(117\) 1489.64i 1.17707i
\(118\) 3608.43i 2.81511i
\(119\) 0 0
\(120\) 293.487 1378.77i 0.223263 1.04887i
\(121\) −678.609 −0.509849
\(122\) 3053.85i 2.26625i
\(123\) 781.992i 0.573251i
\(124\) 2614.43 1.89341
\(125\) −822.443 + 1129.92i −0.588492 + 0.808503i
\(126\) 0 0
\(127\) 192.032i 0.134174i −0.997747 0.0670869i \(-0.978630\pi\)
0.997747 0.0670869i \(-0.0213705\pi\)
\(128\) 1410.38i 0.973914i
\(129\) 335.310 0.228856
\(130\) 792.848 3724.72i 0.534903 2.51292i
\(131\) −2082.90 −1.38919 −0.694594 0.719402i \(-0.744416\pi\)
−0.694594 + 0.719402i \(0.744416\pi\)
\(132\) 1002.35i 0.660936i
\(133\) 0 0
\(134\) −2739.93 −1.76637
\(135\) 1065.46 + 226.794i 0.679259 + 0.144588i
\(136\) 1800.53 1.13525
\(137\) 78.1709i 0.0487488i −0.999703 0.0243744i \(-0.992241\pi\)
0.999703 0.0243744i \(-0.00775939\pi\)
\(138\) 1119.21i 0.690390i
\(139\) 1393.67 0.850426 0.425213 0.905093i \(-0.360199\pi\)
0.425213 + 0.905093i \(0.360199\pi\)
\(140\) 0 0
\(141\) 401.342 0.239710
\(142\) 2957.65i 1.74789i
\(143\) 1637.28i 0.957454i
\(144\) 4266.03 2.46877
\(145\) 544.685 2558.88i 0.311956 1.46554i
\(146\) 920.556 0.521820
\(147\) 0 0
\(148\) 775.217i 0.430557i
\(149\) −32.5002 −0.0178693 −0.00893463 0.999960i \(-0.502844\pi\)
−0.00893463 + 0.999960i \(0.502844\pi\)
\(150\) 1176.48 + 524.625i 0.640396 + 0.285570i
\(151\) 466.762 0.251553 0.125777 0.992059i \(-0.459858\pi\)
0.125777 + 0.992059i \(0.459858\pi\)
\(152\) 51.5181i 0.0274913i
\(153\) 643.602i 0.340080i
\(154\) 0 0
\(155\) −300.749 + 1412.89i −0.155850 + 0.732167i
\(156\) −2515.56 −1.29106
\(157\) 1673.50i 0.850701i −0.905029 0.425351i \(-0.860151\pi\)
0.905029 0.425351i \(-0.139849\pi\)
\(158\) 421.527i 0.212246i
\(159\) 279.332 0.139324
\(160\) 4979.39 + 1059.92i 2.46035 + 0.523712i
\(161\) 0 0
\(162\) 2329.98i 1.13000i
\(163\) 1869.36i 0.898279i −0.893462 0.449139i \(-0.851731\pi\)
0.893462 0.449139i \(-0.148269\pi\)
\(164\) −8159.06 −3.88485
\(165\) 541.690 + 115.305i 0.255579 + 0.0544028i
\(166\) −5545.12 −2.59268
\(167\) 46.5250i 0.0215581i −0.999942 0.0107791i \(-0.996569\pi\)
0.999942 0.0107791i \(-0.00343115\pi\)
\(168\) 0 0
\(169\) −1911.99 −0.870275
\(170\) −342.552 + 1609.28i −0.154544 + 0.726034i
\(171\) 18.4152 0.00823538
\(172\) 3498.52i 1.55093i
\(173\) 2496.28i 1.09704i 0.836137 + 0.548521i \(0.184809\pi\)
−0.836137 + 0.548521i \(0.815191\pi\)
\(174\) −2411.43 −1.05063
\(175\) 0 0
\(176\) 4688.83 2.00815
\(177\) 1317.01i 0.559279i
\(178\) 3464.82i 1.45898i
\(179\) −2975.70 −1.24254 −0.621269 0.783598i \(-0.713382\pi\)
−0.621269 + 0.783598i \(0.713382\pi\)
\(180\) −1094.57 + 5142.19i −0.453247 + 2.12931i
\(181\) −966.273 −0.396809 −0.198405 0.980120i \(-0.563576\pi\)
−0.198405 + 0.980120i \(0.563576\pi\)
\(182\) 0 0
\(183\) 1114.60i 0.450237i
\(184\) −7060.76 −2.82895
\(185\) 418.942 + 89.1764i 0.166493 + 0.0354399i
\(186\) 1331.47 0.524884
\(187\) 707.389i 0.276628i
\(188\) 4187.48i 1.62449i
\(189\) 0 0
\(190\) 46.0458 + 9.80136i 0.0175817 + 0.00374245i
\(191\) −1545.50 −0.585488 −0.292744 0.956191i \(-0.594568\pi\)
−0.292744 + 0.956191i \(0.594568\pi\)
\(192\) 1844.31i 0.693238i
\(193\) 2304.05i 0.859322i 0.902990 + 0.429661i \(0.141367\pi\)
−0.902990 + 0.429661i \(0.858633\pi\)
\(194\) 2740.33 1.01415
\(195\) 289.375 1359.45i 0.106270 0.499244i
\(196\) 0 0
\(197\) 222.021i 0.0802960i −0.999194 0.0401480i \(-0.987217\pi\)
0.999194 0.0401480i \(-0.0127829\pi\)
\(198\) 3153.99i 1.13204i
\(199\) 3580.56 1.27547 0.637736 0.770255i \(-0.279871\pi\)
0.637736 + 0.770255i \(0.279871\pi\)
\(200\) −3309.69 + 7422.04i −1.17015 + 2.62409i
\(201\) −1000.02 −0.350927
\(202\) 2849.92i 0.992673i
\(203\) 0 0
\(204\) 1086.85 0.373014
\(205\) 938.570 4409.31i 0.319769 1.50224i
\(206\) −2028.19 −0.685973
\(207\) 2523.88i 0.847449i
\(208\) 11767.3i 3.92268i
\(209\) 20.2404 0.00669883
\(210\) 0 0
\(211\) −4181.04 −1.36415 −0.682073 0.731284i \(-0.738921\pi\)
−0.682073 + 0.731284i \(0.738921\pi\)
\(212\) 2914.46i 0.944180i
\(213\) 1079.49i 0.347254i
\(214\) 7338.79 2.34425
\(215\) −1890.66 402.449i −0.599731 0.127659i
\(216\) 6334.31 1.99535
\(217\) 0 0
\(218\) 2075.42i 0.644794i
\(219\) 335.986 0.103670
\(220\) −1203.05 + 5651.83i −0.368681 + 1.73203i
\(221\) 1775.30 0.540361
\(222\) 394.802i 0.119357i
\(223\) 2361.52i 0.709145i 0.935028 + 0.354573i \(0.115374\pi\)
−0.935028 + 0.354573i \(0.884626\pi\)
\(224\) 0 0
\(225\) −2653.02 1183.05i −0.786081 0.350534i
\(226\) 8731.14 2.56985
\(227\) 586.877i 0.171596i −0.996313 0.0857982i \(-0.972656\pi\)
0.996313 0.0857982i \(-0.0273440\pi\)
\(228\) 31.0979i 0.00903292i
\(229\) −4619.55 −1.33305 −0.666526 0.745482i \(-0.732219\pi\)
−0.666526 + 0.745482i \(0.732219\pi\)
\(230\) 1343.31 6310.76i 0.385111 1.80921i
\(231\) 0 0
\(232\) 15212.9i 4.30507i
\(233\) 5120.44i 1.43971i 0.694127 + 0.719853i \(0.255791\pi\)
−0.694127 + 0.719853i \(0.744209\pi\)
\(234\) 7915.43 2.21132
\(235\) −2262.99 481.703i −0.628176 0.133714i
\(236\) 13741.3 3.79017
\(237\) 153.850i 0.0421671i
\(238\) 0 0
\(239\) −1127.51 −0.305158 −0.152579 0.988291i \(-0.548758\pi\)
−0.152579 + 0.988291i \(0.548758\pi\)
\(240\) 3893.20 + 828.711i 1.04710 + 0.222888i
\(241\) 3549.53 0.948736 0.474368 0.880327i \(-0.342677\pi\)
0.474368 + 0.880327i \(0.342677\pi\)
\(242\) 3605.89i 0.957833i
\(243\) 3481.07i 0.918975i
\(244\) −11629.4 −3.05120
\(245\) 0 0
\(246\) −4155.24 −1.07694
\(247\) 50.7963i 0.0130854i
\(248\) 8399.84i 2.15077i
\(249\) −2023.87 −0.515090
\(250\) −6003.99 4370.18i −1.51890 1.10558i
\(251\) −4717.19 −1.18624 −0.593120 0.805114i \(-0.702104\pi\)
−0.593120 + 0.805114i \(0.702104\pi\)
\(252\) 0 0
\(253\) 2774.02i 0.689333i
\(254\) 1020.39 0.252067
\(255\) −125.025 + 587.355i −0.0307034 + 0.144242i
\(256\) −113.552 −0.0277227
\(257\) 6260.31i 1.51948i −0.650224 0.759742i \(-0.725325\pi\)
0.650224 0.759742i \(-0.274675\pi\)
\(258\) 1781.72i 0.429942i
\(259\) 0 0
\(260\) 14184.1 + 3019.25i 3.38331 + 0.720176i
\(261\) 5437.88 1.28964
\(262\) 11067.8i 2.60981i
\(263\) 5753.04i 1.34885i 0.738344 + 0.674425i \(0.235608\pi\)
−0.738344 + 0.674425i \(0.764392\pi\)
\(264\) 3220.43 0.750772
\(265\) −1575.03 335.262i −0.365107 0.0777170i
\(266\) 0 0
\(267\) 1264.60i 0.289858i
\(268\) 10433.9i 2.37819i
\(269\) −7059.21 −1.60003 −0.800014 0.599982i \(-0.795174\pi\)
−0.800014 + 0.599982i \(0.795174\pi\)
\(270\) −1205.11 + 5661.47i −0.271631 + 1.27610i
\(271\) 8534.52 1.91305 0.956523 0.291658i \(-0.0942069\pi\)
0.956523 + 0.291658i \(0.0942069\pi\)
\(272\) 5084.11i 1.13334i
\(273\) 0 0
\(274\) 415.373 0.0915826
\(275\) −2915.96 1300.30i −0.639415 0.285132i
\(276\) −4262.08 −0.929519
\(277\) 1313.94i 0.285008i −0.989794 0.142504i \(-0.954485\pi\)
0.989794 0.142504i \(-0.0455154\pi\)
\(278\) 7405.47i 1.59766i
\(279\) −3002.54 −0.644291
\(280\) 0 0
\(281\) −247.229 −0.0524856 −0.0262428 0.999656i \(-0.508354\pi\)
−0.0262428 + 0.999656i \(0.508354\pi\)
\(282\) 2132.60i 0.450334i
\(283\) 9074.90i 1.90617i −0.302697 0.953087i \(-0.597887\pi\)
0.302697 0.953087i \(-0.402113\pi\)
\(284\) −11263.0 −2.35330
\(285\) 16.8059 + 3.57731i 0.00349296 + 0.000743515i
\(286\) 8699.92 1.79873
\(287\) 0 0
\(288\) 10581.7i 2.16505i
\(289\) 4145.98 0.843879
\(290\) 13597.0 + 2894.27i 2.75325 + 0.586060i
\(291\) 1000.17 0.201481
\(292\) 3505.57i 0.702562i
\(293\) 2740.72i 0.546466i −0.961948 0.273233i \(-0.911907\pi\)
0.961948 0.273233i \(-0.0880930\pi\)
\(294\) 0 0
\(295\) −1580.71 + 7426.04i −0.311975 + 1.46563i
\(296\) 2490.68 0.489080
\(297\) 2488.61i 0.486209i
\(298\) 172.695i 0.0335703i
\(299\) −6961.83 −1.34653
\(300\) −1997.83 + 4480.16i −0.384482 + 0.862208i
\(301\) 0 0
\(302\) 2480.21i 0.472584i
\(303\) 1040.17i 0.197215i
\(304\) 145.470 0.0274451
\(305\) 1337.77 6284.73i 0.251150 1.17988i
\(306\) −3419.88 −0.638894
\(307\) 6985.46i 1.29864i 0.760517 + 0.649318i \(0.224946\pi\)
−0.760517 + 0.649318i \(0.775054\pi\)
\(308\) 0 0
\(309\) −740.250 −0.136283
\(310\) −7507.60 1598.08i −1.37549 0.292789i
\(311\) 356.841 0.0650630 0.0325315 0.999471i \(-0.489643\pi\)
0.0325315 + 0.999471i \(0.489643\pi\)
\(312\) 8082.16i 1.46655i
\(313\) 6630.12i 1.19731i 0.801009 + 0.598653i \(0.204297\pi\)
−0.801009 + 0.598653i \(0.795703\pi\)
\(314\) 8892.42 1.59818
\(315\) 0 0
\(316\) 1605.22 0.285762
\(317\) 2494.05i 0.441891i 0.975286 + 0.220946i \(0.0709144\pi\)
−0.975286 + 0.220946i \(0.929086\pi\)
\(318\) 1484.27i 0.261742i
\(319\) 5976.83 1.04902
\(320\) −2213.60 + 10399.3i −0.386700 + 1.81668i
\(321\) 2678.52 0.465734
\(322\) 0 0
\(323\) 21.9467i 0.00378063i
\(324\) −8872.79 −1.52140
\(325\) −3263.31 + 7318.05i −0.556973 + 1.24902i
\(326\) 9933.13 1.68756
\(327\) 757.489i 0.128102i
\(328\) 26214.0i 4.41289i
\(329\) 0 0
\(330\) −612.690 + 2878.35i −0.102204 + 0.480146i
\(331\) −4682.47 −0.777558 −0.388779 0.921331i \(-0.627103\pi\)
−0.388779 + 0.921331i \(0.627103\pi\)
\(332\) 21116.4i 3.49070i
\(333\) 890.297i 0.146510i
\(334\) 247.218 0.0405005
\(335\) 5638.70 + 1200.26i 0.919627 + 0.195753i
\(336\) 0 0
\(337\) 3596.60i 0.581363i −0.956820 0.290681i \(-0.906118\pi\)
0.956820 0.290681i \(-0.0938820\pi\)
\(338\) 10159.7i 1.63495i
\(339\) 3186.70 0.510554
\(340\) −6128.28 1304.47i −0.977509 0.208073i
\(341\) −3300.12 −0.524080
\(342\) 97.8523i 0.0154715i
\(343\) 0 0
\(344\) −11240.3 −1.76173
\(345\) 490.285 2303.31i 0.0765103 0.359438i
\(346\) −13264.4 −2.06097
\(347\) 1899.51i 0.293865i −0.989147 0.146932i \(-0.953060\pi\)
0.989147 0.146932i \(-0.0469400\pi\)
\(348\) 9182.97i 1.41454i
\(349\) −1037.55 −0.159137 −0.0795683 0.996829i \(-0.525354\pi\)
−0.0795683 + 0.996829i \(0.525354\pi\)
\(350\) 0 0
\(351\) 6245.56 0.949752
\(352\) 11630.5i 1.76110i
\(353\) 4087.08i 0.616242i 0.951347 + 0.308121i \(0.0997001\pi\)
−0.951347 + 0.308121i \(0.900300\pi\)
\(354\) 6998.13 1.05070
\(355\) 1295.63 6086.75i 0.193704 0.910003i
\(356\) −13194.4 −1.96433
\(357\) 0 0
\(358\) 15811.8i 2.33431i
\(359\) −3472.67 −0.510530 −0.255265 0.966871i \(-0.582163\pi\)
−0.255265 + 0.966871i \(0.582163\pi\)
\(360\) −16521.2 3516.72i −2.41873 0.514854i
\(361\) −6858.37 −0.999908
\(362\) 5134.44i 0.745470i
\(363\) 1316.08i 0.190293i
\(364\) 0 0
\(365\) −1894.48 403.260i −0.271675 0.0578290i
\(366\) −5922.59 −0.845844
\(367\) 8769.14i 1.24726i 0.781719 + 0.623631i \(0.214343\pi\)
−0.781719 + 0.623631i \(0.785657\pi\)
\(368\) 19937.3i 2.82419i
\(369\) 9370.25 1.32194
\(370\) −473.853 + 2226.11i −0.0665796 + 0.312784i
\(371\) 0 0
\(372\) 5070.39i 0.706687i
\(373\) 11368.9i 1.57817i 0.614284 + 0.789085i \(0.289445\pi\)
−0.614284 + 0.789085i \(0.710555\pi\)
\(374\) −3758.82 −0.519690
\(375\) −2191.35 1595.03i −0.301762 0.219646i
\(376\) −13453.8 −1.84529
\(377\) 14999.8i 2.04914i
\(378\) 0 0
\(379\) 12137.4 1.64500 0.822501 0.568764i \(-0.192578\pi\)
0.822501 + 0.568764i \(0.192578\pi\)
\(380\) −37.3246 + 175.347i −0.00503871 + 0.0236714i
\(381\) 372.424 0.0500784
\(382\) 8212.24i 1.09993i
\(383\) 9869.61i 1.31675i 0.752692 + 0.658373i \(0.228755\pi\)
−0.752692 + 0.658373i \(0.771245\pi\)
\(384\) 2735.27 0.363499
\(385\) 0 0
\(386\) −12242.9 −1.61438
\(387\) 4017.86i 0.527751i
\(388\) 10435.5i 1.36541i
\(389\) −57.1166 −0.00744454 −0.00372227 0.999993i \(-0.501185\pi\)
−0.00372227 + 0.999993i \(0.501185\pi\)
\(390\) 7223.67 + 1537.64i 0.937910 + 0.199644i
\(391\) 3007.88 0.389041
\(392\) 0 0
\(393\) 4039.54i 0.518494i
\(394\) 1179.74 0.150849
\(395\) −184.655 + 867.490i −0.0235215 + 0.110502i
\(396\) −12010.7 −1.52415
\(397\) 7436.17i 0.940078i −0.882646 0.470039i \(-0.844240\pi\)
0.882646 0.470039i \(-0.155760\pi\)
\(398\) 19025.8i 2.39618i
\(399\) 0 0
\(400\) −20957.4 9345.47i −2.61968 1.16818i
\(401\) −12465.0 −1.55230 −0.776149 0.630550i \(-0.782829\pi\)
−0.776149 + 0.630550i \(0.782829\pi\)
\(402\) 5313.79i 0.659273i
\(403\) 8282.15i 1.02373i
\(404\) −10852.8 −1.33650
\(405\) 1020.67 4795.02i 0.125229 0.588312i
\(406\) 0 0
\(407\) 978.533i 0.119175i
\(408\) 3491.92i 0.423715i
\(409\) −1708.72 −0.206578 −0.103289 0.994651i \(-0.532937\pi\)
−0.103289 + 0.994651i \(0.532937\pi\)
\(410\) 23429.6 + 4987.24i 2.82220 + 0.600737i
\(411\) 151.604 0.0181948
\(412\) 7723.54i 0.923571i
\(413\) 0 0
\(414\) 13411.0 1.59207
\(415\) 11411.7 + 2429.10i 1.34983 + 0.287325i
\(416\) 29188.5 3.44011
\(417\) 2702.86i 0.317409i
\(418\) 107.550i 0.0125848i
\(419\) 10618.8 1.23810 0.619050 0.785352i \(-0.287518\pi\)
0.619050 + 0.785352i \(0.287518\pi\)
\(420\) 0 0
\(421\) 13273.5 1.53661 0.768304 0.640085i \(-0.221101\pi\)
0.768304 + 0.640085i \(0.221101\pi\)
\(422\) 22216.6i 2.56277i
\(423\) 4809.10i 0.552781i
\(424\) −9363.80 −1.07251
\(425\) 1409.92 3161.78i 0.160921 0.360868i
\(426\) −5736.02 −0.652373
\(427\) 0 0
\(428\) 27946.9i 3.15622i
\(429\) 3175.31 0.357355
\(430\) 2138.47 10046.3i 0.239829 1.12669i
\(431\) 7918.20 0.884934 0.442467 0.896785i \(-0.354103\pi\)
0.442467 + 0.896785i \(0.354103\pi\)
\(432\) 17886.0i 1.99199i
\(433\) 4433.34i 0.492038i 0.969265 + 0.246019i \(0.0791226\pi\)
−0.969265 + 0.246019i \(0.920877\pi\)
\(434\) 0 0
\(435\) 4962.65 + 1056.35i 0.546990 + 0.116433i
\(436\) −7903.40 −0.868129
\(437\) 86.0637i 0.00942102i
\(438\) 1785.31i 0.194761i
\(439\) 12958.4 1.40882 0.704408 0.709796i \(-0.251213\pi\)
0.704408 + 0.709796i \(0.251213\pi\)
\(440\) −18158.6 3865.26i −1.96745 0.418793i
\(441\) 0 0
\(442\) 9433.34i 1.01515i
\(443\) 12040.4i 1.29133i 0.763621 + 0.645664i \(0.223420\pi\)
−0.763621 + 0.645664i \(0.776580\pi\)
\(444\) 1503.45 0.160699
\(445\) 1517.80 7130.50i 0.161687 0.759591i
\(446\) −12548.3 −1.33224
\(447\) 63.0304i 0.00666943i
\(448\) 0 0
\(449\) −11586.3 −1.21780 −0.608899 0.793247i \(-0.708389\pi\)
−0.608899 + 0.793247i \(0.708389\pi\)
\(450\) 6286.34 14097.2i 0.658536 1.47678i
\(451\) 10298.9 1.07529
\(452\) 33249.1i 3.45997i
\(453\) 905.232i 0.0938886i
\(454\) 3118.46 0.322371
\(455\) 0 0
\(456\) 99.9135 0.0102607
\(457\) 9734.34i 0.996396i 0.867063 + 0.498198i \(0.166005\pi\)
−0.867063 + 0.498198i \(0.833995\pi\)
\(458\) 24546.7i 2.50435i
\(459\) −2698.41 −0.274403
\(460\) 24032.0 + 5115.48i 2.43587 + 0.518501i
\(461\) 1343.41 0.135724 0.0678621 0.997695i \(-0.478382\pi\)
0.0678621 + 0.997695i \(0.478382\pi\)
\(462\) 0 0
\(463\) 6613.72i 0.663857i 0.943305 + 0.331929i \(0.107699\pi\)
−0.943305 + 0.331929i \(0.892301\pi\)
\(464\) 42956.3 4.29784
\(465\) −2740.13 583.268i −0.273270 0.0581686i
\(466\) −27208.3 −2.70472
\(467\) 14688.9i 1.45551i 0.685838 + 0.727755i \(0.259436\pi\)
−0.685838 + 0.727755i \(0.740564\pi\)
\(468\) 30142.8i 2.97724i
\(469\) 0 0
\(470\) 2559.60 12024.8i 0.251204 1.18013i
\(471\) 3245.57 0.317511
\(472\) 44148.9i 4.30534i
\(473\) 4416.07i 0.429283i
\(474\) 817.504 0.0792177
\(475\) −90.4673 40.3418i −0.00873879 0.00389686i
\(476\) 0 0
\(477\) 3347.11i 0.321286i
\(478\) 5991.22i 0.573288i
\(479\) −15298.6 −1.45931 −0.729657 0.683813i \(-0.760320\pi\)
−0.729657 + 0.683813i \(0.760320\pi\)
\(480\) −2055.59 + 9656.97i −0.195468 + 0.918288i
\(481\) 2455.78 0.232794
\(482\) 18861.0i 1.78235i
\(483\) 0 0
\(484\) 13731.6 1.28960
\(485\) −5639.52 1200.43i −0.527994 0.112389i
\(486\) −18497.2 −1.72644
\(487\) 9653.80i 0.898266i −0.893465 0.449133i \(-0.851733\pi\)
0.893465 0.449133i \(-0.148267\pi\)
\(488\) 37363.7i 3.46593i
\(489\) 3625.41 0.335269
\(490\) 0 0
\(491\) 20142.6 1.85137 0.925684 0.378297i \(-0.123490\pi\)
0.925684 + 0.378297i \(0.123490\pi\)
\(492\) 15823.6i 1.44996i
\(493\) 6480.69i 0.592039i
\(494\) 269.914 0.0245830
\(495\) 1381.64 6490.83i 0.125455 0.589376i
\(496\) −23718.4 −2.14715
\(497\) 0 0
\(498\) 10754.1i 0.967679i
\(499\) 1309.29 0.117459 0.0587293 0.998274i \(-0.481295\pi\)
0.0587293 + 0.998274i \(0.481295\pi\)
\(500\) 16642.1 22863.8i 1.48851 2.04500i
\(501\) 90.2299 0.00804625
\(502\) 25065.5i 2.22855i
\(503\) 2186.17i 0.193791i 0.995295 + 0.0968953i \(0.0308912\pi\)
−0.995295 + 0.0968953i \(0.969109\pi\)
\(504\) 0 0
\(505\) 1248.44 5865.06i 0.110010 0.516815i
\(506\) 14740.2 1.29502
\(507\) 3708.09i 0.324817i
\(508\) 3885.76i 0.339375i
\(509\) 3591.11 0.312718 0.156359 0.987700i \(-0.450024\pi\)
0.156359 + 0.987700i \(0.450024\pi\)
\(510\) −3121.01 664.340i −0.270981 0.0576813i
\(511\) 0 0
\(512\) 11886.4i 1.02600i
\(513\) 77.2089i 0.00664495i
\(514\) 33265.2 2.85460
\(515\) 4173.94 + 888.470i 0.357138 + 0.0760207i
\(516\) −6784.97 −0.578860
\(517\) 5285.73i 0.449644i
\(518\) 0 0
\(519\) −4841.24 −0.409455
\(520\) −9700.46 + 45571.8i −0.818064 + 3.84318i
\(521\) 8605.34 0.723621 0.361811 0.932252i \(-0.382159\pi\)
0.361811 + 0.932252i \(0.382159\pi\)
\(522\) 28895.1i 2.42280i
\(523\) 22536.4i 1.88423i 0.335297 + 0.942113i \(0.391163\pi\)
−0.335297 + 0.942113i \(0.608837\pi\)
\(524\) 42147.3 3.51377
\(525\) 0 0
\(526\) −30569.7 −2.53403
\(527\) 3578.32i 0.295776i
\(528\) 9093.45i 0.749510i
\(529\) 371.637 0.0305447
\(530\) 1781.47 8369.17i 0.146004 0.685912i
\(531\) −15781.1 −1.28972
\(532\) 0 0
\(533\) 25846.7i 2.10046i
\(534\) −6719.63 −0.544544
\(535\) −15103.0 3214.84i −1.22049 0.259794i
\(536\) 33522.9 2.70144
\(537\) 5771.03i 0.463758i
\(538\) 37510.2i 3.00591i
\(539\) 0 0
\(540\) −21559.5 4589.17i −1.71810 0.365716i
\(541\) 8782.44 0.697942 0.348971 0.937134i \(-0.386531\pi\)
0.348971 + 0.937134i \(0.386531\pi\)
\(542\) 45349.5i 3.59396i
\(543\) 1873.98i 0.148103i
\(544\) −12611.0 −0.993917
\(545\) 909.161 4271.15i 0.0714572 0.335699i
\(546\) 0 0
\(547\) 22593.0i 1.76601i 0.469366 + 0.883004i \(0.344482\pi\)
−0.469366 + 0.883004i \(0.655518\pi\)
\(548\) 1581.78i 0.123304i
\(549\) 13355.7 1.03827
\(550\) 6909.37 15494.4i 0.535667 1.20124i
\(551\) 185.430 0.0143368
\(552\) 13693.5i 1.05586i
\(553\) 0 0
\(554\) 6981.84 0.535433
\(555\) −172.947 + 812.490i −0.0132274 + 0.0621411i
\(556\) −28200.8 −2.15104
\(557\) 7264.13i 0.552587i −0.961073 0.276294i \(-0.910894\pi\)
0.961073 0.276294i \(-0.0891062\pi\)
\(558\) 15954.5i 1.21040i
\(559\) −11082.8 −0.838555
\(560\) 0 0
\(561\) −1371.90 −0.103247
\(562\) 1313.69i 0.0986027i
\(563\) 3851.42i 0.288309i 0.989555 + 0.144154i \(0.0460462\pi\)
−0.989555 + 0.144154i \(0.953954\pi\)
\(564\) −8121.14 −0.606315
\(565\) −17968.4 3824.78i −1.33794 0.284796i
\(566\) 48220.9 3.58105
\(567\) 0 0
\(568\) 36186.7i 2.67317i
\(569\) −16580.3 −1.22158 −0.610792 0.791791i \(-0.709149\pi\)
−0.610792 + 0.791791i \(0.709149\pi\)
\(570\) −19.0086 + 89.3006i −0.00139681 + 0.00656209i
\(571\) 6385.86 0.468021 0.234010 0.972234i \(-0.424815\pi\)
0.234010 + 0.972234i \(0.424815\pi\)
\(572\) 33130.2i 2.42175i
\(573\) 2997.32i 0.218525i
\(574\) 0 0
\(575\) −5529.00 + 12398.9i −0.401001 + 0.899252i
\(576\) −22099.6 −1.59864
\(577\) 11059.1i 0.797912i 0.916970 + 0.398956i \(0.130627\pi\)
−0.916970 + 0.398956i \(0.869373\pi\)
\(578\) 22030.3i 1.58536i
\(579\) −4468.44 −0.320729
\(580\) −11021.7 + 51778.7i −0.789052 + 3.70689i
\(581\) 0 0
\(582\) 5314.56i 0.378515i
\(583\) 3678.84i 0.261341i
\(584\) −11263.0 −0.798055
\(585\) −16289.7 3467.45i −1.15128 0.245062i
\(586\) 14563.2 1.02662
\(587\) 7871.25i 0.553461i 0.960948 + 0.276730i \(0.0892509\pi\)
−0.960948 + 0.276730i \(0.910749\pi\)
\(588\) 0 0
\(589\) −102.386 −0.00716253
\(590\) −39459.4 8399.37i −2.75342 0.586096i
\(591\) 430.584 0.0299693
\(592\) 7032.85i 0.488258i
\(593\) 2018.06i 0.139750i −0.997556 0.0698750i \(-0.977740\pi\)
0.997556 0.0698750i \(-0.0222600\pi\)
\(594\) −13223.6 −0.913422
\(595\) 0 0
\(596\) 657.640 0.0451980
\(597\) 6944.08i 0.476051i
\(598\) 36992.8i 2.52968i
\(599\) 1356.67 0.0925409 0.0462705 0.998929i \(-0.485266\pi\)
0.0462705 + 0.998929i \(0.485266\pi\)
\(600\) −14394.2 6418.76i −0.979401 0.436741i
\(601\) −11178.7 −0.758715 −0.379358 0.925250i \(-0.623855\pi\)
−0.379358 + 0.925250i \(0.623855\pi\)
\(602\) 0 0
\(603\) 11982.8i 0.809252i
\(604\) −9444.91 −0.636272
\(605\) −1579.60 + 7420.82i −0.106149 + 0.498676i
\(606\) −5527.10 −0.370500
\(607\) 9404.67i 0.628870i −0.949279 0.314435i \(-0.898185\pi\)
0.949279 0.314435i \(-0.101815\pi\)
\(608\) 360.835i 0.0240687i
\(609\) 0 0
\(610\) 33394.9 + 7108.47i 2.21659 + 0.471825i
\(611\) −13265.3 −0.878328
\(612\) 13023.3i 0.860187i
\(613\) 18938.0i 1.24779i 0.781507 + 0.623897i \(0.214452\pi\)
−0.781507 + 0.623897i \(0.785548\pi\)
\(614\) −37118.4 −2.43970
\(615\) 8551.35 + 1820.25i 0.560689 + 0.119349i
\(616\) 0 0
\(617\) 17716.9i 1.15600i 0.816036 + 0.578001i \(0.196167\pi\)
−0.816036 + 0.578001i \(0.803833\pi\)
\(618\) 3933.43i 0.256029i
\(619\) −6240.33 −0.405202 −0.202601 0.979261i \(-0.564939\pi\)
−0.202601 + 0.979261i \(0.564939\pi\)
\(620\) 6085.63 28589.7i 0.394202 1.85192i
\(621\) 10581.8 0.683788
\(622\) 1896.13i 0.122231i
\(623\) 0 0
\(624\) 22821.4 1.46408
\(625\) 10441.6 + 11623.8i 0.668264 + 0.743924i
\(626\) −35230.2 −2.24933
\(627\) 39.2539i 0.00250024i
\(628\) 33863.2i 2.15174i
\(629\) −1061.03 −0.0672589
\(630\) 0 0
\(631\) −25887.7 −1.63323 −0.816617 0.577179i \(-0.804153\pi\)
−0.816617 + 0.577179i \(0.804153\pi\)
\(632\) 5157.37i 0.324603i
\(633\) 8108.65i 0.509147i
\(634\) −13252.5 −0.830165
\(635\) −2099.94 446.994i −0.131234 0.0279345i
\(636\) −5652.27 −0.352401
\(637\) 0 0
\(638\) 31758.8i 1.97076i
\(639\) 12935.0 0.800783
\(640\) −15423.0 3282.95i −0.952573 0.202766i
\(641\) 18798.4 1.15834 0.579168 0.815208i \(-0.303378\pi\)
0.579168 + 0.815208i \(0.303378\pi\)
\(642\) 14232.8i 0.874956i
\(643\) 2287.70i 0.140308i −0.997536 0.0701541i \(-0.977651\pi\)
0.997536 0.0701541i \(-0.0223491\pi\)
\(644\) 0 0
\(645\) 780.503 3666.73i 0.0476469 0.223841i
\(646\) −116.617 −0.00710253
\(647\) 1769.31i 0.107510i −0.998554 0.0537548i \(-0.982881\pi\)
0.998554 0.0537548i \(-0.0171189\pi\)
\(648\) 28507.1i 1.72819i
\(649\) −17345.2 −1.04909
\(650\) −38885.6 17340.1i −2.34649 1.04636i
\(651\) 0 0
\(652\) 37826.4i 2.27208i
\(653\) 3891.48i 0.233209i −0.993178 0.116604i \(-0.962799\pi\)
0.993178 0.116604i \(-0.0372010\pi\)
\(654\) −4025.04 −0.240660
\(655\) −4848.38 + 22777.2i −0.289224 + 1.35875i
\(656\) 74019.8 4.40547
\(657\) 4025.96i 0.239068i
\(658\) 0 0
\(659\) −20097.6 −1.18800 −0.594001 0.804465i \(-0.702452\pi\)
−0.594001 + 0.804465i \(0.702452\pi\)
\(660\) −10961.1 2333.18i −0.646453 0.137605i
\(661\) 27167.9 1.59865 0.799326 0.600898i \(-0.205190\pi\)
0.799326 + 0.600898i \(0.205190\pi\)
\(662\) 24881.0i 1.46077i
\(663\) 3442.99i 0.201681i
\(664\) 67844.3 3.96516
\(665\) 0 0
\(666\) −4730.73 −0.275243
\(667\) 25414.0i 1.47531i
\(668\) 941.430i 0.0545285i
\(669\) −4579.91 −0.264678
\(670\) −6377.77 + 29962.1i −0.367753 + 1.72767i
\(671\) 14679.4 0.844548
\(672\) 0 0
\(673\) 25909.7i 1.48402i −0.670389 0.742010i \(-0.733873\pi\)
0.670389 0.742010i \(-0.266127\pi\)
\(674\) 19111.1 1.09218
\(675\) 4960.15 11123.2i 0.282839 0.634271i
\(676\) 38689.1 2.20125
\(677\) 4359.22i 0.247472i −0.992315 0.123736i \(-0.960512\pi\)
0.992315 0.123736i \(-0.0394875\pi\)
\(678\) 16933.0i 0.959159i
\(679\) 0 0
\(680\) 4191.11 19689.4i 0.236355 1.11037i
\(681\) 1138.18 0.0640458
\(682\) 17535.7i 0.984569i
\(683\) 29721.9i 1.66512i −0.553937 0.832559i \(-0.686875\pi\)
0.553937 0.832559i \(-0.313125\pi\)
\(684\) −372.632 −0.0208303
\(685\) −854.826 181.959i −0.0476806 0.0101493i
\(686\) 0 0
\(687\) 8959.10i 0.497541i
\(688\) 31738.9i 1.75877i
\(689\) −9232.60 −0.510499
\(690\) 12239.0 + 2605.21i 0.675262 + 0.143737i
\(691\) 4929.13 0.271365 0.135682 0.990752i \(-0.456677\pi\)
0.135682 + 0.990752i \(0.456677\pi\)
\(692\) 50512.0i 2.77482i
\(693\) 0 0
\(694\) 10093.4 0.552073
\(695\) 3244.05 15240.2i 0.177056 0.831791i
\(696\) 29503.7 1.60680
\(697\) 11167.1i 0.606866i
\(698\) 5513.18i 0.298964i
\(699\) −9930.51 −0.537348
\(700\) 0 0
\(701\) −19358.8 −1.04304 −0.521520 0.853239i \(-0.674635\pi\)
−0.521520 + 0.853239i \(0.674635\pi\)
\(702\) 33186.7i 1.78426i
\(703\) 30.3589i 0.00162874i
\(704\) −24289.8 −1.30036
\(705\) 934.208 4388.82i 0.0499068 0.234457i
\(706\) −21717.3 −1.15771
\(707\) 0 0
\(708\) 26649.6i 1.41462i
\(709\) 17186.3 0.910359 0.455180 0.890400i \(-0.349575\pi\)
0.455180 + 0.890400i \(0.349575\pi\)
\(710\) 32342.9 + 6884.54i 1.70959 + 0.363905i
\(711\) −1843.51 −0.0972392
\(712\) 42391.9i 2.23133i
\(713\) 14032.4i 0.737049i
\(714\) 0 0
\(715\) −17904.2 3811.10i −0.936473 0.199339i
\(716\) 60213.1 3.14284
\(717\) 2186.68i 0.113896i
\(718\) 18452.6i 0.959113i
\(719\) −15107.3 −0.783598 −0.391799 0.920051i \(-0.628147\pi\)
−0.391799 + 0.920051i \(0.628147\pi\)
\(720\) 9930.07 46650.5i 0.513989 2.41467i
\(721\) 0 0
\(722\) 36443.0i 1.87849i
\(723\) 6883.91i 0.354102i
\(724\) 19552.5 1.00368
\(725\) −26714.3 11912.6i −1.36848 0.610240i
\(726\) 6993.22 0.357497
\(727\) 15840.9i 0.808124i 0.914732 + 0.404062i \(0.132402\pi\)
−0.914732 + 0.404062i \(0.867598\pi\)
\(728\) 0 0
\(729\) 5088.04 0.258499
\(730\) 2142.79 10066.6i 0.108641 0.510385i
\(731\) 4788.35 0.242276
\(732\) 22553.8i 1.13882i
\(733\) 27639.7i 1.39276i −0.717671 0.696382i \(-0.754792\pi\)
0.717671 0.696382i \(-0.245208\pi\)
\(734\) −46596.2 −2.34318
\(735\) 0 0
\(736\) 49453.8 2.47675
\(737\) 13170.4i 0.658263i
\(738\) 49790.3i 2.48348i
\(739\) −34874.4 −1.73596 −0.867982 0.496597i \(-0.834583\pi\)
−0.867982 + 0.496597i \(0.834583\pi\)
\(740\) −8477.27 1804.48i −0.421123 0.0896406i
\(741\) 98.5136 0.00488392
\(742\) 0 0
\(743\) 27686.7i 1.36706i 0.729922 + 0.683530i \(0.239556\pi\)
−0.729922 + 0.683530i \(0.760444\pi\)
\(744\) −16290.5 −0.802741
\(745\) −75.6510 + 355.401i −0.00372032 + 0.0174777i
\(746\) −60410.2 −2.96485
\(747\) 24251.1i 1.18782i
\(748\) 14314.0i 0.699694i
\(749\) 0 0
\(750\) 8475.46 11644.1i 0.412640 0.566908i
\(751\) 4806.85 0.233561 0.116781 0.993158i \(-0.462743\pi\)
0.116781 + 0.993158i \(0.462743\pi\)
\(752\) 37989.3i 1.84219i
\(753\) 9148.45i 0.442747i
\(754\) 79703.6 3.84965
\(755\) 1086.49 5104.21i 0.0523726 0.246041i
\(756\) 0 0
\(757\) 40166.6i 1.92851i −0.264983 0.964253i \(-0.585366\pi\)
0.264983 0.964253i \(-0.414634\pi\)
\(758\) 64493.9i 3.09040i
\(759\) 5379.90 0.257283
\(760\) −563.368 119.919i −0.0268888 0.00572359i
\(761\) −25912.3 −1.23432 −0.617162 0.786836i \(-0.711718\pi\)
−0.617162 + 0.786836i \(0.711718\pi\)
\(762\) 1978.93i 0.0940803i
\(763\) 0 0
\(764\) 31273.1 1.48092
\(765\) 7038.01 + 1498.12i 0.332627 + 0.0708034i
\(766\) −52443.7 −2.47372
\(767\) 43530.4i 2.04927i
\(768\) 220.221i 0.0103471i
\(769\) −23231.3 −1.08939 −0.544697 0.838633i \(-0.683355\pi\)
−0.544697 + 0.838633i \(0.683355\pi\)
\(770\) 0 0
\(771\) 12141.2 0.567125
\(772\) 46622.4i 2.17354i
\(773\) 836.306i 0.0389131i 0.999811 + 0.0194566i \(0.00619360\pi\)
−0.999811 + 0.0194566i \(0.993806\pi\)
\(774\) 21349.5 0.991465
\(775\) 14750.4 + 6577.58i 0.683675 + 0.304869i
\(776\) −33527.8 −1.55100
\(777\) 0 0
\(778\) 303.498i 0.0139858i
\(779\) 319.523 0.0146959
\(780\) −5855.48 + 27508.5i −0.268795 + 1.26277i
\(781\) 14217.0 0.651374
\(782\) 15982.8i 0.730875i
\(783\) 22799.2i