Properties

Label 245.2.e.g
Level $245$
Weight $2$
Character orbit 245.e
Analytic conductor $1.956$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 245 = 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 245.e (of order \(3\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(1.95633484952\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{2}, \sqrt{-3})\)
Defining polynomial: \(x^{4} + 2 x^{2} + 4\)
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{1} q^{2} + ( \beta_{1} - \beta_{2} + \beta_{3} ) q^{3} + ( 1 + \beta_{2} ) q^{5} + ( -2 - \beta_{3} ) q^{6} -2 \beta_{3} q^{8} + 2 \beta_{1} q^{9} +O(q^{10})\) \( q + \beta_{1} q^{2} + ( \beta_{1} - \beta_{2} + \beta_{3} ) q^{3} + ( 1 + \beta_{2} ) q^{5} + ( -2 - \beta_{3} ) q^{6} -2 \beta_{3} q^{8} + 2 \beta_{1} q^{9} + ( \beta_{1} + \beta_{3} ) q^{10} + ( 2 \beta_{1} - 3 \beta_{2} + 2 \beta_{3} ) q^{11} + ( -3 + \beta_{3} ) q^{13} + ( 1 + \beta_{3} ) q^{15} + ( 4 + 4 \beta_{2} ) q^{16} + ( -3 \beta_{1} + \beta_{2} - 3 \beta_{3} ) q^{17} + 4 \beta_{2} q^{18} + ( 6 + 6 \beta_{2} ) q^{19} + ( -4 - 3 \beta_{3} ) q^{22} + ( -6 - \beta_{1} - 6 \beta_{2} ) q^{23} + ( -2 \beta_{1} + 4 \beta_{2} - 2 \beta_{3} ) q^{24} + \beta_{2} q^{25} + ( -2 - 3 \beta_{1} - 2 \beta_{2} ) q^{26} + ( -1 + \beta_{3} ) q^{27} + ( -3 + 4 \beta_{3} ) q^{29} + ( -2 + \beta_{1} - 2 \beta_{2} ) q^{30} + ( -3 \beta_{1} - 6 \beta_{2} - 3 \beta_{3} ) q^{31} + ( -7 + 5 \beta_{1} - 7 \beta_{2} ) q^{33} + ( 6 + \beta_{3} ) q^{34} + ( 2 - 3 \beta_{1} + 2 \beta_{2} ) q^{37} + ( 6 \beta_{1} + 6 \beta_{3} ) q^{38} + ( -2 \beta_{1} + \beta_{2} - 2 \beta_{3} ) q^{39} + 2 \beta_{1} q^{40} + ( 2 - 3 \beta_{3} ) q^{41} + 2 q^{43} + ( 2 \beta_{1} + 2 \beta_{3} ) q^{45} + ( -6 \beta_{1} - 2 \beta_{2} - 6 \beta_{3} ) q^{46} + ( -3 - 3 \beta_{1} - 3 \beta_{2} ) q^{47} + ( 4 + 4 \beta_{3} ) q^{48} + \beta_{3} q^{50} + ( 7 - 4 \beta_{1} + 7 \beta_{2} ) q^{51} + ( 3 \beta_{1} + 3 \beta_{3} ) q^{53} + ( -2 - \beta_{1} - 2 \beta_{2} ) q^{54} + ( 3 + 2 \beta_{3} ) q^{55} + ( 6 + 6 \beta_{3} ) q^{57} + ( -8 - 3 \beta_{1} - 8 \beta_{2} ) q^{58} + ( 3 \beta_{1} - 2 \beta_{2} + 3 \beta_{3} ) q^{59} -2 \beta_{1} q^{61} + ( 6 - 6 \beta_{3} ) q^{62} + 8 q^{64} + ( -3 - \beta_{1} - 3 \beta_{2} ) q^{65} + ( -7 \beta_{1} + 10 \beta_{2} - 7 \beta_{3} ) q^{66} + ( -3 \beta_{1} - 4 \beta_{2} - 3 \beta_{3} ) q^{67} + ( -4 - 5 \beta_{3} ) q^{69} + ( -6 - 2 \beta_{3} ) q^{71} + ( 8 + 8 \beta_{2} ) q^{72} + ( 6 \beta_{1} + 6 \beta_{3} ) q^{73} + ( 2 \beta_{1} - 6 \beta_{2} + 2 \beta_{3} ) q^{74} + ( 1 - \beta_{1} + \beta_{2} ) q^{75} + ( 4 + \beta_{3} ) q^{78} + ( 7 - 6 \beta_{1} + 7 \beta_{2} ) q^{79} + 4 \beta_{2} q^{80} + ( 6 \beta_{1} - \beta_{2} + 6 \beta_{3} ) q^{81} + ( 6 + 2 \beta_{1} + 6 \beta_{2} ) q^{82} + ( -1 - 3 \beta_{3} ) q^{85} + 2 \beta_{1} q^{86} + ( \beta_{1} - 5 \beta_{2} + \beta_{3} ) q^{87} + ( -6 \beta_{1} + 8 \beta_{2} - 6 \beta_{3} ) q^{88} + ( -8 - 8 \beta_{2} ) q^{89} -4 q^{90} + 3 \beta_{1} q^{93} + ( -3 \beta_{1} - 6 \beta_{2} - 3 \beta_{3} ) q^{94} + 6 \beta_{2} q^{95} + ( -9 + 3 \beta_{3} ) q^{97} + ( -8 - 6 \beta_{3} ) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4q + 2q^{3} + 2q^{5} - 8q^{6} + O(q^{10}) \) \( 4q + 2q^{3} + 2q^{5} - 8q^{6} + 6q^{11} - 12q^{13} + 4q^{15} + 8q^{16} - 2q^{17} - 8q^{18} + 12q^{19} - 16q^{22} - 12q^{23} - 8q^{24} - 2q^{25} - 4q^{26} - 4q^{27} - 12q^{29} - 4q^{30} + 12q^{31} - 14q^{33} + 24q^{34} + 4q^{37} - 2q^{39} + 8q^{41} + 8q^{43} + 4q^{46} - 6q^{47} + 16q^{48} + 14q^{51} - 4q^{54} + 12q^{55} + 24q^{57} - 16q^{58} + 4q^{59} + 24q^{62} + 32q^{64} - 6q^{65} - 20q^{66} + 8q^{67} - 16q^{69} - 24q^{71} + 16q^{72} + 12q^{74} + 2q^{75} + 16q^{78} + 14q^{79} - 8q^{80} + 2q^{81} + 12q^{82} - 4q^{85} + 10q^{87} - 16q^{88} - 16q^{89} - 16q^{90} + 12q^{94} - 12q^{95} - 36q^{97} - 32q^{99} + O(q^{100}) \)

Basis of coefficient ring in terms of a root \(\nu\) of \(x^{4} + 2 x^{2} + 4\):

\(\beta_{0}\)\(=\)\( 1 \)
\(\beta_{1}\)\(=\)\( \nu \)
\(\beta_{2}\)\(=\)\( \nu^{2} \)\(/2\)
\(\beta_{3}\)\(=\)\( \nu^{3} \)\(/2\)
\(1\)\(=\)\(\beta_0\)
\(\nu\)\(=\)\(\beta_{1}\)
\(\nu^{2}\)\(=\)\(2 \beta_{2}\)
\(\nu^{3}\)\(=\)\(2 \beta_{3}\)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/245\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(197\)
\(\chi(n)\) \(-1 - \beta_{2}\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
116.1
−0.707107 1.22474i
0.707107 + 1.22474i
−0.707107 + 1.22474i
0.707107 1.22474i
−0.707107 1.22474i 1.20711 2.09077i 0 0.500000 + 0.866025i −3.41421 0 −2.82843 −1.41421 2.44949i 0.707107 1.22474i
116.2 0.707107 + 1.22474i −0.207107 + 0.358719i 0 0.500000 + 0.866025i −0.585786 0 2.82843 1.41421 + 2.44949i −0.707107 + 1.22474i
226.1 −0.707107 + 1.22474i 1.20711 + 2.09077i 0 0.500000 0.866025i −3.41421 0 −2.82843 −1.41421 + 2.44949i 0.707107 + 1.22474i
226.2 0.707107 1.22474i −0.207107 0.358719i 0 0.500000 0.866025i −0.585786 0 2.82843 1.41421 2.44949i −0.707107 1.22474i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 245.2.e.g 4
7.b odd 2 1 245.2.e.f 4
7.c even 3 1 245.2.a.e 2
7.c even 3 1 inner 245.2.e.g 4
7.d odd 6 1 245.2.a.f yes 2
7.d odd 6 1 245.2.e.f 4
21.g even 6 1 2205.2.a.t 2
21.h odd 6 1 2205.2.a.v 2
28.f even 6 1 3920.2.a.br 2
28.g odd 6 1 3920.2.a.bw 2
35.i odd 6 1 1225.2.a.p 2
35.j even 6 1 1225.2.a.r 2
35.k even 12 2 1225.2.b.j 4
35.l odd 12 2 1225.2.b.i 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
245.2.a.e 2 7.c even 3 1
245.2.a.f yes 2 7.d odd 6 1
245.2.e.f 4 7.b odd 2 1
245.2.e.f 4 7.d odd 6 1
245.2.e.g 4 1.a even 1 1 trivial
245.2.e.g 4 7.c even 3 1 inner
1225.2.a.p 2 35.i odd 6 1
1225.2.a.r 2 35.j even 6 1
1225.2.b.i 4 35.l odd 12 2
1225.2.b.j 4 35.k even 12 2
2205.2.a.t 2 21.g even 6 1
2205.2.a.v 2 21.h odd 6 1
3920.2.a.br 2 28.f even 6 1
3920.2.a.bw 2 28.g odd 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(245, [\chi])\):

\( T_{2}^{4} + 2 T_{2}^{2} + 4 \)
\( T_{3}^{4} - 2 T_{3}^{3} + 5 T_{3}^{2} + 2 T_{3} + 1 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( 4 + 2 T^{2} + T^{4} \)
$3$ \( 1 + 2 T + 5 T^{2} - 2 T^{3} + T^{4} \)
$5$ \( ( 1 - T + T^{2} )^{2} \)
$7$ \( T^{4} \)
$11$ \( 1 - 6 T + 35 T^{2} - 6 T^{3} + T^{4} \)
$13$ \( ( 7 + 6 T + T^{2} )^{2} \)
$17$ \( 289 - 34 T + 21 T^{2} + 2 T^{3} + T^{4} \)
$19$ \( ( 36 - 6 T + T^{2} )^{2} \)
$23$ \( 1156 + 408 T + 110 T^{2} + 12 T^{3} + T^{4} \)
$29$ \( ( -23 + 6 T + T^{2} )^{2} \)
$31$ \( 324 - 216 T + 126 T^{2} - 12 T^{3} + T^{4} \)
$37$ \( 196 + 56 T + 30 T^{2} - 4 T^{3} + T^{4} \)
$41$ \( ( -14 - 4 T + T^{2} )^{2} \)
$43$ \( ( -2 + T )^{4} \)
$47$ \( 81 - 54 T + 45 T^{2} + 6 T^{3} + T^{4} \)
$53$ \( 324 + 18 T^{2} + T^{4} \)
$59$ \( 196 + 56 T + 30 T^{2} - 4 T^{3} + T^{4} \)
$61$ \( 64 + 8 T^{2} + T^{4} \)
$67$ \( 4 + 16 T + 66 T^{2} - 8 T^{3} + T^{4} \)
$71$ \( ( 28 + 12 T + T^{2} )^{2} \)
$73$ \( 5184 + 72 T^{2} + T^{4} \)
$79$ \( 529 + 322 T + 219 T^{2} - 14 T^{3} + T^{4} \)
$83$ \( T^{4} \)
$89$ \( ( 64 + 8 T + T^{2} )^{2} \)
$97$ \( ( 63 + 18 T + T^{2} )^{2} \)
show more
show less