Properties

Label 245.2.a
Level $245$
Weight $2$
Character orbit 245.a
Rep. character $\chi_{245}(1,\cdot)$
Character field $\Q$
Dimension $13$
Newform subspaces $8$
Sturm bound $56$
Trace bound $3$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 245 = 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 245.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 8 \)
Sturm bound: \(56\)
Trace bound: \(3\)
Distinguishing \(T_p\): \(2\), \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(245))\).

Total New Old
Modular forms 36 13 23
Cusp forms 21 13 8
Eisenstein series 15 0 15

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(5\)\(7\)FrickeDim.
\(+\)\(+\)\(+\)\(2\)
\(+\)\(-\)\(-\)\(5\)
\(-\)\(+\)\(-\)\(4\)
\(-\)\(-\)\(+\)\(2\)
Plus space\(+\)\(4\)
Minus space\(-\)\(9\)

Trace form

\( 13 q - q^{2} + 11 q^{4} - q^{5} + 8 q^{6} + 3 q^{8} + 13 q^{9} + O(q^{10}) \) \( 13 q - q^{2} + 11 q^{4} - q^{5} + 8 q^{6} + 3 q^{8} + 13 q^{9} + q^{10} - 4 q^{11} - 4 q^{12} - 10 q^{13} - 5 q^{16} + 2 q^{17} - 17 q^{18} + 4 q^{19} - 7 q^{20} - 20 q^{22} + 4 q^{23} + 4 q^{24} + 13 q^{25} - 6 q^{26} + 12 q^{27} - 14 q^{29} + 8 q^{30} + 4 q^{31} - 5 q^{32} + 12 q^{33} + 6 q^{34} - 5 q^{36} + 6 q^{37} - 20 q^{38} + 24 q^{39} + 9 q^{40} + 10 q^{41} + 16 q^{43} - 20 q^{44} - 5 q^{45} - 4 q^{46} - 4 q^{47} - 28 q^{48} - q^{50} - 40 q^{51} + 6 q^{52} - 26 q^{53} - 12 q^{54} - 4 q^{55} + 32 q^{57} + 6 q^{58} + 8 q^{59} - 16 q^{60} - 14 q^{61} - 13 q^{64} - 2 q^{65} + 4 q^{66} + 10 q^{68} - 12 q^{69} - 40 q^{71} - 53 q^{72} + 6 q^{73} - 30 q^{74} + 36 q^{76} - 32 q^{78} + 8 q^{79} + q^{80} - 3 q^{81} + 18 q^{82} - 20 q^{83} + 2 q^{85} + 48 q^{86} - 28 q^{87} + 44 q^{88} + 6 q^{89} - 7 q^{90} + 20 q^{92} + 8 q^{93} - 28 q^{94} + 4 q^{95} + 4 q^{96} + 10 q^{97} + 28 q^{99} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(245))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 5 7
245.2.a.a 245.a 1.a $1$ $1.956$ \(\Q\) None \(-2\) \(-3\) \(1\) \(0\) $-$ $-$ $\mathrm{SU}(2)$ \(q-2q^{2}-3q^{3}+2q^{4}+q^{5}+6q^{6}+\cdots\)
245.2.a.b 245.a 1.a $1$ $1.956$ \(\Q\) None \(-2\) \(3\) \(-1\) \(0\) $+$ $-$ $\mathrm{SU}(2)$ \(q-2q^{2}+3q^{3}+2q^{4}-q^{5}-6q^{6}+\cdots\)
245.2.a.c 245.a 1.a $1$ $1.956$ \(\Q\) None \(0\) \(-1\) \(1\) \(0\) $-$ $-$ $\mathrm{SU}(2)$ \(q-q^{3}-2q^{4}+q^{5}-2q^{9}-3q^{11}+\cdots\)
245.2.a.d 245.a 1.a $2$ $1.956$ \(\Q(\sqrt{17}) \) None \(-1\) \(1\) \(-2\) \(0\) $+$ $-$ $\mathrm{SU}(2)$ \(q-\beta q^{2}+(1-\beta )q^{3}+(2+\beta )q^{4}-q^{5}+\cdots\)
245.2.a.e 245.a 1.a $2$ $1.956$ \(\Q(\sqrt{2}) \) None \(0\) \(-2\) \(-2\) \(0\) $+$ $+$ $\mathrm{SU}(2)$ \(q+\beta q^{2}+(-1-\beta )q^{3}-q^{5}+(-2-\beta )q^{6}+\cdots\)
245.2.a.f 245.a 1.a $2$ $1.956$ \(\Q(\sqrt{2}) \) None \(0\) \(2\) \(2\) \(0\) $-$ $+$ $\mathrm{SU}(2)$ \(q+\beta q^{2}+(1+\beta )q^{3}+q^{5}+(2+\beta )q^{6}+\cdots\)
245.2.a.g 245.a 1.a $2$ $1.956$ \(\Q(\sqrt{2}) \) None \(2\) \(-2\) \(-2\) \(0\) $+$ $-$ $\mathrm{SU}(2)$ \(q+(1+\beta )q^{2}+(-1+\beta )q^{3}+(1+2\beta )q^{4}+\cdots\)
245.2.a.h 245.a 1.a $2$ $1.956$ \(\Q(\sqrt{2}) \) None \(2\) \(2\) \(2\) \(0\) $-$ $+$ $\mathrm{SU}(2)$ \(q+(1+\beta )q^{2}+(1-\beta )q^{3}+(1+2\beta )q^{4}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(245))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_0(245)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_0(35))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(49))\)\(^{\oplus 2}\)