Newspace parameters
Level: | \( N \) | \(=\) | \( 245 = 5 \cdot 7^{2} \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 245.h (of order \(6\), degree \(2\), not minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(6.67576647683\) |
Analytic rank: | \(0\) |
Dimension: | \(4\) |
Relative dimension: | \(2\) over \(\Q(\zeta_{6})\) |
Coefficient field: | \(\Q(\sqrt{-3}, \sqrt{-5})\) |
Defining polynomial: |
\( x^{4} - 5x^{2} + 25 \)
|
Coefficient ring: | \(\Z[a_1, \ldots, a_{5}]\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | no (minimal twist has level 35) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{6}]$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.
Basis of coefficient ring in terms of a root \(\nu\) of
\( x^{4} - 5x^{2} + 25 \)
:
\(\beta_{1}\) | \(=\) |
\( \nu \)
|
\(\beta_{2}\) | \(=\) |
\( ( \nu^{2} ) / 5 \)
|
\(\beta_{3}\) | \(=\) |
\( ( \nu^{3} ) / 5 \)
|
\(\nu\) | \(=\) |
\( \beta_1 \)
|
\(\nu^{2}\) | \(=\) |
\( 5\beta_{2} \)
|
\(\nu^{3}\) | \(=\) |
\( 5\beta_{3} \)
|
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/245\mathbb{Z}\right)^\times\).
\(n\) | \(101\) | \(197\) |
\(\chi(n)\) | \(\beta_{2}\) | \(1\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
31.1 |
|
0.500000 | + | 0.866025i | −3.87298 | − | 2.23607i | 1.50000 | − | 2.59808i | 1.93649 | − | 1.11803i | − | 4.47214i | 0 | 7.00000 | 5.50000 | + | 9.52628i | 1.93649 | + | 1.11803i | |||||||||||||||||
31.2 | 0.500000 | + | 0.866025i | 3.87298 | + | 2.23607i | 1.50000 | − | 2.59808i | −1.93649 | + | 1.11803i | 4.47214i | 0 | 7.00000 | 5.50000 | + | 9.52628i | −1.93649 | − | 1.11803i | |||||||||||||||||||
166.1 | 0.500000 | − | 0.866025i | −3.87298 | + | 2.23607i | 1.50000 | + | 2.59808i | 1.93649 | + | 1.11803i | 4.47214i | 0 | 7.00000 | 5.50000 | − | 9.52628i | 1.93649 | − | 1.11803i | |||||||||||||||||||
166.2 | 0.500000 | − | 0.866025i | 3.87298 | − | 2.23607i | 1.50000 | + | 2.59808i | −1.93649 | − | 1.11803i | − | 4.47214i | 0 | 7.00000 | 5.50000 | − | 9.52628i | −1.93649 | + | 1.11803i | ||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
7.b | odd | 2 | 1 | inner |
7.c | even | 3 | 1 | inner |
7.d | odd | 6 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 245.3.h.b | 4 | |
7.b | odd | 2 | 1 | inner | 245.3.h.b | 4 | |
7.c | even | 3 | 1 | 35.3.d.a | ✓ | 2 | |
7.c | even | 3 | 1 | inner | 245.3.h.b | 4 | |
7.d | odd | 6 | 1 | 35.3.d.a | ✓ | 2 | |
7.d | odd | 6 | 1 | inner | 245.3.h.b | 4 | |
21.g | even | 6 | 1 | 315.3.h.b | 2 | ||
21.h | odd | 6 | 1 | 315.3.h.b | 2 | ||
28.f | even | 6 | 1 | 560.3.f.a | 2 | ||
28.g | odd | 6 | 1 | 560.3.f.a | 2 | ||
35.i | odd | 6 | 1 | 175.3.d.f | 2 | ||
35.j | even | 6 | 1 | 175.3.d.f | 2 | ||
35.k | even | 12 | 2 | 175.3.c.d | 4 | ||
35.l | odd | 12 | 2 | 175.3.c.d | 4 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
35.3.d.a | ✓ | 2 | 7.c | even | 3 | 1 | |
35.3.d.a | ✓ | 2 | 7.d | odd | 6 | 1 | |
175.3.c.d | 4 | 35.k | even | 12 | 2 | ||
175.3.c.d | 4 | 35.l | odd | 12 | 2 | ||
175.3.d.f | 2 | 35.i | odd | 6 | 1 | ||
175.3.d.f | 2 | 35.j | even | 6 | 1 | ||
245.3.h.b | 4 | 1.a | even | 1 | 1 | trivial | |
245.3.h.b | 4 | 7.b | odd | 2 | 1 | inner | |
245.3.h.b | 4 | 7.c | even | 3 | 1 | inner | |
245.3.h.b | 4 | 7.d | odd | 6 | 1 | inner | |
315.3.h.b | 2 | 21.g | even | 6 | 1 | ||
315.3.h.b | 2 | 21.h | odd | 6 | 1 | ||
560.3.f.a | 2 | 28.f | even | 6 | 1 | ||
560.3.f.a | 2 | 28.g | odd | 6 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{2} - T_{2} + 1 \)
acting on \(S_{3}^{\mathrm{new}}(245, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( (T^{2} - T + 1)^{2} \)
$3$
\( T^{4} - 20T^{2} + 400 \)
$5$
\( T^{4} - 5T^{2} + 25 \)
$7$
\( T^{4} \)
$11$
\( (T^{2} + 2 T + 4)^{2} \)
$13$
\( (T^{2} + 180)^{2} \)
$17$
\( T^{4} - 720 T^{2} + 518400 \)
$19$
\( T^{4} - 180 T^{2} + 32400 \)
$23$
\( (T^{2} + 26 T + 676)^{2} \)
$29$
\( (T + 22)^{4} \)
$31$
\( T^{4} - 2880 T^{2} + \cdots + 8294400 \)
$37$
\( (T^{2} + 14 T + 196)^{2} \)
$41$
\( (T^{2} + 720)^{2} \)
$43$
\( (T + 34)^{4} \)
$47$
\( T^{4} - 720 T^{2} + 518400 \)
$53$
\( (T^{2} - 34 T + 1156)^{2} \)
$59$
\( T^{4} - 1620 T^{2} + \cdots + 2624400 \)
$61$
\( T^{4} - 8820 T^{2} + \cdots + 77792400 \)
$67$
\( (T^{2} + 14 T + 196)^{2} \)
$71$
\( (T - 62)^{4} \)
$73$
\( T^{4} - 2880 T^{2} + \cdots + 8294400 \)
$79$
\( (T^{2} + 38 T + 1444)^{2} \)
$83$
\( (T^{2} + 1620)^{2} \)
$89$
\( T^{4} - 720 T^{2} + 518400 \)
$97$
\( (T^{2} + 720)^{2} \)
show more
show less