Defining parameters
Level: | \( N \) | \(=\) | \( 245 = 5 \cdot 7^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 245.p (of order \(14\) and degree \(6\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 245 \) |
Character field: | \(\Q(\zeta_{14})\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(56\) | ||
Trace bound: | \(1\) | ||
Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(245, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 180 | 180 | 0 |
Cusp forms | 156 | 156 | 0 |
Eisenstein series | 24 | 24 | 0 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(245, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
245.2.p.a | $12$ | $1.956$ | \(\Q(\zeta_{28})\) | None | \(0\) | \(0\) | \(-2\) | \(0\) | \(q-\zeta_{28}^{9}q^{2}+(-2\zeta_{28}^{3}+\zeta_{28}^{5}-\zeta_{28}^{7}+\cdots)q^{3}+\cdots\) |
245.2.p.b | $144$ | $1.956$ | None | \(0\) | \(0\) | \(-1\) | \(0\) |