Properties

Label 245.2.p
Level $245$
Weight $2$
Character orbit 245.p
Rep. character $\chi_{245}(29,\cdot)$
Character field $\Q(\zeta_{14})$
Dimension $156$
Newform subspaces $2$
Sturm bound $56$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 245 = 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 245.p (of order \(14\) and degree \(6\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 245 \)
Character field: \(\Q(\zeta_{14})\)
Newform subspaces: \( 2 \)
Sturm bound: \(56\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(245, [\chi])\).

Total New Old
Modular forms 180 180 0
Cusp forms 156 156 0
Eisenstein series 24 24 0

Trace form

\( 156 q + 14 q^{4} - 3 q^{5} - 32 q^{6} + 22 q^{9} - 11 q^{10} + 4 q^{11} - 18 q^{14} - 15 q^{15} - 30 q^{16} - 84 q^{19} + 13 q^{20} - 12 q^{21} - 14 q^{24} - 15 q^{25} - 32 q^{26} + 16 q^{29} - 16 q^{30}+ \cdots + 96 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(245, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
245.2.p.a 245.p 245.p $12$ $1.956$ \(\Q(\zeta_{28})\) None 245.2.p.a \(0\) \(0\) \(-2\) \(0\) $\mathrm{SU}(2)[C_{14}]$ \(q-\zeta_{28}^{9}q^{2}+(-2\zeta_{28}^{3}+\zeta_{28}^{5}-\zeta_{28}^{7}+\cdots)q^{3}+\cdots\)
245.2.p.b 245.p 245.p $144$ $1.956$ None 245.2.p.b \(0\) \(0\) \(-1\) \(0\) $\mathrm{SU}(2)[C_{14}]$