Properties

Label 245.2.b.f.99.1
Level $245$
Weight $2$
Character 245.99
Analytic conductor $1.956$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Error: no document with id 234107152 found in table mf_hecke_traces.

Error: table True does not exist

Error: no document with id 216729336 found in table mf_hecke_traces.

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [245,2,Mod(99,245)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("245.99"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(245, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 245 = 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 245.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,4,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.95633484952\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{8})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 99.1
Root \(0.707107 - 0.707107i\) of defining polynomial
Character \(\chi\) \(=\) 245.99
Dual form 245.2.b.f.99.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000i q^{2} -2.82843i q^{3} +1.00000 q^{4} +(-2.12132 + 0.707107i) q^{5} -2.82843 q^{6} -3.00000i q^{8} -5.00000 q^{9} +(0.707107 + 2.12132i) q^{10} -2.82843i q^{12} -4.24264i q^{13} +(2.00000 + 6.00000i) q^{15} -1.00000 q^{16} +4.24264i q^{17} +5.00000i q^{18} +2.82843 q^{19} +(-2.12132 + 0.707107i) q^{20} +4.00000i q^{23} -8.48528 q^{24} +(4.00000 - 3.00000i) q^{25} -4.24264 q^{26} +5.65685i q^{27} +(6.00000 - 2.00000i) q^{30} +5.65685 q^{31} -5.00000i q^{32} +4.24264 q^{34} -5.00000 q^{36} -6.00000i q^{37} -2.82843i q^{38} -12.0000 q^{39} +(2.12132 + 6.36396i) q^{40} +4.24264 q^{41} +(10.6066 - 3.53553i) q^{45} +4.00000 q^{46} +2.82843i q^{48} +(-3.00000 - 4.00000i) q^{50} +12.0000 q^{51} -4.24264i q^{52} -8.00000i q^{53} +5.65685 q^{54} -8.00000i q^{57} -8.48528 q^{59} +(2.00000 + 6.00000i) q^{60} +9.89949 q^{61} -5.65685i q^{62} -7.00000 q^{64} +(3.00000 + 9.00000i) q^{65} +12.0000i q^{67} +4.24264i q^{68} +11.3137 q^{69} +12.0000 q^{71} +15.0000i q^{72} +12.7279i q^{73} -6.00000 q^{74} +(-8.48528 - 11.3137i) q^{75} +2.82843 q^{76} +12.0000i q^{78} -12.0000 q^{79} +(2.12132 - 0.707107i) q^{80} +1.00000 q^{81} -4.24264i q^{82} +8.48528i q^{83} +(-3.00000 - 9.00000i) q^{85} +4.24264 q^{89} +(-3.53553 - 10.6066i) q^{90} +4.00000i q^{92} -16.0000i q^{93} +(-6.00000 + 2.00000i) q^{95} -14.1421 q^{96} -4.24264i q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{4} - 20 q^{9} + 8 q^{15} - 4 q^{16} + 16 q^{25} + 24 q^{30} - 20 q^{36} - 48 q^{39} + 16 q^{46} - 12 q^{50} + 48 q^{51} + 8 q^{60} - 28 q^{64} + 12 q^{65} + 48 q^{71} - 24 q^{74} - 48 q^{79}+ \cdots - 24 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/245\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(197\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000i 0.707107i −0.935414 0.353553i \(-0.884973\pi\)
0.935414 0.353553i \(-0.115027\pi\)
\(3\) 2.82843i 1.63299i −0.577350 0.816497i \(-0.695913\pi\)
0.577350 0.816497i \(-0.304087\pi\)
\(4\) 1.00000 0.500000
\(5\) −2.12132 + 0.707107i −0.948683 + 0.316228i
\(6\) −2.82843 −1.15470
\(7\) 0 0
\(8\) 3.00000i 1.06066i
\(9\) −5.00000 −1.66667
\(10\) 0.707107 + 2.12132i 0.223607 + 0.670820i
\(11\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(12\) 2.82843i 0.816497i
\(13\) 4.24264i 1.17670i −0.808608 0.588348i \(-0.799778\pi\)
0.808608 0.588348i \(-0.200222\pi\)
\(14\) 0 0
\(15\) 2.00000 + 6.00000i 0.516398 + 1.54919i
\(16\) −1.00000 −0.250000
\(17\) 4.24264i 1.02899i 0.857493 + 0.514496i \(0.172021\pi\)
−0.857493 + 0.514496i \(0.827979\pi\)
\(18\) 5.00000i 1.17851i
\(19\) 2.82843 0.648886 0.324443 0.945905i \(-0.394823\pi\)
0.324443 + 0.945905i \(0.394823\pi\)
\(20\) −2.12132 + 0.707107i −0.474342 + 0.158114i
\(21\) 0 0
\(22\) 0 0
\(23\) 4.00000i 0.834058i 0.908893 + 0.417029i \(0.136929\pi\)
−0.908893 + 0.417029i \(0.863071\pi\)
\(24\) −8.48528 −1.73205
\(25\) 4.00000 3.00000i 0.800000 0.600000i
\(26\) −4.24264 −0.832050
\(27\) 5.65685i 1.08866i
\(28\) 0 0
\(29\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(30\) 6.00000 2.00000i 1.09545 0.365148i
\(31\) 5.65685 1.01600 0.508001 0.861357i \(-0.330385\pi\)
0.508001 + 0.861357i \(0.330385\pi\)
\(32\) 5.00000i 0.883883i
\(33\) 0 0
\(34\) 4.24264 0.727607
\(35\) 0 0
\(36\) −5.00000 −0.833333
\(37\) 6.00000i 0.986394i −0.869918 0.493197i \(-0.835828\pi\)
0.869918 0.493197i \(-0.164172\pi\)
\(38\) 2.82843i 0.458831i
\(39\) −12.0000 −1.92154
\(40\) 2.12132 + 6.36396i 0.335410 + 1.00623i
\(41\) 4.24264 0.662589 0.331295 0.943527i \(-0.392515\pi\)
0.331295 + 0.943527i \(0.392515\pi\)
\(42\) 0 0
\(43\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(44\) 0 0
\(45\) 10.6066 3.53553i 1.58114 0.527046i
\(46\) 4.00000 0.589768
\(47\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(48\) 2.82843i 0.408248i
\(49\) 0 0
\(50\) −3.00000 4.00000i −0.424264 0.565685i
\(51\) 12.0000 1.68034
\(52\) 4.24264i 0.588348i
\(53\) 8.00000i 1.09888i −0.835532 0.549442i \(-0.814840\pi\)
0.835532 0.549442i \(-0.185160\pi\)
\(54\) 5.65685 0.769800
\(55\) 0 0
\(56\) 0 0
\(57\) 8.00000i 1.05963i
\(58\) 0 0
\(59\) −8.48528 −1.10469 −0.552345 0.833616i \(-0.686267\pi\)
−0.552345 + 0.833616i \(0.686267\pi\)
\(60\) 2.00000 + 6.00000i 0.258199 + 0.774597i
\(61\) 9.89949 1.26750 0.633750 0.773538i \(-0.281515\pi\)
0.633750 + 0.773538i \(0.281515\pi\)
\(62\) 5.65685i 0.718421i
\(63\) 0 0
\(64\) −7.00000 −0.875000
\(65\) 3.00000 + 9.00000i 0.372104 + 1.11631i
\(66\) 0 0
\(67\) 12.0000i 1.46603i 0.680211 + 0.733017i \(0.261888\pi\)
−0.680211 + 0.733017i \(0.738112\pi\)
\(68\) 4.24264i 0.514496i
\(69\) 11.3137 1.36201
\(70\) 0 0
\(71\) 12.0000 1.42414 0.712069 0.702109i \(-0.247758\pi\)
0.712069 + 0.702109i \(0.247758\pi\)
\(72\) 15.0000i 1.76777i
\(73\) 12.7279i 1.48969i 0.667237 + 0.744845i \(0.267477\pi\)
−0.667237 + 0.744845i \(0.732523\pi\)
\(74\) −6.00000 −0.697486
\(75\) −8.48528 11.3137i −0.979796 1.30639i
\(76\) 2.82843 0.324443
\(77\) 0 0
\(78\) 12.0000i 1.35873i
\(79\) −12.0000 −1.35011 −0.675053 0.737769i \(-0.735879\pi\)
−0.675053 + 0.737769i \(0.735879\pi\)
\(80\) 2.12132 0.707107i 0.237171 0.0790569i
\(81\) 1.00000 0.111111
\(82\) 4.24264i 0.468521i
\(83\) 8.48528i 0.931381i 0.884948 + 0.465690i \(0.154194\pi\)
−0.884948 + 0.465690i \(0.845806\pi\)
\(84\) 0 0
\(85\) −3.00000 9.00000i −0.325396 0.976187i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 4.24264 0.449719 0.224860 0.974391i \(-0.427808\pi\)
0.224860 + 0.974391i \(0.427808\pi\)
\(90\) −3.53553 10.6066i −0.372678 1.11803i
\(91\) 0 0
\(92\) 4.00000i 0.417029i
\(93\) 16.0000i 1.65912i
\(94\) 0 0
\(95\) −6.00000 + 2.00000i −0.615587 + 0.205196i
\(96\) −14.1421 −1.44338
\(97\) 4.24264i 0.430775i −0.976529 0.215387i \(-0.930899\pi\)
0.976529 0.215387i \(-0.0691014\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 4.00000 3.00000i 0.400000 0.300000i
\(101\) −4.24264 −0.422159 −0.211079 0.977469i \(-0.567698\pi\)
−0.211079 + 0.977469i \(0.567698\pi\)
\(102\) 12.0000i 1.18818i
\(103\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(104\) −12.7279 −1.24808
\(105\) 0 0
\(106\) −8.00000 −0.777029
\(107\) 4.00000i 0.386695i −0.981130 0.193347i \(-0.938066\pi\)
0.981130 0.193347i \(-0.0619344\pi\)
\(108\) 5.65685i 0.544331i
\(109\) 16.0000 1.53252 0.766261 0.642529i \(-0.222115\pi\)
0.766261 + 0.642529i \(0.222115\pi\)
\(110\) 0 0
\(111\) −16.9706 −1.61077
\(112\) 0 0
\(113\) 8.00000i 0.752577i 0.926503 + 0.376288i \(0.122800\pi\)
−0.926503 + 0.376288i \(0.877200\pi\)
\(114\) −8.00000 −0.749269
\(115\) −2.82843 8.48528i −0.263752 0.791257i
\(116\) 0 0
\(117\) 21.2132i 1.96116i
\(118\) 8.48528i 0.781133i
\(119\) 0 0
\(120\) 18.0000 6.00000i 1.64317 0.547723i
\(121\) −11.0000 −1.00000
\(122\) 9.89949i 0.896258i
\(123\) 12.0000i 1.08200i
\(124\) 5.65685 0.508001
\(125\) −6.36396 + 9.19239i −0.569210 + 0.822192i
\(126\) 0 0
\(127\) 12.0000i 1.06483i 0.846484 + 0.532414i \(0.178715\pi\)
−0.846484 + 0.532414i \(0.821285\pi\)
\(128\) 3.00000i 0.265165i
\(129\) 0 0
\(130\) 9.00000 3.00000i 0.789352 0.263117i
\(131\) −8.48528 −0.741362 −0.370681 0.928760i \(-0.620876\pi\)
−0.370681 + 0.928760i \(0.620876\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 12.0000 1.03664
\(135\) −4.00000 12.0000i −0.344265 1.03280i
\(136\) 12.7279 1.09141
\(137\) 14.0000i 1.19610i 0.801459 + 0.598050i \(0.204058\pi\)
−0.801459 + 0.598050i \(0.795942\pi\)
\(138\) 11.3137i 0.963087i
\(139\) −2.82843 −0.239904 −0.119952 0.992780i \(-0.538274\pi\)
−0.119952 + 0.992780i \(0.538274\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 12.0000i 1.00702i
\(143\) 0 0
\(144\) 5.00000 0.416667
\(145\) 0 0
\(146\) 12.7279 1.05337
\(147\) 0 0
\(148\) 6.00000i 0.493197i
\(149\) 6.00000 0.491539 0.245770 0.969328i \(-0.420959\pi\)
0.245770 + 0.969328i \(0.420959\pi\)
\(150\) −11.3137 + 8.48528i −0.923760 + 0.692820i
\(151\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(152\) 8.48528i 0.688247i
\(153\) 21.2132i 1.71499i
\(154\) 0 0
\(155\) −12.0000 + 4.00000i −0.963863 + 0.321288i
\(156\) −12.0000 −0.960769
\(157\) 4.24264i 0.338600i −0.985565 0.169300i \(-0.945849\pi\)
0.985565 0.169300i \(-0.0541506\pi\)
\(158\) 12.0000i 0.954669i
\(159\) −22.6274 −1.79447
\(160\) 3.53553 + 10.6066i 0.279508 + 0.838525i
\(161\) 0 0
\(162\) 1.00000i 0.0785674i
\(163\) 24.0000i 1.87983i 0.341415 + 0.939913i \(0.389094\pi\)
−0.341415 + 0.939913i \(0.610906\pi\)
\(164\) 4.24264 0.331295
\(165\) 0 0
\(166\) 8.48528 0.658586
\(167\) 11.3137i 0.875481i −0.899101 0.437741i \(-0.855779\pi\)
0.899101 0.437741i \(-0.144221\pi\)
\(168\) 0 0
\(169\) −5.00000 −0.384615
\(170\) −9.00000 + 3.00000i −0.690268 + 0.230089i
\(171\) −14.1421 −1.08148
\(172\) 0 0
\(173\) 4.24264i 0.322562i −0.986909 0.161281i \(-0.948437\pi\)
0.986909 0.161281i \(-0.0515625\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 24.0000i 1.80395i
\(178\) 4.24264i 0.317999i
\(179\) −12.0000 −0.896922 −0.448461 0.893802i \(-0.648028\pi\)
−0.448461 + 0.893802i \(0.648028\pi\)
\(180\) 10.6066 3.53553i 0.790569 0.263523i
\(181\) −18.3848 −1.36653 −0.683265 0.730171i \(-0.739441\pi\)
−0.683265 + 0.730171i \(0.739441\pi\)
\(182\) 0 0
\(183\) 28.0000i 2.06982i
\(184\) 12.0000 0.884652
\(185\) 4.24264 + 12.7279i 0.311925 + 0.935775i
\(186\) −16.0000 −1.17318
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 2.00000 + 6.00000i 0.145095 + 0.435286i
\(191\) 12.0000 0.868290 0.434145 0.900843i \(-0.357051\pi\)
0.434145 + 0.900843i \(0.357051\pi\)
\(192\) 19.7990i 1.42887i
\(193\) 24.0000i 1.72756i 0.503871 + 0.863779i \(0.331909\pi\)
−0.503871 + 0.863779i \(0.668091\pi\)
\(194\) −4.24264 −0.304604
\(195\) 25.4558 8.48528i 1.82293 0.607644i
\(196\) 0 0
\(197\) 8.00000i 0.569976i 0.958531 + 0.284988i \(0.0919897\pi\)
−0.958531 + 0.284988i \(0.908010\pi\)
\(198\) 0 0
\(199\) 11.3137 0.802008 0.401004 0.916076i \(-0.368661\pi\)
0.401004 + 0.916076i \(0.368661\pi\)
\(200\) −9.00000 12.0000i −0.636396 0.848528i
\(201\) 33.9411 2.39402
\(202\) 4.24264i 0.298511i
\(203\) 0 0
\(204\) 12.0000 0.840168
\(205\) −9.00000 + 3.00000i −0.628587 + 0.209529i
\(206\) 0 0
\(207\) 20.0000i 1.39010i
\(208\) 4.24264i 0.294174i
\(209\) 0 0
\(210\) 0 0
\(211\) 4.00000 0.275371 0.137686 0.990476i \(-0.456034\pi\)
0.137686 + 0.990476i \(0.456034\pi\)
\(212\) 8.00000i 0.549442i
\(213\) 33.9411i 2.32561i
\(214\) −4.00000 −0.273434
\(215\) 0 0
\(216\) 16.9706 1.15470
\(217\) 0 0
\(218\) 16.0000i 1.08366i
\(219\) 36.0000 2.43265
\(220\) 0 0
\(221\) 18.0000 1.21081
\(222\) 16.9706i 1.13899i
\(223\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(224\) 0 0
\(225\) −20.0000 + 15.0000i −1.33333 + 1.00000i
\(226\) 8.00000 0.532152
\(227\) 2.82843i 0.187729i −0.995585 0.0938647i \(-0.970078\pi\)
0.995585 0.0938647i \(-0.0299221\pi\)
\(228\) 8.00000i 0.529813i
\(229\) −7.07107 −0.467269 −0.233635 0.972324i \(-0.575062\pi\)
−0.233635 + 0.972324i \(0.575062\pi\)
\(230\) −8.48528 + 2.82843i −0.559503 + 0.186501i
\(231\) 0 0
\(232\) 0 0
\(233\) 14.0000i 0.917170i −0.888650 0.458585i \(-0.848356\pi\)
0.888650 0.458585i \(-0.151644\pi\)
\(234\) 21.2132 1.38675
\(235\) 0 0
\(236\) −8.48528 −0.552345
\(237\) 33.9411i 2.20471i
\(238\) 0 0
\(239\) −24.0000 −1.55243 −0.776215 0.630468i \(-0.782863\pi\)
−0.776215 + 0.630468i \(0.782863\pi\)
\(240\) −2.00000 6.00000i −0.129099 0.387298i
\(241\) −9.89949 −0.637683 −0.318841 0.947808i \(-0.603294\pi\)
−0.318841 + 0.947808i \(0.603294\pi\)
\(242\) 11.0000i 0.707107i
\(243\) 14.1421i 0.907218i
\(244\) 9.89949 0.633750
\(245\) 0 0
\(246\) −12.0000 −0.765092
\(247\) 12.0000i 0.763542i
\(248\) 16.9706i 1.07763i
\(249\) 24.0000 1.52094
\(250\) 9.19239 + 6.36396i 0.581378 + 0.402492i
\(251\) 25.4558 1.60676 0.803379 0.595468i \(-0.203033\pi\)
0.803379 + 0.595468i \(0.203033\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 12.0000 0.752947
\(255\) −25.4558 + 8.48528i −1.59411 + 0.531369i
\(256\) −17.0000 −1.06250
\(257\) 26.8701i 1.67611i −0.545587 0.838054i \(-0.683693\pi\)
0.545587 0.838054i \(-0.316307\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 3.00000 + 9.00000i 0.186052 + 0.558156i
\(261\) 0 0
\(262\) 8.48528i 0.524222i
\(263\) 16.0000i 0.986602i −0.869859 0.493301i \(-0.835790\pi\)
0.869859 0.493301i \(-0.164210\pi\)
\(264\) 0 0
\(265\) 5.65685 + 16.9706i 0.347498 + 1.04249i
\(266\) 0 0
\(267\) 12.0000i 0.734388i
\(268\) 12.0000i 0.733017i
\(269\) 21.2132 1.29339 0.646696 0.762748i \(-0.276150\pi\)
0.646696 + 0.762748i \(0.276150\pi\)
\(270\) −12.0000 + 4.00000i −0.730297 + 0.243432i
\(271\) −5.65685 −0.343629 −0.171815 0.985129i \(-0.554963\pi\)
−0.171815 + 0.985129i \(0.554963\pi\)
\(272\) 4.24264i 0.257248i
\(273\) 0 0
\(274\) 14.0000 0.845771
\(275\) 0 0
\(276\) 11.3137 0.681005
\(277\) 24.0000i 1.44202i −0.692925 0.721010i \(-0.743678\pi\)
0.692925 0.721010i \(-0.256322\pi\)
\(278\) 2.82843i 0.169638i
\(279\) −28.2843 −1.69334
\(280\) 0 0
\(281\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(282\) 0 0
\(283\) 25.4558i 1.51319i 0.653882 + 0.756596i \(0.273139\pi\)
−0.653882 + 0.756596i \(0.726861\pi\)
\(284\) 12.0000 0.712069
\(285\) 5.65685 + 16.9706i 0.335083 + 1.00525i
\(286\) 0 0
\(287\) 0 0
\(288\) 25.0000i 1.47314i
\(289\) −1.00000 −0.0588235
\(290\) 0 0
\(291\) −12.0000 −0.703452
\(292\) 12.7279i 0.744845i
\(293\) 1.41421i 0.0826192i −0.999146 0.0413096i \(-0.986847\pi\)
0.999146 0.0413096i \(-0.0131530\pi\)
\(294\) 0 0
\(295\) 18.0000 6.00000i 1.04800 0.349334i
\(296\) −18.0000 −1.04623
\(297\) 0 0
\(298\) 6.00000i 0.347571i
\(299\) 16.9706 0.981433
\(300\) −8.48528 11.3137i −0.489898 0.653197i
\(301\) 0 0
\(302\) 0 0
\(303\) 12.0000i 0.689382i
\(304\) −2.82843 −0.162221
\(305\) −21.0000 + 7.00000i −1.20246 + 0.400819i
\(306\) −21.2132 −1.21268
\(307\) 25.4558i 1.45284i −0.687250 0.726421i \(-0.741182\pi\)
0.687250 0.726421i \(-0.258818\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 4.00000 + 12.0000i 0.227185 + 0.681554i
\(311\) −33.9411 −1.92462 −0.962312 0.271947i \(-0.912333\pi\)
−0.962312 + 0.271947i \(0.912333\pi\)
\(312\) 36.0000i 2.03810i
\(313\) 21.2132i 1.19904i −0.800359 0.599521i \(-0.795358\pi\)
0.800359 0.599521i \(-0.204642\pi\)
\(314\) −4.24264 −0.239426
\(315\) 0 0
\(316\) −12.0000 −0.675053
\(317\) 8.00000i 0.449325i −0.974437 0.224662i \(-0.927872\pi\)
0.974437 0.224662i \(-0.0721279\pi\)
\(318\) 22.6274i 1.26888i
\(319\) 0 0
\(320\) 14.8492 4.94975i 0.830098 0.276699i
\(321\) −11.3137 −0.631470
\(322\) 0 0
\(323\) 12.0000i 0.667698i
\(324\) 1.00000 0.0555556
\(325\) −12.7279 16.9706i −0.706018 0.941357i
\(326\) 24.0000 1.32924
\(327\) 45.2548i 2.50260i
\(328\) 12.7279i 0.702782i
\(329\) 0 0
\(330\) 0 0
\(331\) −8.00000 −0.439720 −0.219860 0.975531i \(-0.570560\pi\)
−0.219860 + 0.975531i \(0.570560\pi\)
\(332\) 8.48528i 0.465690i
\(333\) 30.0000i 1.64399i
\(334\) −11.3137 −0.619059
\(335\) −8.48528 25.4558i −0.463600 1.39080i
\(336\) 0 0
\(337\) 18.0000i 0.980522i −0.871576 0.490261i \(-0.836901\pi\)
0.871576 0.490261i \(-0.163099\pi\)
\(338\) 5.00000i 0.271964i
\(339\) 22.6274 1.22895
\(340\) −3.00000 9.00000i −0.162698 0.488094i
\(341\) 0 0
\(342\) 14.1421i 0.764719i
\(343\) 0 0
\(344\) 0 0
\(345\) −24.0000 + 8.00000i −1.29212 + 0.430706i
\(346\) −4.24264 −0.228086
\(347\) 8.00000i 0.429463i −0.976673 0.214731i \(-0.931112\pi\)
0.976673 0.214731i \(-0.0688876\pi\)
\(348\) 0 0
\(349\) −1.41421 −0.0757011 −0.0378506 0.999283i \(-0.512051\pi\)
−0.0378506 + 0.999283i \(0.512051\pi\)
\(350\) 0 0
\(351\) 24.0000 1.28103
\(352\) 0 0
\(353\) 15.5563i 0.827981i 0.910281 + 0.413990i \(0.135865\pi\)
−0.910281 + 0.413990i \(0.864135\pi\)
\(354\) 24.0000 1.27559
\(355\) −25.4558 + 8.48528i −1.35106 + 0.450352i
\(356\) 4.24264 0.224860
\(357\) 0 0
\(358\) 12.0000i 0.634220i
\(359\) −24.0000 −1.26667 −0.633336 0.773877i \(-0.718315\pi\)
−0.633336 + 0.773877i \(0.718315\pi\)
\(360\) −10.6066 31.8198i −0.559017 1.67705i
\(361\) −11.0000 −0.578947
\(362\) 18.3848i 0.966282i
\(363\) 31.1127i 1.63299i
\(364\) 0 0
\(365\) −9.00000 27.0000i −0.471082 1.41324i
\(366\) −28.0000 −1.46358
\(367\) 16.9706i 0.885856i −0.896557 0.442928i \(-0.853940\pi\)
0.896557 0.442928i \(-0.146060\pi\)
\(368\) 4.00000i 0.208514i
\(369\) −21.2132 −1.10432
\(370\) 12.7279 4.24264i 0.661693 0.220564i
\(371\) 0 0
\(372\) 16.0000i 0.829561i
\(373\) 24.0000i 1.24267i −0.783544 0.621336i \(-0.786590\pi\)
0.783544 0.621336i \(-0.213410\pi\)
\(374\) 0 0
\(375\) 26.0000 + 18.0000i 1.34263 + 0.929516i
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 24.0000 1.23280 0.616399 0.787434i \(-0.288591\pi\)
0.616399 + 0.787434i \(0.288591\pi\)
\(380\) −6.00000 + 2.00000i −0.307794 + 0.102598i
\(381\) 33.9411 1.73886
\(382\) 12.0000i 0.613973i
\(383\) 33.9411i 1.73431i 0.498038 + 0.867155i \(0.334054\pi\)
−0.498038 + 0.867155i \(0.665946\pi\)
\(384\) −8.48528 −0.433013
\(385\) 0 0
\(386\) 24.0000 1.22157
\(387\) 0 0
\(388\) 4.24264i 0.215387i
\(389\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(390\) −8.48528 25.4558i −0.429669 1.28901i
\(391\) −16.9706 −0.858238
\(392\) 0 0
\(393\) 24.0000i 1.21064i
\(394\) 8.00000 0.403034
\(395\) 25.4558 8.48528i 1.28082 0.426941i
\(396\) 0 0
\(397\) 4.24264i 0.212932i −0.994316 0.106466i \(-0.966046\pi\)
0.994316 0.106466i \(-0.0339535\pi\)
\(398\) 11.3137i 0.567105i
\(399\) 0 0
\(400\) −4.00000 + 3.00000i −0.200000 + 0.150000i
\(401\) 24.0000 1.19850 0.599251 0.800561i \(-0.295465\pi\)
0.599251 + 0.800561i \(0.295465\pi\)
\(402\) 33.9411i 1.69283i
\(403\) 24.0000i 1.19553i
\(404\) −4.24264 −0.211079
\(405\) −2.12132 + 0.707107i −0.105409 + 0.0351364i
\(406\) 0 0
\(407\) 0 0
\(408\) 36.0000i 1.78227i
\(409\) −18.3848 −0.909069 −0.454534 0.890729i \(-0.650194\pi\)
−0.454534 + 0.890729i \(0.650194\pi\)
\(410\) 3.00000 + 9.00000i 0.148159 + 0.444478i
\(411\) 39.5980 1.95322
\(412\) 0 0
\(413\) 0 0
\(414\) −20.0000 −0.982946
\(415\) −6.00000 18.0000i −0.294528 0.883585i
\(416\) −21.2132 −1.04006
\(417\) 8.00000i 0.391762i
\(418\) 0 0
\(419\) −8.48528 −0.414533 −0.207267 0.978285i \(-0.566457\pi\)
−0.207267 + 0.978285i \(0.566457\pi\)
\(420\) 0 0
\(421\) −6.00000 −0.292422 −0.146211 0.989253i \(-0.546708\pi\)
−0.146211 + 0.989253i \(0.546708\pi\)
\(422\) 4.00000i 0.194717i
\(423\) 0 0
\(424\) −24.0000 −1.16554
\(425\) 12.7279 + 16.9706i 0.617395 + 0.823193i
\(426\) −33.9411 −1.64445
\(427\) 0 0
\(428\) 4.00000i 0.193347i
\(429\) 0 0
\(430\) 0 0
\(431\) 24.0000 1.15604 0.578020 0.816023i \(-0.303826\pi\)
0.578020 + 0.816023i \(0.303826\pi\)
\(432\) 5.65685i 0.272166i
\(433\) 4.24264i 0.203888i 0.994790 + 0.101944i \(0.0325063\pi\)
−0.994790 + 0.101944i \(0.967494\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 16.0000 0.766261
\(437\) 11.3137i 0.541208i
\(438\) 36.0000i 1.72015i
\(439\) −28.2843 −1.34993 −0.674967 0.737848i \(-0.735842\pi\)
−0.674967 + 0.737848i \(0.735842\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 18.0000i 0.856173i
\(443\) 4.00000i 0.190046i −0.995475 0.0950229i \(-0.969708\pi\)
0.995475 0.0950229i \(-0.0302924\pi\)
\(444\) −16.9706 −0.805387
\(445\) −9.00000 + 3.00000i −0.426641 + 0.142214i
\(446\) 0 0
\(447\) 16.9706i 0.802680i
\(448\) 0 0
\(449\) 18.0000 0.849473 0.424736 0.905317i \(-0.360367\pi\)
0.424736 + 0.905317i \(0.360367\pi\)
\(450\) 15.0000 + 20.0000i 0.707107 + 0.942809i
\(451\) 0 0
\(452\) 8.00000i 0.376288i
\(453\) 0 0
\(454\) −2.82843 −0.132745
\(455\) 0 0
\(456\) −24.0000 −1.12390
\(457\) 24.0000i 1.12267i 0.827588 + 0.561336i \(0.189713\pi\)
−0.827588 + 0.561336i \(0.810287\pi\)
\(458\) 7.07107i 0.330409i
\(459\) −24.0000 −1.12022
\(460\) −2.82843 8.48528i −0.131876 0.395628i
\(461\) 21.2132 0.987997 0.493999 0.869463i \(-0.335535\pi\)
0.493999 + 0.869463i \(0.335535\pi\)
\(462\) 0 0
\(463\) 24.0000i 1.11537i 0.830051 + 0.557687i \(0.188311\pi\)
−0.830051 + 0.557687i \(0.811689\pi\)
\(464\) 0 0
\(465\) 11.3137 + 33.9411i 0.524661 + 1.57398i
\(466\) −14.0000 −0.648537
\(467\) 31.1127i 1.43972i 0.694117 + 0.719862i \(0.255795\pi\)
−0.694117 + 0.719862i \(0.744205\pi\)
\(468\) 21.2132i 0.980581i
\(469\) 0 0
\(470\) 0 0
\(471\) −12.0000 −0.552931
\(472\) 25.4558i 1.17170i
\(473\) 0 0
\(474\) 33.9411 1.55897
\(475\) 11.3137 8.48528i 0.519109 0.389331i
\(476\) 0 0
\(477\) 40.0000i 1.83147i
\(478\) 24.0000i 1.09773i
\(479\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(480\) 30.0000 10.0000i 1.36931 0.456435i
\(481\) −25.4558 −1.16069
\(482\) 9.89949i 0.450910i
\(483\) 0 0
\(484\) −11.0000 −0.500000
\(485\) 3.00000 + 9.00000i 0.136223 + 0.408669i
\(486\) 14.1421 0.641500
\(487\) 12.0000i 0.543772i 0.962329 + 0.271886i \(0.0876473\pi\)
−0.962329 + 0.271886i \(0.912353\pi\)
\(488\) 29.6985i 1.34439i
\(489\) 67.8823 3.06974
\(490\) 0 0
\(491\) −12.0000 −0.541552 −0.270776 0.962642i \(-0.587280\pi\)
−0.270776 + 0.962642i \(0.587280\pi\)
\(492\) 12.0000i 0.541002i
\(493\) 0 0
\(494\) −12.0000 −0.539906
\(495\) 0 0
\(496\) −5.65685 −0.254000
\(497\) 0 0
\(498\) 24.0000i 1.07547i
\(499\) 12.0000 0.537194 0.268597 0.963253i \(-0.413440\pi\)
0.268597 + 0.963253i \(0.413440\pi\)
\(500\) −6.36396 + 9.19239i −0.284605 + 0.411096i
\(501\) −32.0000 −1.42965
\(502\) 25.4558i 1.13615i
\(503\) 16.9706i 0.756680i 0.925667 + 0.378340i \(0.123505\pi\)
−0.925667 + 0.378340i \(0.876495\pi\)
\(504\) 0 0
\(505\) 9.00000 3.00000i 0.400495 0.133498i
\(506\) 0 0
\(507\) 14.1421i 0.628074i
\(508\) 12.0000i 0.532414i
\(509\) 12.7279 0.564155 0.282078 0.959392i \(-0.408976\pi\)
0.282078 + 0.959392i \(0.408976\pi\)
\(510\) 8.48528 + 25.4558i 0.375735 + 1.12720i
\(511\) 0 0
\(512\) 11.0000i 0.486136i
\(513\) 16.0000i 0.706417i
\(514\) −26.8701 −1.18519
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) −12.0000 −0.526742
\(520\) 27.0000 9.00000i 1.18403 0.394676i
\(521\) 29.6985 1.30111 0.650557 0.759457i \(-0.274535\pi\)
0.650557 + 0.759457i \(0.274535\pi\)
\(522\) 0 0
\(523\) 8.48528i 0.371035i −0.982641 0.185518i \(-0.940604\pi\)
0.982641 0.185518i \(-0.0593962\pi\)
\(524\) −8.48528 −0.370681
\(525\) 0 0
\(526\) −16.0000 −0.697633
\(527\) 24.0000i 1.04546i
\(528\) 0 0
\(529\) 7.00000 0.304348
\(530\) 16.9706 5.65685i 0.737154 0.245718i
\(531\) 42.4264 1.84115
\(532\) 0 0
\(533\) 18.0000i 0.779667i
\(534\) −12.0000 −0.519291
\(535\) 2.82843 + 8.48528i 0.122284 + 0.366851i
\(536\) 36.0000 1.55496
\(537\) 33.9411i 1.46467i
\(538\) 21.2132i 0.914566i
\(539\) 0 0
\(540\) −4.00000 12.0000i −0.172133 0.516398i
\(541\) 18.0000 0.773880 0.386940 0.922105i \(-0.373532\pi\)
0.386940 + 0.922105i \(0.373532\pi\)
\(542\) 5.65685i 0.242983i
\(543\) 52.0000i 2.23153i
\(544\) 21.2132 0.909509
\(545\) −33.9411 + 11.3137i −1.45388 + 0.484626i
\(546\) 0 0
\(547\) 24.0000i 1.02617i 0.858339 + 0.513083i \(0.171497\pi\)
−0.858339 + 0.513083i \(0.828503\pi\)
\(548\) 14.0000i 0.598050i
\(549\) −49.4975 −2.11250
\(550\) 0 0
\(551\) 0 0
\(552\) 33.9411i 1.44463i
\(553\) 0 0
\(554\) −24.0000 −1.01966
\(555\) 36.0000 12.0000i 1.52811 0.509372i
\(556\) −2.82843 −0.119952
\(557\) 40.0000i 1.69485i −0.530912 0.847427i \(-0.678150\pi\)
0.530912 0.847427i \(-0.321850\pi\)
\(558\) 28.2843i 1.19737i
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 25.4558i 1.07284i −0.843952 0.536418i \(-0.819777\pi\)
0.843952 0.536418i \(-0.180223\pi\)
\(564\) 0 0
\(565\) −5.65685 16.9706i −0.237986 0.713957i
\(566\) 25.4558 1.06999
\(567\) 0 0
\(568\) 36.0000i 1.51053i
\(569\) −24.0000 −1.00613 −0.503066 0.864248i \(-0.667795\pi\)
−0.503066 + 0.864248i \(0.667795\pi\)
\(570\) 16.9706 5.65685i 0.710819 0.236940i
\(571\) −32.0000 −1.33916 −0.669579 0.742741i \(-0.733526\pi\)
−0.669579 + 0.742741i \(0.733526\pi\)
\(572\) 0 0
\(573\) 33.9411i 1.41791i
\(574\) 0 0
\(575\) 12.0000 + 16.0000i 0.500435 + 0.667246i
\(576\) 35.0000 1.45833
\(577\) 38.1838i 1.58961i −0.606864 0.794805i \(-0.707573\pi\)
0.606864 0.794805i \(-0.292427\pi\)
\(578\) 1.00000i 0.0415945i
\(579\) 67.8823 2.82109
\(580\) 0 0
\(581\) 0 0
\(582\) 12.0000i 0.497416i
\(583\) 0 0
\(584\) 38.1838 1.58006
\(585\) −15.0000 45.0000i −0.620174 1.86052i
\(586\) −1.41421 −0.0584206
\(587\) 42.4264i 1.75113i 0.483105 + 0.875563i \(0.339509\pi\)
−0.483105 + 0.875563i \(0.660491\pi\)
\(588\) 0 0
\(589\) 16.0000 0.659269
\(590\) −6.00000 18.0000i −0.247016 0.741048i
\(591\) 22.6274 0.930768
\(592\) 6.00000i 0.246598i
\(593\) 7.07107i 0.290374i −0.989404 0.145187i \(-0.953622\pi\)
0.989404 0.145187i \(-0.0463784\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 6.00000 0.245770
\(597\) 32.0000i 1.30967i
\(598\) 16.9706i 0.693978i
\(599\) −12.0000 −0.490307 −0.245153 0.969484i \(-0.578838\pi\)
−0.245153 + 0.969484i \(0.578838\pi\)
\(600\) −33.9411 + 25.4558i −1.38564 + 1.03923i
\(601\) −41.0122 −1.67292 −0.836461 0.548026i \(-0.815379\pi\)
−0.836461 + 0.548026i \(0.815379\pi\)
\(602\) 0 0
\(603\) 60.0000i 2.44339i
\(604\) 0 0
\(605\) 23.3345 7.77817i 0.948683 0.316228i
\(606\) 12.0000 0.487467
\(607\) 33.9411i 1.37763i 0.724938 + 0.688814i \(0.241868\pi\)
−0.724938 + 0.688814i \(0.758132\pi\)
\(608\) 14.1421i 0.573539i
\(609\) 0 0
\(610\) 7.00000 + 21.0000i 0.283422 + 0.850265i
\(611\) 0 0
\(612\) 21.2132i 0.857493i
\(613\) 6.00000i 0.242338i −0.992632 0.121169i \(-0.961336\pi\)
0.992632 0.121169i \(-0.0386643\pi\)
\(614\) −25.4558 −1.02731
\(615\) 8.48528 + 25.4558i 0.342160 + 1.02648i
\(616\) 0 0
\(617\) 38.0000i 1.52982i −0.644136 0.764911i \(-0.722783\pi\)
0.644136 0.764911i \(-0.277217\pi\)
\(618\) 0 0
\(619\) 19.7990 0.795789 0.397894 0.917431i \(-0.369741\pi\)
0.397894 + 0.917431i \(0.369741\pi\)
\(620\) −12.0000 + 4.00000i −0.481932 + 0.160644i
\(621\) −22.6274 −0.908007
\(622\) 33.9411i 1.36092i
\(623\) 0 0
\(624\) 12.0000 0.480384
\(625\) 7.00000 24.0000i 0.280000 0.960000i
\(626\) −21.2132 −0.847850
\(627\) 0 0
\(628\) 4.24264i 0.169300i
\(629\) 25.4558 1.01499
\(630\) 0 0
\(631\) 12.0000 0.477712 0.238856 0.971055i \(-0.423228\pi\)
0.238856 + 0.971055i \(0.423228\pi\)
\(632\) 36.0000i 1.43200i
\(633\) 11.3137i 0.449680i
\(634\) −8.00000 −0.317721
\(635\) −8.48528 25.4558i −0.336728 1.01018i
\(636\) −22.6274 −0.897235
\(637\) 0 0
\(638\) 0 0
\(639\) −60.0000 −2.37356
\(640\) 2.12132 + 6.36396i 0.0838525 + 0.251558i
\(641\) 24.0000 0.947943 0.473972 0.880540i \(-0.342820\pi\)
0.473972 + 0.880540i \(0.342820\pi\)
\(642\) 11.3137i 0.446516i
\(643\) 8.48528i 0.334627i 0.985904 + 0.167313i \(0.0535092\pi\)
−0.985904 + 0.167313i \(0.946491\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 12.0000 0.472134
\(647\) 5.65685i 0.222394i 0.993798 + 0.111197i \(0.0354684\pi\)
−0.993798 + 0.111197i \(0.964532\pi\)
\(648\) 3.00000i 0.117851i
\(649\) 0 0
\(650\) −16.9706 + 12.7279i −0.665640 + 0.499230i
\(651\) 0 0
\(652\) 24.0000i 0.939913i
\(653\) 2.00000i 0.0782660i 0.999234 + 0.0391330i \(0.0124596\pi\)
−0.999234 + 0.0391330i \(0.987540\pi\)
\(654\) −45.2548 −1.76960
\(655\) 18.0000 6.00000i 0.703318 0.234439i
\(656\) −4.24264 −0.165647
\(657\) 63.6396i 2.48282i
\(658\) 0 0
\(659\) −48.0000 −1.86981 −0.934907 0.354892i \(-0.884518\pi\)
−0.934907 + 0.354892i \(0.884518\pi\)
\(660\) 0 0
\(661\) −15.5563 −0.605072 −0.302536 0.953138i \(-0.597833\pi\)
−0.302536 + 0.953138i \(0.597833\pi\)
\(662\) 8.00000i 0.310929i
\(663\) 50.9117i 1.97725i
\(664\) 25.4558 0.987878
\(665\) 0 0
\(666\) 30.0000 1.16248
\(667\) 0 0
\(668\) 11.3137i 0.437741i
\(669\) 0 0
\(670\) −25.4558 + 8.48528i −0.983445 + 0.327815i
\(671\) 0 0
\(672\) 0 0
\(673\) 6.00000i 0.231283i 0.993291 + 0.115642i \(0.0368924\pi\)
−0.993291 + 0.115642i \(0.963108\pi\)
\(674\) −18.0000 −0.693334
\(675\) 16.9706 + 22.6274i 0.653197 + 0.870930i
\(676\) −5.00000 −0.192308
\(677\) 9.89949i 0.380468i −0.981739 0.190234i \(-0.939075\pi\)
0.981739 0.190234i \(-0.0609248\pi\)
\(678\) 22.6274i 0.869001i
\(679\) 0 0
\(680\) −27.0000 + 9.00000i −1.03540 + 0.345134i
\(681\) −8.00000 −0.306561
\(682\) 0 0
\(683\) 28.0000i 1.07139i 0.844411 + 0.535695i \(0.179950\pi\)
−0.844411 + 0.535695i \(0.820050\pi\)
\(684\) −14.1421 −0.540738
\(685\) −9.89949 29.6985i −0.378240 1.13472i
\(686\) 0 0
\(687\) 20.0000i 0.763048i
\(688\) 0 0
\(689\) −33.9411 −1.29305
\(690\) 8.00000 + 24.0000i 0.304555 + 0.913664i
\(691\) 2.82843 0.107598 0.0537992 0.998552i \(-0.482867\pi\)
0.0537992 + 0.998552i \(0.482867\pi\)
\(692\) 4.24264i 0.161281i
\(693\) 0 0
\(694\) −8.00000 −0.303676
\(695\) 6.00000 2.00000i 0.227593 0.0758643i
\(696\) 0 0
\(697\) 18.0000i 0.681799i
\(698\) 1.41421i 0.0535288i
\(699\) −39.5980 −1.49773
\(700\) 0 0
\(701\) 48.0000 1.81293 0.906467 0.422276i \(-0.138769\pi\)
0.906467 + 0.422276i \(0.138769\pi\)
\(702\) 24.0000i 0.905822i
\(703\) 16.9706i 0.640057i
\(704\) 0 0
\(705\) 0 0
\(706\) 15.5563 0.585471
\(707\) 0 0
\(708\) 24.0000i 0.901975i
\(709\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(710\) 8.48528 + 25.4558i 0.318447 + 0.955341i
\(711\) 60.0000 2.25018
\(712\) 12.7279i 0.476999i
\(713\) 22.6274i 0.847403i
\(714\) 0 0
\(715\) 0 0
\(716\) −12.0000 −0.448461
\(717\) 67.8823i 2.53511i
\(718\) 24.0000i 0.895672i
\(719\) 16.9706 0.632895 0.316448 0.948610i \(-0.397510\pi\)
0.316448 + 0.948610i \(0.397510\pi\)
\(720\) −10.6066 + 3.53553i −0.395285 + 0.131762i
\(721\) 0 0
\(722\) 11.0000i 0.409378i
\(723\) 28.0000i 1.04133i
\(724\) −18.3848 −0.683265
\(725\) 0 0
\(726\) 31.1127 1.15470
\(727\) 33.9411i 1.25881i 0.777079 + 0.629403i \(0.216701\pi\)
−0.777079 + 0.629403i \(0.783299\pi\)
\(728\) 0 0
\(729\) 43.0000 1.59259
\(730\) −27.0000 + 9.00000i −0.999315 + 0.333105i
\(731\) 0 0
\(732\) 28.0000i 1.03491i
\(733\) 4.24264i 0.156706i 0.996926 + 0.0783528i \(0.0249660\pi\)
−0.996926 + 0.0783528i \(0.975034\pi\)
\(734\) −16.9706 −0.626395
\(735\) 0 0
\(736\) 20.0000 0.737210
\(737\) 0 0
\(738\) 21.2132i 0.780869i
\(739\) −16.0000 −0.588570 −0.294285 0.955718i \(-0.595081\pi\)
−0.294285 + 0.955718i \(0.595081\pi\)
\(740\) 4.24264 + 12.7279i 0.155963 + 0.467888i
\(741\) −33.9411 −1.24686
\(742\) 0 0
\(743\) 28.0000i 1.02722i 0.858024 + 0.513610i \(0.171692\pi\)
−0.858024 + 0.513610i \(0.828308\pi\)
\(744\) −48.0000 −1.75977
\(745\) −12.7279 + 4.24264i −0.466315 + 0.155438i
\(746\) −24.0000 −0.878702
\(747\) 42.4264i 1.55230i
\(748\) 0 0
\(749\) 0 0
\(750\) 18.0000 26.0000i 0.657267 0.949386i
\(751\) −40.0000 −1.45962 −0.729810 0.683650i \(-0.760392\pi\)
−0.729810 + 0.683650i \(0.760392\pi\)
\(752\) 0 0
\(753\) 72.0000i 2.62383i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 6.00000i 0.218074i 0.994038 + 0.109037i \(0.0347767\pi\)
−0.994038 + 0.109037i \(0.965223\pi\)
\(758\) 24.0000i 0.871719i
\(759\) 0 0
\(760\) 6.00000 + 18.0000i 0.217643 + 0.652929i
\(761\) −29.6985 −1.07657 −0.538285 0.842763i \(-0.680927\pi\)
−0.538285 + 0.842763i \(0.680927\pi\)
\(762\) 33.9411i 1.22956i
\(763\) 0 0
\(764\) 12.0000 0.434145
\(765\) 15.0000 + 45.0000i 0.542326 + 1.62698i
\(766\) 33.9411 1.22634
\(767\) 36.0000i 1.29988i
\(768\) 48.0833i 1.73506i
\(769\) −24.0416 −0.866963 −0.433482 0.901162i \(-0.642715\pi\)
−0.433482 + 0.901162i \(0.642715\pi\)
\(770\) 0 0
\(771\) −76.0000 −2.73707
\(772\) 24.0000i 0.863779i
\(773\) 21.2132i 0.762986i 0.924372 + 0.381493i \(0.124590\pi\)
−0.924372 + 0.381493i \(0.875410\pi\)
\(774\) 0 0
\(775\) 22.6274 16.9706i 0.812801 0.609601i
\(776\) −12.7279 −0.456906
\(777\) 0 0
\(778\) 0 0
\(779\) 12.0000 0.429945
\(780\) 25.4558 8.48528i 0.911465 0.303822i
\(781\) 0 0
\(782\) 16.9706i 0.606866i
\(783\) 0 0
\(784\) 0 0
\(785\) 3.00000 + 9.00000i 0.107075 + 0.321224i
\(786\) 24.0000 0.856052
\(787\) 8.48528i 0.302468i 0.988498 + 0.151234i \(0.0483246\pi\)
−0.988498 + 0.151234i \(0.951675\pi\)
\(788\) 8.00000i 0.284988i
\(789\) −45.2548 −1.61111
\(790\) −8.48528 25.4558i −0.301893 0.905678i
\(791\) 0 0
\(792\) 0 0
\(793\) 42.0000i 1.49146i
\(794\) −4.24264 −0.150566
\(795\) 48.0000 16.0000i 1.70238 0.567462i
\(796\) 11.3137 0.401004
\(797\) 4.24264i 0.150282i −0.997173 0.0751410i \(-0.976059\pi\)
0.997173 0.0751410i \(-0.0239407\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) −15.0000 20.0000i −0.530330 0.707107i
\(801\) −21.2132 −0.749532
\(802\) 24.0000i 0.847469i
\(803\) 0 0
\(804\) 33.9411 1.19701
\(805\) 0 0
\(806\) −24.0000 −0.845364
\(807\) 60.0000i 2.11210i
\(808\) 12.7279i 0.447767i
\(809\) −30.0000 −1.05474 −0.527372 0.849635i \(-0.676823\pi\)
−0.527372 + 0.849635i \(0.676823\pi\)
\(810\) 0.707107 + 2.12132i 0.0248452 + 0.0745356i
\(811\) 14.1421 0.496598 0.248299 0.968683i \(-0.420129\pi\)
0.248299 + 0.968683i \(0.420129\pi\)
\(812\) 0 0
\(813\) 16.0000i 0.561144i
\(814\) 0 0
\(815\) −16.9706 50.9117i −0.594453 1.78336i
\(816\) −12.0000 −0.420084
\(817\) 0 0
\(818\) 18.3848i 0.642809i
\(819\) 0 0
\(820\) −9.00000 + 3.00000i −0.314294 + 0.104765i
\(821\) −6.00000 −0.209401 −0.104701 0.994504i \(-0.533388\pi\)
−0.104701 + 0.994504i \(0.533388\pi\)
\(822\) 39.5980i 1.38114i
\(823\) 24.0000i 0.836587i −0.908312 0.418294i \(-0.862628\pi\)
0.908312 0.418294i \(-0.137372\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 52.0000i 1.80822i −0.427303 0.904109i \(-0.640536\pi\)
0.427303 0.904109i \(-0.359464\pi\)
\(828\) 20.0000i 0.695048i
\(829\) −24.0416 −0.835000 −0.417500 0.908677i \(-0.637094\pi\)
−0.417500 + 0.908677i \(0.637094\pi\)
\(830\) −18.0000 + 6.00000i −0.624789 + 0.208263i
\(831\) −67.8823 −2.35481
\(832\) 29.6985i 1.02961i
\(833\) 0 0
\(834\) 8.00000 0.277017
\(835\) 8.00000 + 24.0000i 0.276851 + 0.830554i
\(836\) 0 0
\(837\) 32.0000i 1.10608i
\(838\) 8.48528i 0.293119i
\(839\) −16.9706 −0.585889 −0.292944 0.956129i \(-0.594635\pi\)
−0.292944 + 0.956129i \(0.594635\pi\)
\(840\) 0 0
\(841\) −29.0000 −1.00000
\(842\) 6.00000i 0.206774i
\(843\) 0 0
\(844\) 4.00000 0.137686
\(845\) 10.6066 3.53553i 0.364878 0.121626i
\(846\) 0 0
\(847\) 0 0
\(848\) 8.00000i 0.274721i
\(849\) 72.0000 2.47103
\(850\) 16.9706 12.7279i 0.582086 0.436564i
\(851\) 24.0000 0.822709
\(852\) 33.9411i 1.16280i
\(853\) 12.7279i 0.435796i 0.975972 + 0.217898i \(0.0699200\pi\)
−0.975972 + 0.217898i \(0.930080\pi\)
\(854\) 0 0
\(855\) 30.0000 10.0000i 1.02598 0.341993i
\(856\) −12.0000 −0.410152
\(857\) 55.1543i 1.88404i −0.335562 0.942018i \(-0.608926\pi\)
0.335562 0.942018i \(-0.391074\pi\)
\(858\) 0 0
\(859\) 31.1127 1.06155 0.530776 0.847512i \(-0.321901\pi\)
0.530776 + 0.847512i \(0.321901\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 24.0000i 0.817443i
\(863\) 16.0000i 0.544646i −0.962206 0.272323i \(-0.912208\pi\)
0.962206 0.272323i \(-0.0877920\pi\)
\(864\) 28.2843 0.962250
\(865\) 3.00000 + 9.00000i 0.102003 + 0.306009i
\(866\) 4.24264 0.144171
\(867\) 2.82843i 0.0960584i
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 50.9117 1.72508
\(872\) 48.0000i 1.62549i
\(873\) 21.2132i 0.717958i
\(874\) 11.3137 0.382692
\(875\) 0 0
\(876\) 36.0000 1.21633
\(877\) 30.0000i 1.01303i 0.862232 + 0.506514i \(0.169066\pi\)
−0.862232 + 0.506514i \(0.830934\pi\)
\(878\) 28.2843i 0.954548i
\(879\) −4.00000 −0.134917
\(880\) 0 0
\(881\) 46.6690 1.57232 0.786160 0.618023i \(-0.212066\pi\)
0.786160 + 0.618023i \(0.212066\pi\)
\(882\) 0 0
\(883\) 36.0000i 1.21150i 0.795656 + 0.605748i \(0.207126\pi\)
−0.795656 + 0.605748i \(0.792874\pi\)
\(884\) 18.0000 0.605406
\(885\) −16.9706 50.9117i −0.570459 1.71138i
\(886\) −4.00000 −0.134383
\(887\) 16.9706i 0.569816i 0.958555 + 0.284908i \(0.0919630\pi\)
−0.958555 + 0.284908i \(0.908037\pi\)
\(888\) 50.9117i 1.70848i
\(889\) 0 0
\(890\) 3.00000 + 9.00000i 0.100560 + 0.301681i
\(891\) 0 0
\(892\) 0 0
\(893\) 0 0
\(894\) −16.9706 −0.567581
\(895\) 25.4558 8.48528i 0.850895 0.283632i
\(896\) 0 0
\(897\) 48.0000i 1.60267i
\(898\) 18.0000i 0.600668i
\(899\) 0 0
\(900\) −20.0000 + 15.0000i −0.666667 + 0.500000i
\(901\) 33.9411 1.13074
\(902\) 0 0
\(903\) 0 0
\(904\) 24.0000 0.798228
\(905\) 39.0000 13.0000i 1.29640 0.432135i
\(906\) 0 0
\(907\) 12.0000i 0.398453i 0.979953 + 0.199227i \(0.0638430\pi\)
−0.979953 + 0.199227i \(0.936157\pi\)
\(908\) 2.82843i 0.0938647i
\(909\) 21.2132 0.703598
\(910\) 0 0
\(911\) 24.0000 0.795155 0.397578 0.917568i \(-0.369851\pi\)
0.397578 + 0.917568i \(0.369851\pi\)
\(912\) 8.00000i 0.264906i
\(913\) 0 0
\(914\) 24.0000 0.793849
\(915\) 19.7990 + 59.3970i 0.654534 + 1.96360i
\(916\) −7.07107 −0.233635
\(917\) 0 0
\(918\) 24.0000i 0.792118i
\(919\) −20.0000 −0.659739 −0.329870 0.944027i \(-0.607005\pi\)
−0.329870 + 0.944027i \(0.607005\pi\)
\(920\) −25.4558 + 8.48528i −0.839254 + 0.279751i
\(921\) −72.0000 −2.37248
\(922\) 21.2132i 0.698620i
\(923\) 50.9117i 1.67578i
\(924\) 0 0
\(925\) −18.0000 24.0000i −0.591836 0.789115i
\(926\) 24.0000 0.788689
\(927\) 0 0
\(928\) 0 0
\(929\) 12.7279 0.417590 0.208795 0.977959i \(-0.433046\pi\)
0.208795 + 0.977959i \(0.433046\pi\)
\(930\) 33.9411 11.3137i 1.11297 0.370991i
\(931\) 0 0
\(932\) 14.0000i 0.458585i
\(933\) 96.0000i 3.14290i
\(934\) 31.1127 1.01804
\(935\) 0 0
\(936\) 63.6396 2.08013
\(937\) 12.7279i 0.415803i 0.978150 + 0.207902i \(0.0666634\pi\)
−0.978150 + 0.207902i \(0.933337\pi\)
\(938\) 0 0
\(939\) −60.0000 −1.95803
\(940\) 0 0
\(941\) −21.2132 −0.691531 −0.345765 0.938321i \(-0.612381\pi\)
−0.345765 + 0.938321i \(0.612381\pi\)
\(942\) 12.0000i 0.390981i
\(943\) 16.9706i 0.552638i
\(944\) 8.48528 0.276172
\(945\) 0 0
\(946\) 0 0
\(947\) 8.00000i 0.259965i 0.991516 + 0.129983i \(0.0414921\pi\)
−0.991516 + 0.129983i \(0.958508\pi\)
\(948\) 33.9411i 1.10236i
\(949\) 54.0000 1.75291
\(950\) −8.48528 11.3137i −0.275299 0.367065i
\(951\) −22.6274 −0.733744
\(952\) 0 0
\(953\) 32.0000i 1.03658i 0.855204 + 0.518291i \(0.173432\pi\)
−0.855204 + 0.518291i \(0.826568\pi\)
\(954\) 40.0000 1.29505
\(955\) −25.4558 + 8.48528i −0.823732 + 0.274577i
\(956\) −24.0000 −0.776215
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) −14.0000 42.0000i −0.451848 1.35554i
\(961\) 1.00000 0.0322581
\(962\) 25.4558i 0.820729i
\(963\) 20.0000i 0.644491i
\(964\) −9.89949 −0.318841
\(965\) −16.9706 50.9117i −0.546302 1.63891i
\(966\) 0 0
\(967\) 36.0000i 1.15768i −0.815440 0.578841i \(-0.803505\pi\)
0.815440 0.578841i \(-0.196495\pi\)
\(968\) 33.0000i 1.06066i
\(969\) 33.9411 1.09035
\(970\) 9.00000 3.00000i 0.288973 0.0963242i
\(971\) 8.48528 0.272306 0.136153 0.990688i \(-0.456526\pi\)
0.136153 + 0.990688i \(0.456526\pi\)
\(972\) 14.1421i 0.453609i
\(973\) 0 0
\(974\) 12.0000 0.384505
\(975\) −48.0000 + 36.0000i −1.53723 + 1.15292i
\(976\) −9.89949 −0.316875
\(977\) 10.0000i 0.319928i 0.987123 + 0.159964i \(0.0511379\pi\)
−0.987123 + 0.159964i \(0.948862\pi\)
\(978\) 67.8823i 2.17064i
\(979\) 0 0
\(980\) 0 0
\(981\) −80.0000 −2.55420
\(982\) 12.0000i 0.382935i
\(983\) 28.2843i 0.902128i 0.892492 + 0.451064i \(0.148955\pi\)
−0.892492 + 0.451064i \(0.851045\pi\)
\(984\) −36.0000 −1.14764
\(985\) −5.65685 16.9706i −0.180242 0.540727i
\(986\) 0 0
\(987\) 0 0
\(988\) 12.0000i 0.381771i
\(989\) 0 0
\(990\) 0 0
\(991\) 20.0000 0.635321 0.317660 0.948205i \(-0.397103\pi\)
0.317660 + 0.948205i \(0.397103\pi\)
\(992\) 28.2843i 0.898027i
\(993\) 22.6274i 0.718059i
\(994\) 0 0
\(995\) −24.0000 + 8.00000i −0.760851 + 0.253617i
\(996\) 24.0000 0.760469
\(997\) 55.1543i 1.74676i 0.487044 + 0.873378i \(0.338075\pi\)
−0.487044 + 0.873378i \(0.661925\pi\)
\(998\) 12.0000i 0.379853i
\(999\) 33.9411 1.07385
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 245.2.b.f.99.1 4
3.2 odd 2 2205.2.d.k.1324.4 4
5.2 odd 4 1225.2.a.v.1.1 2
5.3 odd 4 1225.2.a.l.1.2 2
5.4 even 2 inner 245.2.b.f.99.4 yes 4
7.2 even 3 245.2.j.g.214.2 8
7.3 odd 6 245.2.j.g.79.4 8
7.4 even 3 245.2.j.g.79.3 8
7.5 odd 6 245.2.j.g.214.1 8
7.6 odd 2 inner 245.2.b.f.99.2 yes 4
15.14 odd 2 2205.2.d.k.1324.2 4
21.20 even 2 2205.2.d.k.1324.3 4
35.4 even 6 245.2.j.g.79.2 8
35.9 even 6 245.2.j.g.214.3 8
35.13 even 4 1225.2.a.l.1.1 2
35.19 odd 6 245.2.j.g.214.4 8
35.24 odd 6 245.2.j.g.79.1 8
35.27 even 4 1225.2.a.v.1.2 2
35.34 odd 2 inner 245.2.b.f.99.3 yes 4
105.104 even 2 2205.2.d.k.1324.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
245.2.b.f.99.1 4 1.1 even 1 trivial
245.2.b.f.99.2 yes 4 7.6 odd 2 inner
245.2.b.f.99.3 yes 4 35.34 odd 2 inner
245.2.b.f.99.4 yes 4 5.4 even 2 inner
245.2.j.g.79.1 8 35.24 odd 6
245.2.j.g.79.2 8 35.4 even 6
245.2.j.g.79.3 8 7.4 even 3
245.2.j.g.79.4 8 7.3 odd 6
245.2.j.g.214.1 8 7.5 odd 6
245.2.j.g.214.2 8 7.2 even 3
245.2.j.g.214.3 8 35.9 even 6
245.2.j.g.214.4 8 35.19 odd 6
1225.2.a.l.1.1 2 35.13 even 4
1225.2.a.l.1.2 2 5.3 odd 4
1225.2.a.v.1.1 2 5.2 odd 4
1225.2.a.v.1.2 2 35.27 even 4
2205.2.d.k.1324.1 4 105.104 even 2
2205.2.d.k.1324.2 4 15.14 odd 2
2205.2.d.k.1324.3 4 21.20 even 2
2205.2.d.k.1324.4 4 3.2 odd 2