Properties

Label 245.10.a.g.1.2
Level $245$
Weight $10$
Character 245.1
Self dual yes
Analytic conductor $126.184$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [245,10,Mod(1,245)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("245.1"); S:= CuspForms(chi, 10); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(245, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 10, names="a")
 
Level: \( N \) \(=\) \( 245 = 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 245.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,15,124] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(126.183779860\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 3x^{5} - 3018x^{4} + 3368x^{3} + 2066979x^{2} - 6329061x - 14714266 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{3}\cdot 3^{2}\cdot 5 \)
Twist minimal: no (minimal twist has level 35)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(29.3435\) of defining polynomial
Character \(\chi\) \(=\) 245.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-26.3435 q^{2} +1.97103 q^{3} +181.982 q^{4} -625.000 q^{5} -51.9238 q^{6} +8693.85 q^{8} -19679.1 q^{9} +16464.7 q^{10} -2245.43 q^{11} +358.691 q^{12} +123379. q^{13} -1231.89 q^{15} -322201. q^{16} +18794.1 q^{17} +518417. q^{18} -404776. q^{19} -113739. q^{20} +59152.4 q^{22} +1.75527e6 q^{23} +17135.8 q^{24} +390625. q^{25} -3.25024e6 q^{26} -77583.8 q^{27} +3.94483e6 q^{29} +32452.4 q^{30} -8.99428e6 q^{31} +4.03667e6 q^{32} -4425.79 q^{33} -495103. q^{34} -3.58124e6 q^{36} -1.04609e7 q^{37} +1.06632e7 q^{38} +243184. q^{39} -5.43366e6 q^{40} -3.02704e6 q^{41} +1.60767e7 q^{43} -408626. q^{44} +1.22994e7 q^{45} -4.62401e7 q^{46} +3.97557e7 q^{47} -635067. q^{48} -1.02904e7 q^{50} +37043.7 q^{51} +2.24528e7 q^{52} +4.08073e7 q^{53} +2.04383e6 q^{54} +1.40339e6 q^{55} -797825. q^{57} -1.03921e8 q^{58} -1.60585e8 q^{59} -224182. q^{60} -1.49289e8 q^{61} +2.36941e8 q^{62} +5.86269e7 q^{64} -7.71120e7 q^{65} +116591. q^{66} +5.12683e7 q^{67} +3.42018e6 q^{68} +3.45969e6 q^{69} -3.35362e8 q^{71} -1.71087e8 q^{72} -1.35293e8 q^{73} +2.75578e8 q^{74} +769932. q^{75} -7.36618e7 q^{76} -6.40632e6 q^{78} +1.65365e8 q^{79} +2.01376e8 q^{80} +3.87191e8 q^{81} +7.97429e7 q^{82} +1.61436e8 q^{83} -1.17463e7 q^{85} -4.23516e8 q^{86} +7.77536e6 q^{87} -1.95214e7 q^{88} -1.00313e9 q^{89} -3.24011e8 q^{90} +3.19428e8 q^{92} -1.77280e7 q^{93} -1.04731e9 q^{94} +2.52985e8 q^{95} +7.95639e6 q^{96} +2.89165e8 q^{97} +4.41880e7 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 15 q^{2} + 124 q^{3} + 3009 q^{4} - 3750 q^{5} - 4888 q^{6} + 22041 q^{8} + 111090 q^{9} - 9375 q^{10} - 47796 q^{11} + 541656 q^{12} - 102168 q^{13} - 77500 q^{15} + 2371065 q^{16} + 38472 q^{17}+ \cdots + 3571968784 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −26.3435 −1.16423 −0.582115 0.813106i \(-0.697775\pi\)
−0.582115 + 0.813106i \(0.697775\pi\)
\(3\) 1.97103 0.0140490 0.00702452 0.999975i \(-0.497764\pi\)
0.00702452 + 0.999975i \(0.497764\pi\)
\(4\) 181.982 0.355433
\(5\) −625.000 −0.447214
\(6\) −51.9238 −0.0163563
\(7\) 0 0
\(8\) 8693.85 0.750425
\(9\) −19679.1 −0.999803
\(10\) 16464.7 0.520660
\(11\) −2245.43 −0.0462415 −0.0231207 0.999733i \(-0.507360\pi\)
−0.0231207 + 0.999733i \(0.507360\pi\)
\(12\) 358.691 0.00499350
\(13\) 123379. 1.19811 0.599055 0.800708i \(-0.295543\pi\)
0.599055 + 0.800708i \(0.295543\pi\)
\(14\) 0 0
\(15\) −1231.89 −0.00628293
\(16\) −322201. −1.22910
\(17\) 18794.1 0.0545760 0.0272880 0.999628i \(-0.491313\pi\)
0.0272880 + 0.999628i \(0.491313\pi\)
\(18\) 518417. 1.16400
\(19\) −404776. −0.712564 −0.356282 0.934379i \(-0.615956\pi\)
−0.356282 + 0.934379i \(0.615956\pi\)
\(20\) −113739. −0.158954
\(21\) 0 0
\(22\) 59152.4 0.0538357
\(23\) 1.75527e6 1.30789 0.653943 0.756544i \(-0.273114\pi\)
0.653943 + 0.756544i \(0.273114\pi\)
\(24\) 17135.8 0.0105428
\(25\) 390625. 0.200000
\(26\) −3.25024e6 −1.39488
\(27\) −77583.8 −0.0280953
\(28\) 0 0
\(29\) 3.94483e6 1.03571 0.517854 0.855469i \(-0.326731\pi\)
0.517854 + 0.855469i \(0.326731\pi\)
\(30\) 32452.4 0.00731477
\(31\) −8.99428e6 −1.74920 −0.874599 0.484847i \(-0.838875\pi\)
−0.874599 + 0.484847i \(0.838875\pi\)
\(32\) 4.03667e6 0.680532
\(33\) −4425.79 −0.000649648 0
\(34\) −495103. −0.0635390
\(35\) 0 0
\(36\) −3.58124e6 −0.355363
\(37\) −1.04609e7 −0.917618 −0.458809 0.888535i \(-0.651724\pi\)
−0.458809 + 0.888535i \(0.651724\pi\)
\(38\) 1.06632e7 0.829589
\(39\) 243184. 0.0168323
\(40\) −5.43366e6 −0.335600
\(41\) −3.02704e6 −0.167298 −0.0836489 0.996495i \(-0.526657\pi\)
−0.0836489 + 0.996495i \(0.526657\pi\)
\(42\) 0 0
\(43\) 1.60767e7 0.717114 0.358557 0.933508i \(-0.383269\pi\)
0.358557 + 0.933508i \(0.383269\pi\)
\(44\) −408626. −0.0164357
\(45\) 1.22994e7 0.447125
\(46\) −4.62401e7 −1.52268
\(47\) 3.97557e7 1.18839 0.594196 0.804321i \(-0.297471\pi\)
0.594196 + 0.804321i \(0.297471\pi\)
\(48\) −635067. −0.0172677
\(49\) 0 0
\(50\) −1.02904e7 −0.232846
\(51\) 37043.7 0.000766740 0
\(52\) 2.24528e7 0.425848
\(53\) 4.08073e7 0.710389 0.355195 0.934792i \(-0.384415\pi\)
0.355195 + 0.934792i \(0.384415\pi\)
\(54\) 2.04383e6 0.0327094
\(55\) 1.40339e6 0.0206798
\(56\) 0 0
\(57\) −797825. −0.0100108
\(58\) −1.03921e8 −1.20580
\(59\) −1.60585e8 −1.72532 −0.862660 0.505784i \(-0.831203\pi\)
−0.862660 + 0.505784i \(0.831203\pi\)
\(60\) −224182. −0.00223316
\(61\) −1.49289e8 −1.38052 −0.690260 0.723561i \(-0.742504\pi\)
−0.690260 + 0.723561i \(0.742504\pi\)
\(62\) 2.36941e8 2.03647
\(63\) 0 0
\(64\) 5.86269e7 0.436805
\(65\) −7.71120e7 −0.535811
\(66\) 116591. 0.000756341 0
\(67\) 5.12683e7 0.310822 0.155411 0.987850i \(-0.450330\pi\)
0.155411 + 0.987850i \(0.450330\pi\)
\(68\) 3.42018e6 0.0193981
\(69\) 3.45969e6 0.0183745
\(70\) 0 0
\(71\) −3.35362e8 −1.56622 −0.783108 0.621886i \(-0.786367\pi\)
−0.783108 + 0.621886i \(0.786367\pi\)
\(72\) −1.71087e8 −0.750277
\(73\) −1.35293e8 −0.557601 −0.278801 0.960349i \(-0.589937\pi\)
−0.278801 + 0.960349i \(0.589937\pi\)
\(74\) 2.75578e8 1.06832
\(75\) 769932. 0.00280981
\(76\) −7.36618e7 −0.253269
\(77\) 0 0
\(78\) −6.40632e6 −0.0195967
\(79\) 1.65365e8 0.477665 0.238832 0.971061i \(-0.423235\pi\)
0.238832 + 0.971061i \(0.423235\pi\)
\(80\) 2.01376e8 0.549670
\(81\) 3.87191e8 0.999408
\(82\) 7.97429e7 0.194773
\(83\) 1.61436e8 0.373379 0.186690 0.982419i \(-0.440224\pi\)
0.186690 + 0.982419i \(0.440224\pi\)
\(84\) 0 0
\(85\) −1.17463e7 −0.0244071
\(86\) −4.23516e8 −0.834886
\(87\) 7.77536e6 0.0145507
\(88\) −1.95214e7 −0.0347007
\(89\) −1.00313e9 −1.69473 −0.847366 0.531009i \(-0.821813\pi\)
−0.847366 + 0.531009i \(0.821813\pi\)
\(90\) −3.24011e8 −0.520557
\(91\) 0 0
\(92\) 3.19428e8 0.464866
\(93\) −1.77280e7 −0.0245746
\(94\) −1.04731e9 −1.38356
\(95\) 2.52985e8 0.318668
\(96\) 7.95639e6 0.00956082
\(97\) 2.89165e8 0.331644 0.165822 0.986156i \(-0.446972\pi\)
0.165822 + 0.986156i \(0.446972\pi\)
\(98\) 0 0
\(99\) 4.41880e7 0.0462323
\(100\) 7.10866e7 0.0710866
\(101\) −1.57210e8 −0.150326 −0.0751629 0.997171i \(-0.523948\pi\)
−0.0751629 + 0.997171i \(0.523948\pi\)
\(102\) −975861. −0.000892663 0
\(103\) −5.15072e8 −0.450921 −0.225461 0.974252i \(-0.572389\pi\)
−0.225461 + 0.974252i \(0.572389\pi\)
\(104\) 1.07264e9 0.899092
\(105\) 0 0
\(106\) −1.07501e9 −0.827057
\(107\) −2.36823e9 −1.74662 −0.873308 0.487168i \(-0.838030\pi\)
−0.873308 + 0.487168i \(0.838030\pi\)
\(108\) −1.41188e7 −0.00998601
\(109\) 2.25821e8 0.153231 0.0766154 0.997061i \(-0.475589\pi\)
0.0766154 + 0.997061i \(0.475589\pi\)
\(110\) −3.69703e7 −0.0240761
\(111\) −2.06188e7 −0.0128917
\(112\) 0 0
\(113\) −2.93829e9 −1.69528 −0.847640 0.530572i \(-0.821977\pi\)
−0.847640 + 0.530572i \(0.821977\pi\)
\(114\) 2.10175e7 0.0116549
\(115\) −1.09705e9 −0.584904
\(116\) 7.17886e8 0.368125
\(117\) −2.42799e9 −1.19787
\(118\) 4.23036e9 2.00867
\(119\) 0 0
\(120\) −1.07099e7 −0.00471486
\(121\) −2.35291e9 −0.997862
\(122\) 3.93279e9 1.60724
\(123\) −5.96637e6 −0.00235038
\(124\) −1.63679e9 −0.621723
\(125\) −2.44141e8 −0.0894427
\(126\) 0 0
\(127\) 3.08644e9 1.05279 0.526393 0.850241i \(-0.323544\pi\)
0.526393 + 0.850241i \(0.323544\pi\)
\(128\) −3.61122e9 −1.18907
\(129\) 3.16876e7 0.0100748
\(130\) 2.03140e9 0.623808
\(131\) 2.40858e9 0.714561 0.357281 0.933997i \(-0.383704\pi\)
0.357281 + 0.933997i \(0.383704\pi\)
\(132\) −805413. −0.000230906 0
\(133\) 0 0
\(134\) −1.35059e9 −0.361869
\(135\) 4.84899e7 0.0125646
\(136\) 1.63393e8 0.0409551
\(137\) 5.47458e9 1.32772 0.663862 0.747855i \(-0.268916\pi\)
0.663862 + 0.747855i \(0.268916\pi\)
\(138\) −9.11405e7 −0.0213922
\(139\) −9.08897e8 −0.206513 −0.103257 0.994655i \(-0.532926\pi\)
−0.103257 + 0.994655i \(0.532926\pi\)
\(140\) 0 0
\(141\) 7.83596e7 0.0166958
\(142\) 8.83462e9 1.82344
\(143\) −2.77039e8 −0.0554024
\(144\) 6.34064e9 1.22886
\(145\) −2.46552e9 −0.463182
\(146\) 3.56411e9 0.649176
\(147\) 0 0
\(148\) −1.90370e9 −0.326152
\(149\) 6.00080e9 0.997403 0.498702 0.866774i \(-0.333810\pi\)
0.498702 + 0.866774i \(0.333810\pi\)
\(150\) −2.02827e7 −0.00327127
\(151\) 5.35390e9 0.838058 0.419029 0.907973i \(-0.362371\pi\)
0.419029 + 0.907973i \(0.362371\pi\)
\(152\) −3.51906e9 −0.534725
\(153\) −3.69851e8 −0.0545652
\(154\) 0 0
\(155\) 5.62143e9 0.782265
\(156\) 4.42550e7 0.00598276
\(157\) 3.05256e8 0.0400973 0.0200487 0.999799i \(-0.493618\pi\)
0.0200487 + 0.999799i \(0.493618\pi\)
\(158\) −4.35631e9 −0.556112
\(159\) 8.04323e7 0.00998030
\(160\) −2.52292e9 −0.304343
\(161\) 0 0
\(162\) −1.02000e10 −1.16354
\(163\) 9.53729e9 1.05823 0.529116 0.848550i \(-0.322524\pi\)
0.529116 + 0.848550i \(0.322524\pi\)
\(164\) −5.50865e8 −0.0594632
\(165\) 2.76612e6 0.000290532 0
\(166\) −4.25281e9 −0.434700
\(167\) 7.59729e9 0.755848 0.377924 0.925837i \(-0.376638\pi\)
0.377924 + 0.925837i \(0.376638\pi\)
\(168\) 0 0
\(169\) 4.61792e9 0.435468
\(170\) 3.09439e8 0.0284155
\(171\) 7.96564e9 0.712423
\(172\) 2.92566e9 0.254886
\(173\) 1.61106e10 1.36742 0.683712 0.729751i \(-0.260364\pi\)
0.683712 + 0.729751i \(0.260364\pi\)
\(174\) −2.04831e8 −0.0169404
\(175\) 0 0
\(176\) 7.23479e8 0.0568354
\(177\) −3.16516e8 −0.0242391
\(178\) 2.64259e10 1.97306
\(179\) 5.90583e9 0.429974 0.214987 0.976617i \(-0.431029\pi\)
0.214987 + 0.976617i \(0.431029\pi\)
\(180\) 2.23827e9 0.158923
\(181\) 4.57036e9 0.316517 0.158258 0.987398i \(-0.449412\pi\)
0.158258 + 0.987398i \(0.449412\pi\)
\(182\) 0 0
\(183\) −2.94252e8 −0.0193950
\(184\) 1.52601e10 0.981469
\(185\) 6.53807e9 0.410371
\(186\) 4.67018e8 0.0286105
\(187\) −4.22007e7 −0.00252367
\(188\) 7.23481e9 0.422393
\(189\) 0 0
\(190\) −6.66452e9 −0.371003
\(191\) 1.08620e10 0.590555 0.295277 0.955412i \(-0.404588\pi\)
0.295277 + 0.955412i \(0.404588\pi\)
\(192\) 1.15555e8 0.00613669
\(193\) 3.53101e10 1.83185 0.915926 0.401346i \(-0.131458\pi\)
0.915926 + 0.401346i \(0.131458\pi\)
\(194\) −7.61762e9 −0.386110
\(195\) −1.51990e8 −0.00752764
\(196\) 0 0
\(197\) −1.34688e10 −0.637136 −0.318568 0.947900i \(-0.603202\pi\)
−0.318568 + 0.947900i \(0.603202\pi\)
\(198\) −1.16407e9 −0.0538251
\(199\) 2.38956e10 1.08014 0.540068 0.841621i \(-0.318399\pi\)
0.540068 + 0.841621i \(0.318399\pi\)
\(200\) 3.39603e9 0.150085
\(201\) 1.01051e8 0.00436676
\(202\) 4.14146e9 0.175014
\(203\) 0 0
\(204\) 6.74127e6 0.000272525 0
\(205\) 1.89190e9 0.0748179
\(206\) 1.35688e10 0.524976
\(207\) −3.45422e10 −1.30763
\(208\) −3.97529e10 −1.47260
\(209\) 9.08895e8 0.0329500
\(210\) 0 0
\(211\) −2.71767e10 −0.943898 −0.471949 0.881626i \(-0.656449\pi\)
−0.471949 + 0.881626i \(0.656449\pi\)
\(212\) 7.42618e9 0.252496
\(213\) −6.61008e8 −0.0220038
\(214\) 6.23876e10 2.03346
\(215\) −1.00479e10 −0.320703
\(216\) −6.74502e8 −0.0210834
\(217\) 0 0
\(218\) −5.94893e9 −0.178396
\(219\) −2.66667e8 −0.00783377
\(220\) 2.55391e8 0.00735029
\(221\) 2.31880e9 0.0653880
\(222\) 5.43171e8 0.0150089
\(223\) 2.65338e8 0.00718502 0.00359251 0.999994i \(-0.498856\pi\)
0.00359251 + 0.999994i \(0.498856\pi\)
\(224\) 0 0
\(225\) −7.68715e9 −0.199961
\(226\) 7.74049e10 1.97370
\(227\) 2.92609e10 0.731428 0.365714 0.930727i \(-0.380825\pi\)
0.365714 + 0.930727i \(0.380825\pi\)
\(228\) −1.45189e8 −0.00355818
\(229\) 3.93335e10 0.945156 0.472578 0.881289i \(-0.343324\pi\)
0.472578 + 0.881289i \(0.343324\pi\)
\(230\) 2.89001e10 0.680963
\(231\) 0 0
\(232\) 3.42957e10 0.777220
\(233\) 4.02983e10 0.895746 0.447873 0.894097i \(-0.352182\pi\)
0.447873 + 0.894097i \(0.352182\pi\)
\(234\) 6.39619e10 1.39460
\(235\) −2.48473e10 −0.531465
\(236\) −2.92234e10 −0.613236
\(237\) 3.25940e8 0.00671073
\(238\) 0 0
\(239\) 3.54020e10 0.701839 0.350919 0.936406i \(-0.385869\pi\)
0.350919 + 0.936406i \(0.385869\pi\)
\(240\) 3.96917e8 0.00772235
\(241\) −3.42729e9 −0.0654446 −0.0327223 0.999464i \(-0.510418\pi\)
−0.0327223 + 0.999464i \(0.510418\pi\)
\(242\) 6.19838e10 1.16174
\(243\) 2.29025e9 0.0421361
\(244\) −2.71678e10 −0.490683
\(245\) 0 0
\(246\) 1.57175e8 0.00273638
\(247\) −4.99410e10 −0.853730
\(248\) −7.81949e10 −1.31264
\(249\) 3.18196e8 0.00524563
\(250\) 6.43153e9 0.104132
\(251\) 6.49927e10 1.03355 0.516776 0.856120i \(-0.327132\pi\)
0.516776 + 0.856120i \(0.327132\pi\)
\(252\) 0 0
\(253\) −3.94134e9 −0.0604785
\(254\) −8.13076e10 −1.22569
\(255\) −2.31523e7 −0.000342897 0
\(256\) 6.51152e10 0.947551
\(257\) −7.71755e10 −1.10352 −0.551760 0.834003i \(-0.686044\pi\)
−0.551760 + 0.834003i \(0.686044\pi\)
\(258\) −8.34762e8 −0.0117294
\(259\) 0 0
\(260\) −1.40330e10 −0.190445
\(261\) −7.76307e10 −1.03550
\(262\) −6.34504e10 −0.831914
\(263\) 5.32154e10 0.685862 0.342931 0.939361i \(-0.388580\pi\)
0.342931 + 0.939361i \(0.388580\pi\)
\(264\) −3.84772e7 −0.000487512 0
\(265\) −2.55046e10 −0.317696
\(266\) 0 0
\(267\) −1.97719e9 −0.0238094
\(268\) 9.32989e9 0.110476
\(269\) −2.15319e10 −0.250725 −0.125362 0.992111i \(-0.540009\pi\)
−0.125362 + 0.992111i \(0.540009\pi\)
\(270\) −1.27739e9 −0.0146281
\(271\) −4.81053e10 −0.541790 −0.270895 0.962609i \(-0.587320\pi\)
−0.270895 + 0.962609i \(0.587320\pi\)
\(272\) −6.05548e9 −0.0670793
\(273\) 0 0
\(274\) −1.44220e11 −1.54578
\(275\) −8.77119e8 −0.00924829
\(276\) 6.29601e8 0.00653092
\(277\) 6.60074e10 0.673649 0.336824 0.941568i \(-0.390647\pi\)
0.336824 + 0.941568i \(0.390647\pi\)
\(278\) 2.39436e10 0.240429
\(279\) 1.77000e11 1.74885
\(280\) 0 0
\(281\) 7.31129e10 0.699545 0.349772 0.936835i \(-0.386259\pi\)
0.349772 + 0.936835i \(0.386259\pi\)
\(282\) −2.06427e9 −0.0194377
\(283\) −1.32293e11 −1.22602 −0.613012 0.790073i \(-0.710042\pi\)
−0.613012 + 0.790073i \(0.710042\pi\)
\(284\) −6.10298e10 −0.556685
\(285\) 4.98640e8 0.00447699
\(286\) 7.29818e9 0.0645011
\(287\) 0 0
\(288\) −7.94381e10 −0.680397
\(289\) −1.18235e11 −0.997021
\(290\) 6.49504e10 0.539251
\(291\) 5.69951e8 0.00465929
\(292\) −2.46209e10 −0.198190
\(293\) 4.00575e10 0.317526 0.158763 0.987317i \(-0.449249\pi\)
0.158763 + 0.987317i \(0.449249\pi\)
\(294\) 0 0
\(295\) 1.00365e11 0.771586
\(296\) −9.09456e10 −0.688603
\(297\) 1.74209e8 0.00129917
\(298\) −1.58082e11 −1.16121
\(299\) 2.16564e11 1.56699
\(300\) 1.40114e8 0.000998699 0
\(301\) 0 0
\(302\) −1.41041e11 −0.975693
\(303\) −3.09865e8 −0.00211193
\(304\) 1.30419e11 0.875812
\(305\) 9.33055e10 0.617388
\(306\) 9.74319e9 0.0635265
\(307\) −3.61839e10 −0.232484 −0.116242 0.993221i \(-0.537085\pi\)
−0.116242 + 0.993221i \(0.537085\pi\)
\(308\) 0 0
\(309\) −1.01522e9 −0.00633501
\(310\) −1.48088e11 −0.910737
\(311\) −1.58042e11 −0.957968 −0.478984 0.877824i \(-0.658995\pi\)
−0.478984 + 0.877824i \(0.658995\pi\)
\(312\) 2.11420e9 0.0126314
\(313\) −1.78114e11 −1.04894 −0.524468 0.851430i \(-0.675736\pi\)
−0.524468 + 0.851430i \(0.675736\pi\)
\(314\) −8.04151e9 −0.0466825
\(315\) 0 0
\(316\) 3.00935e10 0.169778
\(317\) 3.74923e10 0.208533 0.104267 0.994549i \(-0.466751\pi\)
0.104267 + 0.994549i \(0.466751\pi\)
\(318\) −2.11887e9 −0.0116194
\(319\) −8.85782e9 −0.0478926
\(320\) −3.66418e10 −0.195345
\(321\) −4.66785e9 −0.0245383
\(322\) 0 0
\(323\) −7.60740e9 −0.0388888
\(324\) 7.04617e10 0.355223
\(325\) 4.81950e10 0.239622
\(326\) −2.51246e11 −1.23203
\(327\) 4.45100e8 0.00215275
\(328\) −2.63166e10 −0.125544
\(329\) 0 0
\(330\) −7.28694e7 −0.000338246 0
\(331\) 1.08393e11 0.496335 0.248167 0.968717i \(-0.420172\pi\)
0.248167 + 0.968717i \(0.420172\pi\)
\(332\) 2.93785e10 0.132711
\(333\) 2.05862e11 0.917437
\(334\) −2.00139e11 −0.879981
\(335\) −3.20427e10 −0.139004
\(336\) 0 0
\(337\) 3.53012e11 1.49092 0.745462 0.666548i \(-0.232229\pi\)
0.745462 + 0.666548i \(0.232229\pi\)
\(338\) −1.21652e11 −0.506986
\(339\) −5.79145e9 −0.0238171
\(340\) −2.13761e9 −0.00867509
\(341\) 2.01960e10 0.0808855
\(342\) −2.09843e11 −0.829425
\(343\) 0 0
\(344\) 1.39768e11 0.538140
\(345\) −2.16231e9 −0.00821735
\(346\) −4.24409e11 −1.59200
\(347\) −4.58221e11 −1.69665 −0.848324 0.529477i \(-0.822388\pi\)
−0.848324 + 0.529477i \(0.822388\pi\)
\(348\) 1.41497e9 0.00517180
\(349\) −4.77589e11 −1.72322 −0.861608 0.507575i \(-0.830542\pi\)
−0.861608 + 0.507575i \(0.830542\pi\)
\(350\) 0 0
\(351\) −9.57223e9 −0.0336613
\(352\) −9.06404e9 −0.0314688
\(353\) −4.13087e11 −1.41597 −0.707986 0.706226i \(-0.750396\pi\)
−0.707986 + 0.706226i \(0.750396\pi\)
\(354\) 8.33816e9 0.0282199
\(355\) 2.09601e11 0.700433
\(356\) −1.82551e11 −0.602364
\(357\) 0 0
\(358\) −1.55581e11 −0.500589
\(359\) −1.83554e11 −0.583230 −0.291615 0.956536i \(-0.594193\pi\)
−0.291615 + 0.956536i \(0.594193\pi\)
\(360\) 1.06930e11 0.335534
\(361\) −1.58844e11 −0.492253
\(362\) −1.20399e11 −0.368498
\(363\) −4.63764e9 −0.0140190
\(364\) 0 0
\(365\) 8.45584e10 0.249367
\(366\) 7.75164e9 0.0225803
\(367\) 1.52885e11 0.439915 0.219957 0.975509i \(-0.429408\pi\)
0.219957 + 0.975509i \(0.429408\pi\)
\(368\) −5.65552e11 −1.60752
\(369\) 5.95694e10 0.167265
\(370\) −1.72236e11 −0.477767
\(371\) 0 0
\(372\) −3.22617e9 −0.00873461
\(373\) 3.94586e11 1.05548 0.527742 0.849405i \(-0.323039\pi\)
0.527742 + 0.849405i \(0.323039\pi\)
\(374\) 1.11172e9 0.00293814
\(375\) −4.81208e8 −0.00125659
\(376\) 3.45630e11 0.891798
\(377\) 4.86710e11 1.24089
\(378\) 0 0
\(379\) 7.26412e11 1.80845 0.904225 0.427057i \(-0.140450\pi\)
0.904225 + 0.427057i \(0.140450\pi\)
\(380\) 4.60387e10 0.113265
\(381\) 6.08345e9 0.0147907
\(382\) −2.86144e11 −0.687542
\(383\) 5.73936e11 1.36292 0.681458 0.731857i \(-0.261346\pi\)
0.681458 + 0.731857i \(0.261346\pi\)
\(384\) −7.11780e9 −0.0167053
\(385\) 0 0
\(386\) −9.30192e11 −2.13270
\(387\) −3.16375e11 −0.716972
\(388\) 5.26227e10 0.117877
\(389\) 2.27345e11 0.503400 0.251700 0.967805i \(-0.419010\pi\)
0.251700 + 0.967805i \(0.419010\pi\)
\(390\) 4.00395e9 0.00876391
\(391\) 3.29888e10 0.0713791
\(392\) 0 0
\(393\) 4.74737e9 0.0100389
\(394\) 3.54817e11 0.741773
\(395\) −1.03353e11 −0.213618
\(396\) 8.04140e9 0.0164325
\(397\) 9.03630e11 1.82572 0.912858 0.408277i \(-0.133870\pi\)
0.912858 + 0.408277i \(0.133870\pi\)
\(398\) −6.29493e11 −1.25753
\(399\) 0 0
\(400\) −1.25860e11 −0.245820
\(401\) 3.47203e11 0.670555 0.335277 0.942119i \(-0.391170\pi\)
0.335277 + 0.942119i \(0.391170\pi\)
\(402\) −2.66204e9 −0.00508391
\(403\) −1.10971e12 −2.09573
\(404\) −2.86093e10 −0.0534307
\(405\) −2.41994e11 −0.446949
\(406\) 0 0
\(407\) 2.34892e10 0.0424320
\(408\) 3.22052e8 0.000575381 0
\(409\) 1.06690e12 1.88524 0.942621 0.333866i \(-0.108353\pi\)
0.942621 + 0.333866i \(0.108353\pi\)
\(410\) −4.98393e10 −0.0871053
\(411\) 1.07905e10 0.0186533
\(412\) −9.37337e10 −0.160272
\(413\) 0 0
\(414\) 9.09965e11 1.52238
\(415\) −1.00898e11 −0.166980
\(416\) 4.98041e11 0.815352
\(417\) −1.79146e9 −0.00290132
\(418\) −2.39435e10 −0.0383614
\(419\) −8.89018e11 −1.40912 −0.704559 0.709645i \(-0.748855\pi\)
−0.704559 + 0.709645i \(0.748855\pi\)
\(420\) 0 0
\(421\) 9.18431e11 1.42488 0.712438 0.701735i \(-0.247591\pi\)
0.712438 + 0.701735i \(0.247591\pi\)
\(422\) 7.15929e11 1.09891
\(423\) −7.82358e11 −1.18816
\(424\) 3.54773e11 0.533094
\(425\) 7.34144e9 0.0109152
\(426\) 1.74133e10 0.0256175
\(427\) 0 0
\(428\) −4.30975e11 −0.620805
\(429\) −5.46051e8 −0.000778351 0
\(430\) 2.64698e11 0.373372
\(431\) −7.15695e11 −0.999034 −0.499517 0.866304i \(-0.666489\pi\)
−0.499517 + 0.866304i \(0.666489\pi\)
\(432\) 2.49976e10 0.0345320
\(433\) 1.30709e12 1.78694 0.893472 0.449119i \(-0.148262\pi\)
0.893472 + 0.449119i \(0.148262\pi\)
\(434\) 0 0
\(435\) −4.85960e9 −0.00650727
\(436\) 4.10954e10 0.0544633
\(437\) −7.10493e11 −0.931952
\(438\) 7.02495e9 0.00912031
\(439\) 8.08851e11 1.03939 0.519695 0.854352i \(-0.326046\pi\)
0.519695 + 0.854352i \(0.326046\pi\)
\(440\) 1.22009e10 0.0155186
\(441\) 0 0
\(442\) −6.10854e10 −0.0761267
\(443\) 2.49522e11 0.307816 0.153908 0.988085i \(-0.450814\pi\)
0.153908 + 0.988085i \(0.450814\pi\)
\(444\) −3.75223e9 −0.00458212
\(445\) 6.26955e11 0.757907
\(446\) −6.98995e9 −0.00836503
\(447\) 1.18277e10 0.0140126
\(448\) 0 0
\(449\) 1.12524e12 1.30658 0.653291 0.757107i \(-0.273388\pi\)
0.653291 + 0.757107i \(0.273388\pi\)
\(450\) 2.02507e11 0.232800
\(451\) 6.79699e9 0.00773610
\(452\) −5.34715e11 −0.602558
\(453\) 1.05527e10 0.0117739
\(454\) −7.70835e11 −0.851550
\(455\) 0 0
\(456\) −6.93617e9 −0.00751238
\(457\) 7.92565e11 0.849987 0.424993 0.905196i \(-0.360276\pi\)
0.424993 + 0.905196i \(0.360276\pi\)
\(458\) −1.03618e12 −1.10038
\(459\) −1.45812e9 −0.00153333
\(460\) −1.99642e11 −0.207894
\(461\) −8.54573e11 −0.881241 −0.440621 0.897693i \(-0.645242\pi\)
−0.440621 + 0.897693i \(0.645242\pi\)
\(462\) 0 0
\(463\) −1.55057e12 −1.56811 −0.784056 0.620690i \(-0.786852\pi\)
−0.784056 + 0.620690i \(0.786852\pi\)
\(464\) −1.27103e12 −1.27299
\(465\) 1.10800e10 0.0109901
\(466\) −1.06160e12 −1.04285
\(467\) 1.54154e11 0.149979 0.0749893 0.997184i \(-0.476108\pi\)
0.0749893 + 0.997184i \(0.476108\pi\)
\(468\) −4.41850e11 −0.425764
\(469\) 0 0
\(470\) 6.54566e11 0.618747
\(471\) 6.01667e8 0.000563329 0
\(472\) −1.39610e12 −1.29472
\(473\) −3.60990e10 −0.0331604
\(474\) −8.58641e9 −0.00781284
\(475\) −1.58116e11 −0.142513
\(476\) 0 0
\(477\) −8.03052e11 −0.710249
\(478\) −9.32614e11 −0.817102
\(479\) 1.96197e12 1.70287 0.851437 0.524457i \(-0.175732\pi\)
0.851437 + 0.524457i \(0.175732\pi\)
\(480\) −4.97274e9 −0.00427573
\(481\) −1.29066e12 −1.09941
\(482\) 9.02868e10 0.0761926
\(483\) 0 0
\(484\) −4.28186e11 −0.354673
\(485\) −1.80728e11 −0.148316
\(486\) −6.03332e10 −0.0490561
\(487\) 8.97598e11 0.723106 0.361553 0.932352i \(-0.382247\pi\)
0.361553 + 0.932352i \(0.382247\pi\)
\(488\) −1.29789e12 −1.03598
\(489\) 1.87983e10 0.0148671
\(490\) 0 0
\(491\) 4.80068e11 0.372766 0.186383 0.982477i \(-0.440324\pi\)
0.186383 + 0.982477i \(0.440324\pi\)
\(492\) −1.08577e9 −0.000835401 0
\(493\) 7.41395e10 0.0565247
\(494\) 1.31562e12 0.993939
\(495\) −2.76175e10 −0.0206757
\(496\) 2.89797e12 2.14994
\(497\) 0 0
\(498\) −8.38240e9 −0.00610712
\(499\) −1.81750e12 −1.31227 −0.656133 0.754646i \(-0.727809\pi\)
−0.656133 + 0.754646i \(0.727809\pi\)
\(500\) −4.44291e10 −0.0317909
\(501\) 1.49745e10 0.0106189
\(502\) −1.71214e12 −1.20329
\(503\) −9.78467e11 −0.681538 −0.340769 0.940147i \(-0.610687\pi\)
−0.340769 + 0.940147i \(0.610687\pi\)
\(504\) 0 0
\(505\) 9.82561e10 0.0672277
\(506\) 1.03829e11 0.0704109
\(507\) 9.10205e9 0.00611792
\(508\) 5.61675e11 0.374195
\(509\) −9.49400e11 −0.626930 −0.313465 0.949600i \(-0.601490\pi\)
−0.313465 + 0.949600i \(0.601490\pi\)
\(510\) 6.09913e8 0.000399211 0
\(511\) 0 0
\(512\) 1.33578e11 0.0859056
\(513\) 3.14041e10 0.0200197
\(514\) 2.03308e12 1.28475
\(515\) 3.21920e11 0.201658
\(516\) 5.76655e9 0.00358090
\(517\) −8.92685e10 −0.0549529
\(518\) 0 0
\(519\) 3.17544e10 0.0192110
\(520\) −6.70400e11 −0.402086
\(521\) −3.20965e12 −1.90848 −0.954240 0.299042i \(-0.903333\pi\)
−0.954240 + 0.299042i \(0.903333\pi\)
\(522\) 2.04507e12 1.20556
\(523\) 2.27961e12 1.33230 0.666152 0.745816i \(-0.267940\pi\)
0.666152 + 0.745816i \(0.267940\pi\)
\(524\) 4.38317e11 0.253979
\(525\) 0 0
\(526\) −1.40188e12 −0.798501
\(527\) −1.69039e11 −0.0954642
\(528\) 1.42600e9 0.000798483 0
\(529\) 1.27983e12 0.710564
\(530\) 6.71880e11 0.369871
\(531\) 3.16016e12 1.72498
\(532\) 0 0
\(533\) −3.73473e11 −0.200441
\(534\) 5.20862e10 0.0277196
\(535\) 1.48015e12 0.781111
\(536\) 4.45719e11 0.233249
\(537\) 1.16406e10 0.00604073
\(538\) 5.67226e11 0.291901
\(539\) 0 0
\(540\) 8.82427e9 0.00446588
\(541\) 2.51926e12 1.26440 0.632201 0.774804i \(-0.282152\pi\)
0.632201 + 0.774804i \(0.282152\pi\)
\(542\) 1.26726e12 0.630769
\(543\) 9.00830e9 0.00444676
\(544\) 7.58656e10 0.0371407
\(545\) −1.41138e11 −0.0685269
\(546\) 0 0
\(547\) −2.15157e12 −1.02757 −0.513787 0.857918i \(-0.671758\pi\)
−0.513787 + 0.857918i \(0.671758\pi\)
\(548\) 9.96272e11 0.471917
\(549\) 2.93787e12 1.38025
\(550\) 2.31064e10 0.0107671
\(551\) −1.59677e12 −0.738008
\(552\) 3.00780e10 0.0137887
\(553\) 0 0
\(554\) −1.73887e12 −0.784282
\(555\) 1.28867e10 0.00576533
\(556\) −1.65403e11 −0.0734016
\(557\) −2.27895e12 −1.00320 −0.501600 0.865100i \(-0.667255\pi\)
−0.501600 + 0.865100i \(0.667255\pi\)
\(558\) −4.66279e12 −2.03607
\(559\) 1.98353e12 0.859181
\(560\) 0 0
\(561\) −8.31788e7 −3.54552e−5 0
\(562\) −1.92605e12 −0.814431
\(563\) −3.82145e12 −1.60303 −0.801513 0.597978i \(-0.795971\pi\)
−0.801513 + 0.597978i \(0.795971\pi\)
\(564\) 1.42600e10 0.00593423
\(565\) 1.83643e12 0.758152
\(566\) 3.48508e12 1.42738
\(567\) 0 0
\(568\) −2.91559e12 −1.17533
\(569\) −2.94845e12 −1.17920 −0.589601 0.807695i \(-0.700715\pi\)
−0.589601 + 0.807695i \(0.700715\pi\)
\(570\) −1.31360e10 −0.00521224
\(571\) 2.99642e12 1.17962 0.589808 0.807544i \(-0.299203\pi\)
0.589808 + 0.807544i \(0.299203\pi\)
\(572\) −5.04160e10 −0.0196918
\(573\) 2.14093e10 0.00829673
\(574\) 0 0
\(575\) 6.85654e11 0.261577
\(576\) −1.15373e12 −0.436718
\(577\) 1.87283e12 0.703407 0.351703 0.936111i \(-0.385603\pi\)
0.351703 + 0.936111i \(0.385603\pi\)
\(578\) 3.11472e12 1.16076
\(579\) 6.95971e10 0.0257358
\(580\) −4.48679e11 −0.164630
\(581\) 0 0
\(582\) −1.50145e10 −0.00542448
\(583\) −9.16297e10 −0.0328494
\(584\) −1.17622e12 −0.418438
\(585\) 1.51750e12 0.535705
\(586\) −1.05525e12 −0.369673
\(587\) 1.94572e12 0.676410 0.338205 0.941073i \(-0.390180\pi\)
0.338205 + 0.941073i \(0.390180\pi\)
\(588\) 0 0
\(589\) 3.64067e12 1.24642
\(590\) −2.64398e12 −0.898305
\(591\) −2.65474e10 −0.00895116
\(592\) 3.37052e12 1.12784
\(593\) −8.61235e11 −0.286006 −0.143003 0.989722i \(-0.545676\pi\)
−0.143003 + 0.989722i \(0.545676\pi\)
\(594\) −4.58927e9 −0.00151253
\(595\) 0 0
\(596\) 1.09204e12 0.354510
\(597\) 4.70988e10 0.0151749
\(598\) −5.70507e12 −1.82434
\(599\) 2.81546e12 0.893570 0.446785 0.894641i \(-0.352569\pi\)
0.446785 + 0.894641i \(0.352569\pi\)
\(600\) 6.69368e9 0.00210855
\(601\) −4.79484e12 −1.49913 −0.749565 0.661931i \(-0.769737\pi\)
−0.749565 + 0.661931i \(0.769737\pi\)
\(602\) 0 0
\(603\) −1.00891e12 −0.310761
\(604\) 9.74312e11 0.297873
\(605\) 1.47057e12 0.446257
\(606\) 8.16293e9 0.00245878
\(607\) −7.43279e11 −0.222230 −0.111115 0.993808i \(-0.535442\pi\)
−0.111115 + 0.993808i \(0.535442\pi\)
\(608\) −1.63395e12 −0.484922
\(609\) 0 0
\(610\) −2.45800e12 −0.718782
\(611\) 4.90503e12 1.42382
\(612\) −6.73061e10 −0.0193943
\(613\) 6.45388e11 0.184607 0.0923036 0.995731i \(-0.470577\pi\)
0.0923036 + 0.995731i \(0.470577\pi\)
\(614\) 9.53213e11 0.270665
\(615\) 3.72898e9 0.00105112
\(616\) 0 0
\(617\) 4.66543e12 1.29601 0.648005 0.761636i \(-0.275604\pi\)
0.648005 + 0.761636i \(0.275604\pi\)
\(618\) 2.67445e10 0.00737542
\(619\) 2.49665e12 0.683519 0.341759 0.939787i \(-0.388977\pi\)
0.341759 + 0.939787i \(0.388977\pi\)
\(620\) 1.02300e12 0.278043
\(621\) −1.36181e11 −0.0367455
\(622\) 4.16338e12 1.11530
\(623\) 0 0
\(624\) −7.83541e10 −0.0206886
\(625\) 1.52588e11 0.0400000
\(626\) 4.69215e12 1.22120
\(627\) 1.79146e9 0.000462916 0
\(628\) 5.55509e10 0.0142519
\(629\) −1.96604e11 −0.0500799
\(630\) 0 0
\(631\) 2.92442e12 0.734357 0.367179 0.930150i \(-0.380324\pi\)
0.367179 + 0.930150i \(0.380324\pi\)
\(632\) 1.43766e12 0.358451
\(633\) −5.35659e10 −0.0132609
\(634\) −9.87678e11 −0.242781
\(635\) −1.92902e12 −0.470821
\(636\) 1.46372e10 0.00354733
\(637\) 0 0
\(638\) 2.33346e11 0.0557581
\(639\) 6.59963e12 1.56591
\(640\) 2.25701e12 0.531770
\(641\) −4.23039e12 −0.989736 −0.494868 0.868968i \(-0.664784\pi\)
−0.494868 + 0.868968i \(0.664784\pi\)
\(642\) 1.22968e11 0.0285682
\(643\) −1.95718e12 −0.451524 −0.225762 0.974183i \(-0.572487\pi\)
−0.225762 + 0.974183i \(0.572487\pi\)
\(644\) 0 0
\(645\) −1.98047e10 −0.00450557
\(646\) 2.00406e11 0.0452756
\(647\) 4.71751e12 1.05838 0.529192 0.848502i \(-0.322495\pi\)
0.529192 + 0.848502i \(0.322495\pi\)
\(648\) 3.36618e12 0.749980
\(649\) 3.60580e11 0.0797813
\(650\) −1.26963e12 −0.278975
\(651\) 0 0
\(652\) 1.73561e12 0.376130
\(653\) 5.50754e12 1.18536 0.592678 0.805440i \(-0.298071\pi\)
0.592678 + 0.805440i \(0.298071\pi\)
\(654\) −1.17255e10 −0.00250629
\(655\) −1.50536e12 −0.319562
\(656\) 9.75315e11 0.205626
\(657\) 2.66245e12 0.557491
\(658\) 0 0
\(659\) −4.05044e12 −0.836599 −0.418300 0.908309i \(-0.637374\pi\)
−0.418300 + 0.908309i \(0.637374\pi\)
\(660\) 5.03383e8 0.000103265 0
\(661\) 2.16897e12 0.441923 0.220962 0.975283i \(-0.429080\pi\)
0.220962 + 0.975283i \(0.429080\pi\)
\(662\) −2.85545e12 −0.577848
\(663\) 4.57042e9 0.000918640 0
\(664\) 1.40350e12 0.280193
\(665\) 0 0
\(666\) −5.42312e12 −1.06811
\(667\) 6.92425e12 1.35459
\(668\) 1.38257e12 0.268653
\(669\) 5.22989e8 0.000100943 0
\(670\) 8.44117e11 0.161833
\(671\) 3.35217e11 0.0638373
\(672\) 0 0
\(673\) −7.79666e12 −1.46501 −0.732505 0.680761i \(-0.761649\pi\)
−0.732505 + 0.680761i \(0.761649\pi\)
\(674\) −9.29959e12 −1.73578
\(675\) −3.03062e10 −0.00561907
\(676\) 8.40378e11 0.154780
\(677\) 3.98612e12 0.729293 0.364646 0.931146i \(-0.381190\pi\)
0.364646 + 0.931146i \(0.381190\pi\)
\(678\) 1.52567e11 0.0277286
\(679\) 0 0
\(680\) −1.02121e11 −0.0183157
\(681\) 5.76740e10 0.0102759
\(682\) −5.32034e11 −0.0941693
\(683\) −7.20461e12 −1.26683 −0.633413 0.773814i \(-0.718347\pi\)
−0.633413 + 0.773814i \(0.718347\pi\)
\(684\) 1.44960e12 0.253219
\(685\) −3.42161e12 −0.593776
\(686\) 0 0
\(687\) 7.75275e10 0.0132785
\(688\) −5.17992e12 −0.881405
\(689\) 5.03477e12 0.851125
\(690\) 5.69628e10 0.00956689
\(691\) −7.66976e12 −1.27977 −0.639883 0.768472i \(-0.721017\pi\)
−0.639883 + 0.768472i \(0.721017\pi\)
\(692\) 2.93183e12 0.486028
\(693\) 0 0
\(694\) 1.20711e13 1.97529
\(695\) 5.68061e11 0.0923555
\(696\) 6.75978e10 0.0109192
\(697\) −5.68904e10 −0.00913044
\(698\) 1.25814e13 2.00622
\(699\) 7.94290e10 0.0125844
\(700\) 0 0
\(701\) −6.76464e11 −0.105807 −0.0529034 0.998600i \(-0.516848\pi\)
−0.0529034 + 0.998600i \(0.516848\pi\)
\(702\) 2.52166e11 0.0391895
\(703\) 4.23433e12 0.653861
\(704\) −1.31642e11 −0.0201985
\(705\) −4.89748e10 −0.00746657
\(706\) 1.08822e13 1.64852
\(707\) 0 0
\(708\) −5.76002e10 −0.00861538
\(709\) 1.19764e13 1.77999 0.889995 0.455970i \(-0.150708\pi\)
0.889995 + 0.455970i \(0.150708\pi\)
\(710\) −5.52164e12 −0.815465
\(711\) −3.25425e12 −0.477570
\(712\) −8.72104e12 −1.27177
\(713\) −1.57874e13 −2.28775
\(714\) 0 0
\(715\) 1.73149e11 0.0247767
\(716\) 1.07475e12 0.152827
\(717\) 6.97783e10 0.00986016
\(718\) 4.83547e12 0.679014
\(719\) 9.56848e12 1.33525 0.667626 0.744497i \(-0.267311\pi\)
0.667626 + 0.744497i \(0.267311\pi\)
\(720\) −3.96290e12 −0.549562
\(721\) 0 0
\(722\) 4.18451e12 0.573096
\(723\) −6.75527e9 −0.000919434 0
\(724\) 8.31721e11 0.112500
\(725\) 1.54095e12 0.207141
\(726\) 1.22172e11 0.0163214
\(727\) −1.05787e13 −1.40451 −0.702257 0.711924i \(-0.747824\pi\)
−0.702257 + 0.711924i \(0.747824\pi\)
\(728\) 0 0
\(729\) −7.61657e12 −0.998816
\(730\) −2.22757e12 −0.290320
\(731\) 3.02147e11 0.0391372
\(732\) −5.35485e10 −0.00689362
\(733\) 5.59263e12 0.715563 0.357782 0.933805i \(-0.383533\pi\)
0.357782 + 0.933805i \(0.383533\pi\)
\(734\) −4.02754e12 −0.512162
\(735\) 0 0
\(736\) 7.08546e12 0.890057
\(737\) −1.15119e11 −0.0143729
\(738\) −1.56927e12 −0.194735
\(739\) −7.75052e11 −0.0955941 −0.0477970 0.998857i \(-0.515220\pi\)
−0.0477970 + 0.998857i \(0.515220\pi\)
\(740\) 1.18981e12 0.145859
\(741\) −9.84350e10 −0.0119941
\(742\) 0 0
\(743\) 2.61033e12 0.314228 0.157114 0.987580i \(-0.449781\pi\)
0.157114 + 0.987580i \(0.449781\pi\)
\(744\) −1.54124e11 −0.0184414
\(745\) −3.75050e12 −0.446052
\(746\) −1.03948e13 −1.22883
\(747\) −3.17693e12 −0.373306
\(748\) −7.67976e9 −0.000896996 0
\(749\) 0 0
\(750\) 1.26767e10 0.00146295
\(751\) 1.00388e13 1.15160 0.575801 0.817590i \(-0.304690\pi\)
0.575801 + 0.817590i \(0.304690\pi\)
\(752\) −1.28093e13 −1.46065
\(753\) 1.28102e11 0.0145204
\(754\) −1.28217e13 −1.44468
\(755\) −3.34619e12 −0.374791
\(756\) 0 0
\(757\) −1.40463e12 −0.155464 −0.0777320 0.996974i \(-0.524768\pi\)
−0.0777320 + 0.996974i \(0.524768\pi\)
\(758\) −1.91363e13 −2.10545
\(759\) −7.76848e9 −0.000849666 0
\(760\) 2.19941e12 0.239136
\(761\) 1.42436e13 1.53954 0.769769 0.638323i \(-0.220372\pi\)
0.769769 + 0.638323i \(0.220372\pi\)
\(762\) −1.60260e11 −0.0172197
\(763\) 0 0
\(764\) 1.97669e12 0.209903
\(765\) 2.31157e11 0.0244023
\(766\) −1.51195e13 −1.58675
\(767\) −1.98128e13 −2.06712
\(768\) 1.28344e11 0.0133122
\(769\) 1.29105e12 0.133129 0.0665647 0.997782i \(-0.478796\pi\)
0.0665647 + 0.997782i \(0.478796\pi\)
\(770\) 0 0
\(771\) −1.52115e11 −0.0155034
\(772\) 6.42578e12 0.651101
\(773\) 8.58124e12 0.864455 0.432227 0.901765i \(-0.357728\pi\)
0.432227 + 0.901765i \(0.357728\pi\)
\(774\) 8.33443e12 0.834721
\(775\) −3.51339e12 −0.349840
\(776\) 2.51395e12 0.248874
\(777\) 0 0
\(778\) −5.98908e12 −0.586073
\(779\) 1.22527e12 0.119210
\(780\) −2.76594e10 −0.00267557
\(781\) 7.53031e11 0.0724241
\(782\) −8.69041e11 −0.0831017
\(783\) −3.06055e11 −0.0290985
\(784\) 0 0
\(785\) −1.90785e11 −0.0179321
\(786\) −1.25062e11 −0.0116876
\(787\) 3.12167e11 0.0290068 0.0145034 0.999895i \(-0.495383\pi\)
0.0145034 + 0.999895i \(0.495383\pi\)
\(788\) −2.45108e12 −0.226459
\(789\) 1.04889e11 0.00963570
\(790\) 2.72269e12 0.248701
\(791\) 0 0
\(792\) 3.84164e11 0.0346939
\(793\) −1.84191e13 −1.65402
\(794\) −2.38048e13 −2.12555
\(795\) −5.02702e10 −0.00446332
\(796\) 4.34855e12 0.383916
\(797\) 8.61341e12 0.756159 0.378079 0.925773i \(-0.376585\pi\)
0.378079 + 0.925773i \(0.376585\pi\)
\(798\) 0 0
\(799\) 7.47173e11 0.0648576
\(800\) 1.57682e12 0.136106
\(801\) 1.97407e13 1.69440
\(802\) −9.14656e12 −0.780680
\(803\) 3.03791e11 0.0257843
\(804\) 1.83895e10 0.00155209
\(805\) 0 0
\(806\) 2.92336e13 2.43992
\(807\) −4.24400e10 −0.00352244
\(808\) −1.36676e12 −0.112808
\(809\) −2.01016e13 −1.64992 −0.824958 0.565193i \(-0.808802\pi\)
−0.824958 + 0.565193i \(0.808802\pi\)
\(810\) 6.37499e12 0.520351
\(811\) 1.62455e13 1.31868 0.659340 0.751845i \(-0.270836\pi\)
0.659340 + 0.751845i \(0.270836\pi\)
\(812\) 0 0
\(813\) −9.48169e10 −0.00761164
\(814\) −6.18789e11 −0.0494006
\(815\) −5.96081e12 −0.473256
\(816\) −1.19355e10 −0.000942401 0
\(817\) −6.50745e12 −0.510989
\(818\) −2.81058e13 −2.19486
\(819\) 0 0
\(820\) 3.44291e11 0.0265927
\(821\) −8.24254e11 −0.0633165 −0.0316583 0.999499i \(-0.510079\pi\)
−0.0316583 + 0.999499i \(0.510079\pi\)
\(822\) −2.84261e11 −0.0217167
\(823\) 2.59567e13 1.97220 0.986099 0.166159i \(-0.0531364\pi\)
0.986099 + 0.166159i \(0.0531364\pi\)
\(824\) −4.47796e12 −0.338382
\(825\) −1.72883e9 −0.000129930 0
\(826\) 0 0
\(827\) −1.31498e13 −0.977560 −0.488780 0.872407i \(-0.662558\pi\)
−0.488780 + 0.872407i \(0.662558\pi\)
\(828\) −6.28605e12 −0.464774
\(829\) −1.78218e13 −1.31056 −0.655279 0.755387i \(-0.727449\pi\)
−0.655279 + 0.755387i \(0.727449\pi\)
\(830\) 2.65800e12 0.194404
\(831\) 1.30102e11 0.00946412
\(832\) 7.23334e12 0.523340
\(833\) 0 0
\(834\) 4.71934e10 0.00337780
\(835\) −4.74830e12 −0.338025
\(836\) 1.65402e11 0.0117115
\(837\) 6.97811e11 0.0491443
\(838\) 2.34199e13 1.64054
\(839\) −1.79273e13 −1.24906 −0.624532 0.780999i \(-0.714710\pi\)
−0.624532 + 0.780999i \(0.714710\pi\)
\(840\) 0 0
\(841\) 1.05452e12 0.0726898
\(842\) −2.41947e13 −1.65888
\(843\) 1.44107e11 0.00982794
\(844\) −4.94565e12 −0.335492
\(845\) −2.88620e12 −0.194747
\(846\) 2.06101e13 1.38329
\(847\) 0 0
\(848\) −1.31482e13 −0.873140
\(849\) −2.60754e11 −0.0172245
\(850\) −1.93400e11 −0.0127078
\(851\) −1.83618e13 −1.20014
\(852\) −1.20291e11 −0.00782089
\(853\) −1.65652e13 −1.07134 −0.535668 0.844429i \(-0.679940\pi\)
−0.535668 + 0.844429i \(0.679940\pi\)
\(854\) 0 0
\(855\) −4.97852e12 −0.318605
\(856\) −2.05891e13 −1.31070
\(857\) 1.00056e13 0.633619 0.316810 0.948489i \(-0.397388\pi\)
0.316810 + 0.948489i \(0.397388\pi\)
\(858\) 1.43849e10 0.000906180 0
\(859\) −4.82691e12 −0.302482 −0.151241 0.988497i \(-0.548327\pi\)
−0.151241 + 0.988497i \(0.548327\pi\)
\(860\) −1.82854e12 −0.113988
\(861\) 0 0
\(862\) 1.88539e13 1.16311
\(863\) 2.92326e12 0.179398 0.0896992 0.995969i \(-0.471409\pi\)
0.0896992 + 0.995969i \(0.471409\pi\)
\(864\) −3.13180e11 −0.0191198
\(865\) −1.00691e13 −0.611531
\(866\) −3.44334e13 −2.08042
\(867\) −2.33044e11 −0.0140072
\(868\) 0 0
\(869\) −3.71316e11 −0.0220879
\(870\) 1.28019e11 0.00757597
\(871\) 6.32544e12 0.372399
\(872\) 1.96326e12 0.114988
\(873\) −5.69050e12 −0.331579
\(874\) 1.87169e13 1.08501
\(875\) 0 0
\(876\) −4.85285e10 −0.00278438
\(877\) −9.67239e12 −0.552123 −0.276061 0.961140i \(-0.589029\pi\)
−0.276061 + 0.961140i \(0.589029\pi\)
\(878\) −2.13080e13 −1.21009
\(879\) 7.89543e10 0.00446094
\(880\) −4.52174e11 −0.0254176
\(881\) −1.87103e12 −0.104638 −0.0523191 0.998630i \(-0.516661\pi\)
−0.0523191 + 0.998630i \(0.516661\pi\)
\(882\) 0 0
\(883\) 8.57451e12 0.474664 0.237332 0.971429i \(-0.423727\pi\)
0.237332 + 0.971429i \(0.423727\pi\)
\(884\) 4.21979e11 0.0232411
\(885\) 1.97823e11 0.0108401
\(886\) −6.57328e12 −0.358369
\(887\) 1.80022e13 0.976494 0.488247 0.872705i \(-0.337636\pi\)
0.488247 + 0.872705i \(0.337636\pi\)
\(888\) −1.79256e11 −0.00967422
\(889\) 0 0
\(890\) −1.65162e13 −0.882379
\(891\) −8.69409e11 −0.0462141
\(892\) 4.82867e10 0.00255379
\(893\) −1.60922e13 −0.846804
\(894\) −3.11584e11 −0.0163139
\(895\) −3.69115e12 −0.192290
\(896\) 0 0
\(897\) 4.26854e11 0.0220147
\(898\) −2.96428e13 −1.52116
\(899\) −3.54809e13 −1.81166
\(900\) −1.39892e12 −0.0710726
\(901\) 7.66937e11 0.0387702
\(902\) −1.79057e11 −0.00900660
\(903\) 0 0
\(904\) −2.55450e13 −1.27218
\(905\) −2.85647e12 −0.141551
\(906\) −2.77995e11 −0.0137076
\(907\) 2.53756e13 1.24504 0.622520 0.782604i \(-0.286109\pi\)
0.622520 + 0.782604i \(0.286109\pi\)
\(908\) 5.32495e12 0.259973
\(909\) 3.09375e12 0.150296
\(910\) 0 0
\(911\) 1.84038e13 0.885268 0.442634 0.896702i \(-0.354044\pi\)
0.442634 + 0.896702i \(0.354044\pi\)
\(912\) 2.57060e11 0.0123043
\(913\) −3.62494e11 −0.0172656
\(914\) −2.08790e13 −0.989581
\(915\) 1.83908e11 0.00867371
\(916\) 7.15798e12 0.335939
\(917\) 0 0
\(918\) 3.84120e10 0.00178515
\(919\) 7.61943e12 0.352373 0.176186 0.984357i \(-0.443624\pi\)
0.176186 + 0.984357i \(0.443624\pi\)
\(920\) −9.53755e12 −0.438926
\(921\) −7.13195e10 −0.00326618
\(922\) 2.25125e13 1.02597
\(923\) −4.13767e13 −1.87650
\(924\) 0 0
\(925\) −4.08630e12 −0.183524
\(926\) 4.08475e13 1.82564
\(927\) 1.01362e13 0.450832
\(928\) 1.59240e13 0.704832
\(929\) 3.02391e12 0.133198 0.0665991 0.997780i \(-0.478785\pi\)
0.0665991 + 0.997780i \(0.478785\pi\)
\(930\) −2.91886e11 −0.0127950
\(931\) 0 0
\(932\) 7.33355e12 0.318378
\(933\) −3.11505e11 −0.0134585
\(934\) −4.06097e12 −0.174610
\(935\) 2.63755e10 0.00112862
\(936\) −2.11086e13 −0.898914
\(937\) 1.00516e13 0.425999 0.212999 0.977052i \(-0.431677\pi\)
0.212999 + 0.977052i \(0.431677\pi\)
\(938\) 0 0
\(939\) −3.51068e11 −0.0147365
\(940\) −4.52176e12 −0.188900
\(941\) 1.52744e13 0.635053 0.317526 0.948249i \(-0.397148\pi\)
0.317526 + 0.948249i \(0.397148\pi\)
\(942\) −1.58500e10 −0.000655845 0
\(943\) −5.31328e12 −0.218806
\(944\) 5.17405e13 2.12059
\(945\) 0 0
\(946\) 9.50974e11 0.0386063
\(947\) 4.29774e13 1.73646 0.868230 0.496162i \(-0.165258\pi\)
0.868230 + 0.496162i \(0.165258\pi\)
\(948\) 5.93151e10 0.00238522
\(949\) −1.66924e13 −0.668068
\(950\) 4.16533e12 0.165918
\(951\) 7.38982e10 0.00292969
\(952\) 0 0
\(953\) 1.01121e13 0.397120 0.198560 0.980089i \(-0.436373\pi\)
0.198560 + 0.980089i \(0.436373\pi\)
\(954\) 2.11552e13 0.826894
\(955\) −6.78876e12 −0.264104
\(956\) 6.44251e12 0.249457
\(957\) −1.74590e10 −0.000672846 0
\(958\) −5.16852e13 −1.98254
\(959\) 0 0
\(960\) −7.22220e10 −0.00274441
\(961\) 5.44575e13 2.05969
\(962\) 3.40005e13 1.27996
\(963\) 4.66047e13 1.74627
\(964\) −6.23703e11 −0.0232612
\(965\) −2.20688e13 −0.819229
\(966\) 0 0
\(967\) 4.14688e13 1.52511 0.762556 0.646922i \(-0.223944\pi\)
0.762556 + 0.646922i \(0.223944\pi\)
\(968\) −2.04558e13 −0.748820
\(969\) −1.49944e10 −0.000546351 0
\(970\) 4.76101e12 0.172674
\(971\) −3.67205e12 −0.132563 −0.0662814 0.997801i \(-0.521114\pi\)
−0.0662814 + 0.997801i \(0.521114\pi\)
\(972\) 4.16783e11 0.0149765
\(973\) 0 0
\(974\) −2.36459e13 −0.841862
\(975\) 9.49936e10 0.00336646
\(976\) 4.81010e13 1.69680
\(977\) 8.95608e10 0.00314480 0.00157240 0.999999i \(-0.499499\pi\)
0.00157240 + 0.999999i \(0.499499\pi\)
\(978\) −4.95212e11 −0.0173088
\(979\) 2.25245e12 0.0783669
\(980\) 0 0
\(981\) −4.44397e12 −0.153200
\(982\) −1.26467e13 −0.433985
\(983\) 4.67974e13 1.59857 0.799284 0.600953i \(-0.205212\pi\)
0.799284 + 0.600953i \(0.205212\pi\)
\(984\) −5.18707e10 −0.00176378
\(985\) 8.41802e12 0.284936
\(986\) −1.95310e12 −0.0658078
\(987\) 0 0
\(988\) −9.08834e12 −0.303444
\(989\) 2.82190e13 0.937902
\(990\) 7.27542e11 0.0240713
\(991\) −1.94121e12 −0.0639353 −0.0319677 0.999489i \(-0.510177\pi\)
−0.0319677 + 0.999489i \(0.510177\pi\)
\(992\) −3.63070e13 −1.19038
\(993\) 2.13645e11 0.00697303
\(994\) 0 0
\(995\) −1.49347e13 −0.483051
\(996\) 5.79058e10 0.00186447
\(997\) −2.62275e13 −0.840677 −0.420338 0.907367i \(-0.638089\pi\)
−0.420338 + 0.907367i \(0.638089\pi\)
\(998\) 4.78793e13 1.52778
\(999\) 8.11598e11 0.0257808
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 245.10.a.g.1.2 6
7.6 odd 2 35.10.a.e.1.2 6
21.20 even 2 315.10.a.l.1.5 6
35.13 even 4 175.10.b.g.99.9 12
35.27 even 4 175.10.b.g.99.4 12
35.34 odd 2 175.10.a.g.1.5 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
35.10.a.e.1.2 6 7.6 odd 2
175.10.a.g.1.5 6 35.34 odd 2
175.10.b.g.99.4 12 35.27 even 4
175.10.b.g.99.9 12 35.13 even 4
245.10.a.g.1.2 6 1.1 even 1 trivial
315.10.a.l.1.5 6 21.20 even 2