Properties

Label 245.10.a.e.1.3
Level $245$
Weight $10$
Character 245.1
Self dual yes
Analytic conductor $126.184$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [245,10,Mod(1,245)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("245.1"); S:= CuspForms(chi, 10); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(245, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 10, names="a")
 
Level: \( N \) \(=\) \( 245 = 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 245.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,-19,18] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(126.183779860\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 648x^{2} + 6926x - 8308 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2\cdot 3^{2}\cdot 5 \)
Twist minimal: no (minimal twist has level 35)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-29.3917\) of defining polynomial
Character \(\chi\) \(=\) 245.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+15.4436 q^{2} -137.736 q^{3} -273.496 q^{4} +625.000 q^{5} -2127.13 q^{6} -12130.9 q^{8} -711.820 q^{9} +9652.23 q^{10} -8060.89 q^{11} +37670.3 q^{12} +137129. q^{13} -86084.9 q^{15} -47313.7 q^{16} +23676.1 q^{17} -10993.0 q^{18} -572389. q^{19} -170935. q^{20} -124489. q^{22} -997700. q^{23} +1.67086e6 q^{24} +390625. q^{25} +2.11777e6 q^{26} +2.80910e6 q^{27} +1.97927e6 q^{29} -1.32946e6 q^{30} +8.47740e6 q^{31} +5.48031e6 q^{32} +1.11027e6 q^{33} +365643. q^{34} +194680. q^{36} -4.33062e6 q^{37} -8.83972e6 q^{38} -1.88876e7 q^{39} -7.58179e6 q^{40} +1.48554e7 q^{41} +3.14842e7 q^{43} +2.20462e6 q^{44} -444888. q^{45} -1.54081e7 q^{46} -2.31045e7 q^{47} +6.51680e6 q^{48} +6.03264e6 q^{50} -3.26104e6 q^{51} -3.75044e7 q^{52} -6.79444e6 q^{53} +4.33825e7 q^{54} -5.03805e6 q^{55} +7.88385e7 q^{57} +3.05671e7 q^{58} -8.85117e7 q^{59} +2.35439e7 q^{60} -1.24823e8 q^{61} +1.30921e8 q^{62} +1.08860e8 q^{64} +8.57059e7 q^{65} +1.71466e7 q^{66} +9.58712e7 q^{67} -6.47531e6 q^{68} +1.37419e8 q^{69} -2.16795e8 q^{71} +8.63500e6 q^{72} +1.50701e8 q^{73} -6.68803e7 q^{74} -5.38031e7 q^{75} +1.56546e8 q^{76} -2.91693e8 q^{78} -3.89487e8 q^{79} -2.95711e7 q^{80} -3.72903e8 q^{81} +2.29420e8 q^{82} +7.43467e8 q^{83} +1.47975e7 q^{85} +4.86228e8 q^{86} -2.72617e8 q^{87} +9.77855e7 q^{88} -2.64429e8 q^{89} -6.87065e6 q^{90} +2.72867e8 q^{92} -1.16764e9 q^{93} -3.56816e8 q^{94} -3.57743e8 q^{95} -7.54835e8 q^{96} -1.39343e9 q^{97} +5.73790e6 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 19 q^{2} + 18 q^{3} + 1729 q^{4} + 2500 q^{5} + 144 q^{6} - 30495 q^{8} + 5382 q^{9} - 11875 q^{10} + 82438 q^{11} - 41328 q^{12} + 72962 q^{13} + 11250 q^{15} + 64257 q^{16} + 357542 q^{17} - 965367 q^{18}+ \cdots + 1222369524 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 15.4436 0.682516 0.341258 0.939970i \(-0.389147\pi\)
0.341258 + 0.939970i \(0.389147\pi\)
\(3\) −137.736 −0.981751 −0.490876 0.871230i \(-0.663323\pi\)
−0.490876 + 0.871230i \(0.663323\pi\)
\(4\) −273.496 −0.534172
\(5\) 625.000 0.447214
\(6\) −2127.13 −0.670061
\(7\) 0 0
\(8\) −12130.9 −1.04710
\(9\) −711.820 −0.0361642
\(10\) 9652.23 0.305230
\(11\) −8060.89 −0.166003 −0.0830015 0.996549i \(-0.526451\pi\)
−0.0830015 + 0.996549i \(0.526451\pi\)
\(12\) 37670.3 0.524424
\(13\) 137129. 1.33164 0.665818 0.746114i \(-0.268083\pi\)
0.665818 + 0.746114i \(0.268083\pi\)
\(14\) 0 0
\(15\) −86084.9 −0.439053
\(16\) −47313.7 −0.180488
\(17\) 23676.1 0.0687526 0.0343763 0.999409i \(-0.489056\pi\)
0.0343763 + 0.999409i \(0.489056\pi\)
\(18\) −10993.0 −0.0246826
\(19\) −572389. −1.00763 −0.503814 0.863812i \(-0.668070\pi\)
−0.503814 + 0.863812i \(0.668070\pi\)
\(20\) −170935. −0.238889
\(21\) 0 0
\(22\) −124489. −0.113300
\(23\) −997700. −0.743404 −0.371702 0.928352i \(-0.621226\pi\)
−0.371702 + 0.928352i \(0.621226\pi\)
\(24\) 1.67086e6 1.02799
\(25\) 390625. 0.200000
\(26\) 2.11777e6 0.908862
\(27\) 2.80910e6 1.01726
\(28\) 0 0
\(29\) 1.97927e6 0.519655 0.259827 0.965655i \(-0.416334\pi\)
0.259827 + 0.965655i \(0.416334\pi\)
\(30\) −1.32946e6 −0.299660
\(31\) 8.47740e6 1.64867 0.824337 0.566099i \(-0.191548\pi\)
0.824337 + 0.566099i \(0.191548\pi\)
\(32\) 5.48031e6 0.923911
\(33\) 1.11027e6 0.162974
\(34\) 365643. 0.0469247
\(35\) 0 0
\(36\) 194680. 0.0193179
\(37\) −4.33062e6 −0.379877 −0.189938 0.981796i \(-0.560829\pi\)
−0.189938 + 0.981796i \(0.560829\pi\)
\(38\) −8.83972e6 −0.687721
\(39\) −1.88876e7 −1.30734
\(40\) −7.58179e6 −0.468276
\(41\) 1.48554e7 0.821024 0.410512 0.911855i \(-0.365350\pi\)
0.410512 + 0.911855i \(0.365350\pi\)
\(42\) 0 0
\(43\) 3.14842e7 1.40438 0.702189 0.711991i \(-0.252206\pi\)
0.702189 + 0.711991i \(0.252206\pi\)
\(44\) 2.20462e6 0.0886742
\(45\) −444888. −0.0161731
\(46\) −1.54081e7 −0.507385
\(47\) −2.31045e7 −0.690647 −0.345324 0.938484i \(-0.612231\pi\)
−0.345324 + 0.938484i \(0.612231\pi\)
\(48\) 6.51680e6 0.177194
\(49\) 0 0
\(50\) 6.03264e6 0.136503
\(51\) −3.26104e6 −0.0674980
\(52\) −3.75044e7 −0.711323
\(53\) −6.79444e6 −0.118280 −0.0591401 0.998250i \(-0.518836\pi\)
−0.0591401 + 0.998250i \(0.518836\pi\)
\(54\) 4.33825e7 0.694293
\(55\) −5.03805e6 −0.0742388
\(56\) 0 0
\(57\) 7.88385e7 0.989239
\(58\) 3.05671e7 0.354673
\(59\) −8.85117e7 −0.950969 −0.475485 0.879724i \(-0.657727\pi\)
−0.475485 + 0.879724i \(0.657727\pi\)
\(60\) 2.35439e7 0.234530
\(61\) −1.24823e8 −1.15428 −0.577138 0.816647i \(-0.695831\pi\)
−0.577138 + 0.816647i \(0.695831\pi\)
\(62\) 1.30921e8 1.12525
\(63\) 0 0
\(64\) 1.08860e8 0.811071
\(65\) 8.57059e7 0.595526
\(66\) 1.71466e7 0.111232
\(67\) 9.58712e7 0.581235 0.290617 0.956839i \(-0.406139\pi\)
0.290617 + 0.956839i \(0.406139\pi\)
\(68\) −6.47531e6 −0.0367257
\(69\) 1.37419e8 0.729838
\(70\) 0 0
\(71\) −2.16795e8 −1.01248 −0.506241 0.862392i \(-0.668965\pi\)
−0.506241 + 0.862392i \(0.668965\pi\)
\(72\) 8.63500e6 0.0378674
\(73\) 1.50701e8 0.621101 0.310551 0.950557i \(-0.399487\pi\)
0.310551 + 0.950557i \(0.399487\pi\)
\(74\) −6.68803e7 −0.259272
\(75\) −5.38031e7 −0.196350
\(76\) 1.56546e8 0.538247
\(77\) 0 0
\(78\) −2.91693e8 −0.892277
\(79\) −3.89487e8 −1.12505 −0.562523 0.826781i \(-0.690169\pi\)
−0.562523 + 0.826781i \(0.690169\pi\)
\(80\) −2.95711e7 −0.0807165
\(81\) −3.72903e8 −0.962528
\(82\) 2.29420e8 0.560362
\(83\) 7.43467e8 1.71953 0.859766 0.510688i \(-0.170609\pi\)
0.859766 + 0.510688i \(0.170609\pi\)
\(84\) 0 0
\(85\) 1.47975e7 0.0307471
\(86\) 4.86228e8 0.958510
\(87\) −2.72617e8 −0.510172
\(88\) 9.77855e7 0.173821
\(89\) −2.64429e8 −0.446739 −0.223369 0.974734i \(-0.571706\pi\)
−0.223369 + 0.974734i \(0.571706\pi\)
\(90\) −6.87065e6 −0.0110384
\(91\) 0 0
\(92\) 2.72867e8 0.397106
\(93\) −1.16764e9 −1.61859
\(94\) −3.56816e8 −0.471378
\(95\) −3.57743e8 −0.450625
\(96\) −7.54835e8 −0.907051
\(97\) −1.39343e9 −1.59813 −0.799063 0.601248i \(-0.794671\pi\)
−0.799063 + 0.601248i \(0.794671\pi\)
\(98\) 0 0
\(99\) 5.73790e6 0.00600337
\(100\) −1.06834e8 −0.106834
\(101\) 6.43863e8 0.615669 0.307834 0.951440i \(-0.400396\pi\)
0.307834 + 0.951440i \(0.400396\pi\)
\(102\) −5.03621e7 −0.0460684
\(103\) 9.64216e8 0.844125 0.422063 0.906567i \(-0.361306\pi\)
0.422063 + 0.906567i \(0.361306\pi\)
\(104\) −1.66350e9 −1.39435
\(105\) 0 0
\(106\) −1.04930e8 −0.0807281
\(107\) −1.97477e9 −1.45643 −0.728215 0.685348i \(-0.759650\pi\)
−0.728215 + 0.685348i \(0.759650\pi\)
\(108\) −7.68278e8 −0.543390
\(109\) 1.03957e9 0.705401 0.352701 0.935736i \(-0.385263\pi\)
0.352701 + 0.935736i \(0.385263\pi\)
\(110\) −7.78055e7 −0.0506691
\(111\) 5.96482e8 0.372944
\(112\) 0 0
\(113\) 5.48265e8 0.316328 0.158164 0.987413i \(-0.449443\pi\)
0.158164 + 0.987413i \(0.449443\pi\)
\(114\) 1.21755e9 0.675171
\(115\) −6.23563e8 −0.332460
\(116\) −5.41324e8 −0.277585
\(117\) −9.76115e7 −0.0481576
\(118\) −1.36694e9 −0.649052
\(119\) 0 0
\(120\) 1.04428e9 0.459730
\(121\) −2.29297e9 −0.972443
\(122\) −1.92771e9 −0.787811
\(123\) −2.04612e9 −0.806042
\(124\) −2.31854e9 −0.880676
\(125\) 2.44141e8 0.0894427
\(126\) 0 0
\(127\) −5.40565e9 −1.84387 −0.921936 0.387341i \(-0.873394\pi\)
−0.921936 + 0.387341i \(0.873394\pi\)
\(128\) −1.12473e9 −0.370342
\(129\) −4.33650e9 −1.37875
\(130\) 1.32360e9 0.406456
\(131\) 1.81287e9 0.537832 0.268916 0.963164i \(-0.413335\pi\)
0.268916 + 0.963164i \(0.413335\pi\)
\(132\) −3.03656e8 −0.0870560
\(133\) 0 0
\(134\) 1.48059e9 0.396702
\(135\) 1.75569e9 0.454931
\(136\) −2.87211e8 −0.0719906
\(137\) −7.50191e8 −0.181940 −0.0909702 0.995854i \(-0.528997\pi\)
−0.0909702 + 0.995854i \(0.528997\pi\)
\(138\) 2.12224e9 0.498126
\(139\) −6.59090e9 −1.49754 −0.748769 0.662831i \(-0.769355\pi\)
−0.748769 + 0.662831i \(0.769355\pi\)
\(140\) 0 0
\(141\) 3.18232e9 0.678044
\(142\) −3.34809e9 −0.691035
\(143\) −1.10538e9 −0.221055
\(144\) 3.36789e7 0.00652719
\(145\) 1.23705e9 0.232397
\(146\) 2.32736e9 0.423911
\(147\) 0 0
\(148\) 1.18441e9 0.202920
\(149\) −3.29437e9 −0.547564 −0.273782 0.961792i \(-0.588275\pi\)
−0.273782 + 0.961792i \(0.588275\pi\)
\(150\) −8.30912e8 −0.134012
\(151\) −1.04401e10 −1.63421 −0.817103 0.576492i \(-0.804421\pi\)
−0.817103 + 0.576492i \(0.804421\pi\)
\(152\) 6.94357e9 1.05508
\(153\) −1.68531e7 −0.00248638
\(154\) 0 0
\(155\) 5.29837e9 0.737310
\(156\) 5.16570e9 0.698342
\(157\) 4.88247e9 0.641344 0.320672 0.947190i \(-0.396091\pi\)
0.320672 + 0.947190i \(0.396091\pi\)
\(158\) −6.01506e9 −0.767862
\(159\) 9.35838e8 0.116122
\(160\) 3.42519e9 0.413186
\(161\) 0 0
\(162\) −5.75895e9 −0.656940
\(163\) −1.00685e10 −1.11717 −0.558584 0.829448i \(-0.688655\pi\)
−0.558584 + 0.829448i \(0.688655\pi\)
\(164\) −4.06289e9 −0.438568
\(165\) 6.93921e8 0.0728840
\(166\) 1.14818e10 1.17361
\(167\) −1.11826e10 −1.11255 −0.556273 0.831000i \(-0.687769\pi\)
−0.556273 + 0.831000i \(0.687769\pi\)
\(168\) 0 0
\(169\) 8.19997e9 0.773254
\(170\) 2.28527e8 0.0209854
\(171\) 4.07438e8 0.0364400
\(172\) −8.61080e9 −0.750180
\(173\) 1.55595e10 1.32065 0.660325 0.750980i \(-0.270418\pi\)
0.660325 + 0.750980i \(0.270418\pi\)
\(174\) −4.21018e9 −0.348200
\(175\) 0 0
\(176\) 3.81391e8 0.0299615
\(177\) 1.21912e10 0.933616
\(178\) −4.08372e9 −0.304906
\(179\) −1.14811e10 −0.835884 −0.417942 0.908474i \(-0.637248\pi\)
−0.417942 + 0.908474i \(0.637248\pi\)
\(180\) 1.21675e8 0.00863924
\(181\) −1.64859e10 −1.14172 −0.570860 0.821047i \(-0.693390\pi\)
−0.570860 + 0.821047i \(0.693390\pi\)
\(182\) 0 0
\(183\) 1.71926e10 1.13321
\(184\) 1.21030e10 0.778416
\(185\) −2.70664e9 −0.169886
\(186\) −1.80326e10 −1.10471
\(187\) −1.90850e8 −0.0114131
\(188\) 6.31900e9 0.368925
\(189\) 0 0
\(190\) −5.52483e9 −0.307558
\(191\) 1.75186e10 0.952466 0.476233 0.879319i \(-0.342002\pi\)
0.476233 + 0.879319i \(0.342002\pi\)
\(192\) −1.49940e10 −0.796270
\(193\) −2.51278e10 −1.30361 −0.651805 0.758387i \(-0.725988\pi\)
−0.651805 + 0.758387i \(0.725988\pi\)
\(194\) −2.15195e10 −1.09075
\(195\) −1.18048e10 −0.584658
\(196\) 0 0
\(197\) 3.28481e10 1.55386 0.776930 0.629587i \(-0.216776\pi\)
0.776930 + 0.629587i \(0.216776\pi\)
\(198\) 8.86137e7 0.00409739
\(199\) 3.56924e9 0.161338 0.0806691 0.996741i \(-0.474294\pi\)
0.0806691 + 0.996741i \(0.474294\pi\)
\(200\) −4.73862e9 −0.209419
\(201\) −1.32049e10 −0.570628
\(202\) 9.94354e9 0.420204
\(203\) 0 0
\(204\) 8.91883e8 0.0360556
\(205\) 9.28460e9 0.367173
\(206\) 1.48909e10 0.576129
\(207\) 7.10183e8 0.0268846
\(208\) −6.48810e9 −0.240344
\(209\) 4.61396e9 0.167269
\(210\) 0 0
\(211\) −8.88255e9 −0.308508 −0.154254 0.988031i \(-0.549297\pi\)
−0.154254 + 0.988031i \(0.549297\pi\)
\(212\) 1.85825e9 0.0631820
\(213\) 2.98605e10 0.994006
\(214\) −3.04975e10 −0.994037
\(215\) 1.96776e10 0.628057
\(216\) −3.40768e10 −1.06517
\(217\) 0 0
\(218\) 1.60547e10 0.481447
\(219\) −2.07569e10 −0.609767
\(220\) 1.37789e9 0.0396563
\(221\) 3.24668e9 0.0915534
\(222\) 9.21182e9 0.254540
\(223\) −1.85138e10 −0.501330 −0.250665 0.968074i \(-0.580649\pi\)
−0.250665 + 0.968074i \(0.580649\pi\)
\(224\) 0 0
\(225\) −2.78055e8 −0.00723284
\(226\) 8.46716e9 0.215899
\(227\) −6.91501e10 −1.72853 −0.864265 0.503037i \(-0.832216\pi\)
−0.864265 + 0.503037i \(0.832216\pi\)
\(228\) −2.15620e10 −0.528424
\(229\) 4.14990e10 0.997190 0.498595 0.866835i \(-0.333850\pi\)
0.498595 + 0.866835i \(0.333850\pi\)
\(230\) −9.63003e9 −0.226909
\(231\) 0 0
\(232\) −2.40103e10 −0.544129
\(233\) 1.06684e10 0.237136 0.118568 0.992946i \(-0.462170\pi\)
0.118568 + 0.992946i \(0.462170\pi\)
\(234\) −1.50747e9 −0.0328683
\(235\) −1.44403e10 −0.308867
\(236\) 2.42076e10 0.507982
\(237\) 5.36463e10 1.10452
\(238\) 0 0
\(239\) 6.89311e9 0.136655 0.0683274 0.997663i \(-0.478234\pi\)
0.0683274 + 0.997663i \(0.478234\pi\)
\(240\) 4.07300e9 0.0792435
\(241\) 2.72593e10 0.520520 0.260260 0.965539i \(-0.416192\pi\)
0.260260 + 0.965539i \(0.416192\pi\)
\(242\) −3.54116e10 −0.663708
\(243\) −3.92936e9 −0.0722925
\(244\) 3.41386e10 0.616582
\(245\) 0 0
\(246\) −3.15993e10 −0.550136
\(247\) −7.84913e10 −1.34179
\(248\) −1.02838e11 −1.72632
\(249\) −1.02402e11 −1.68815
\(250\) 3.77040e9 0.0610461
\(251\) −1.11185e11 −1.76812 −0.884062 0.467370i \(-0.845202\pi\)
−0.884062 + 0.467370i \(0.845202\pi\)
\(252\) 0 0
\(253\) 8.04235e9 0.123407
\(254\) −8.34825e10 −1.25847
\(255\) −2.03815e9 −0.0301860
\(256\) −7.31062e10 −1.06384
\(257\) 3.84555e10 0.549869 0.274935 0.961463i \(-0.411344\pi\)
0.274935 + 0.961463i \(0.411344\pi\)
\(258\) −6.69710e10 −0.941018
\(259\) 0 0
\(260\) −2.34402e10 −0.318113
\(261\) −1.40889e9 −0.0187929
\(262\) 2.79972e10 0.367079
\(263\) 1.50225e11 1.93616 0.968082 0.250634i \(-0.0806390\pi\)
0.968082 + 0.250634i \(0.0806390\pi\)
\(264\) −1.34686e10 −0.170649
\(265\) −4.24653e9 −0.0528965
\(266\) 0 0
\(267\) 3.64213e10 0.438587
\(268\) −2.62204e10 −0.310479
\(269\) −9.22583e10 −1.07429 −0.537143 0.843491i \(-0.680497\pi\)
−0.537143 + 0.843491i \(0.680497\pi\)
\(270\) 2.71141e10 0.310497
\(271\) 1.10392e11 1.24330 0.621649 0.783296i \(-0.286463\pi\)
0.621649 + 0.783296i \(0.286463\pi\)
\(272\) −1.12020e9 −0.0124090
\(273\) 0 0
\(274\) −1.15856e10 −0.124177
\(275\) −3.14878e9 −0.0332006
\(276\) −3.75836e10 −0.389859
\(277\) 1.06151e11 1.08334 0.541672 0.840590i \(-0.317792\pi\)
0.541672 + 0.840590i \(0.317792\pi\)
\(278\) −1.01787e11 −1.02209
\(279\) −6.03438e9 −0.0596230
\(280\) 0 0
\(281\) 1.69943e11 1.62602 0.813008 0.582252i \(-0.197828\pi\)
0.813008 + 0.582252i \(0.197828\pi\)
\(282\) 4.91464e10 0.462776
\(283\) 6.63477e10 0.614875 0.307438 0.951568i \(-0.400528\pi\)
0.307438 + 0.951568i \(0.400528\pi\)
\(284\) 5.92927e10 0.540840
\(285\) 4.92740e10 0.442401
\(286\) −1.70711e10 −0.150874
\(287\) 0 0
\(288\) −3.90100e9 −0.0334125
\(289\) −1.18027e11 −0.995273
\(290\) 1.91044e10 0.158614
\(291\) 1.91925e11 1.56896
\(292\) −4.12161e10 −0.331775
\(293\) −7.54377e9 −0.0597976 −0.0298988 0.999553i \(-0.509519\pi\)
−0.0298988 + 0.999553i \(0.509519\pi\)
\(294\) 0 0
\(295\) −5.53198e10 −0.425286
\(296\) 5.25342e10 0.397768
\(297\) −2.26438e10 −0.168867
\(298\) −5.08769e10 −0.373721
\(299\) −1.36814e11 −0.989943
\(300\) 1.47149e10 0.104885
\(301\) 0 0
\(302\) −1.61232e11 −1.11537
\(303\) −8.86830e10 −0.604434
\(304\) 2.70818e10 0.181864
\(305\) −7.80142e10 −0.516208
\(306\) −2.60272e8 −0.00169700
\(307\) 9.90848e10 0.636626 0.318313 0.947986i \(-0.396884\pi\)
0.318313 + 0.947986i \(0.396884\pi\)
\(308\) 0 0
\(309\) −1.32807e11 −0.828721
\(310\) 8.18258e10 0.503225
\(311\) 2.78000e10 0.168509 0.0842545 0.996444i \(-0.473149\pi\)
0.0842545 + 0.996444i \(0.473149\pi\)
\(312\) 2.29123e11 1.36891
\(313\) −7.09223e10 −0.417670 −0.208835 0.977951i \(-0.566967\pi\)
−0.208835 + 0.977951i \(0.566967\pi\)
\(314\) 7.54027e10 0.437727
\(315\) 0 0
\(316\) 1.06523e11 0.600969
\(317\) −3.11422e11 −1.73214 −0.866068 0.499926i \(-0.833360\pi\)
−0.866068 + 0.499926i \(0.833360\pi\)
\(318\) 1.44527e10 0.0792550
\(319\) −1.59547e10 −0.0862643
\(320\) 6.80376e10 0.362722
\(321\) 2.71997e11 1.42985
\(322\) 0 0
\(323\) −1.35519e10 −0.0692770
\(324\) 1.01988e11 0.514156
\(325\) 5.35662e10 0.266327
\(326\) −1.55493e11 −0.762485
\(327\) −1.43187e11 −0.692529
\(328\) −1.80208e11 −0.859692
\(329\) 0 0
\(330\) 1.07166e10 0.0497445
\(331\) 2.94782e11 1.34982 0.674908 0.737902i \(-0.264183\pi\)
0.674908 + 0.737902i \(0.264183\pi\)
\(332\) −2.03336e11 −0.918527
\(333\) 3.08263e9 0.0137379
\(334\) −1.72699e11 −0.759330
\(335\) 5.99195e10 0.259936
\(336\) 0 0
\(337\) −2.02609e11 −0.855705 −0.427852 0.903849i \(-0.640730\pi\)
−0.427852 + 0.903849i \(0.640730\pi\)
\(338\) 1.26637e11 0.527758
\(339\) −7.55158e10 −0.310555
\(340\) −4.04707e9 −0.0164243
\(341\) −6.83353e10 −0.273685
\(342\) 6.29229e9 0.0248709
\(343\) 0 0
\(344\) −3.81930e11 −1.47052
\(345\) 8.58870e10 0.326393
\(346\) 2.40294e11 0.901365
\(347\) −1.52000e11 −0.562810 −0.281405 0.959589i \(-0.590800\pi\)
−0.281405 + 0.959589i \(0.590800\pi\)
\(348\) 7.45598e10 0.272520
\(349\) 2.82049e11 1.01768 0.508840 0.860861i \(-0.330075\pi\)
0.508840 + 0.860861i \(0.330075\pi\)
\(350\) 0 0
\(351\) 3.85210e11 1.35461
\(352\) −4.41762e10 −0.153372
\(353\) 4.32937e11 1.48402 0.742008 0.670391i \(-0.233874\pi\)
0.742008 + 0.670391i \(0.233874\pi\)
\(354\) 1.88276e11 0.637207
\(355\) −1.35497e11 −0.452796
\(356\) 7.23203e10 0.238636
\(357\) 0 0
\(358\) −1.77310e11 −0.570504
\(359\) 1.35500e10 0.0430542 0.0215271 0.999768i \(-0.493147\pi\)
0.0215271 + 0.999768i \(0.493147\pi\)
\(360\) 5.39687e9 0.0169348
\(361\) 4.94112e9 0.0153124
\(362\) −2.54601e11 −0.779242
\(363\) 3.15824e11 0.954697
\(364\) 0 0
\(365\) 9.41879e10 0.277765
\(366\) 2.65515e11 0.773435
\(367\) 1.26149e11 0.362984 0.181492 0.983392i \(-0.441907\pi\)
0.181492 + 0.983392i \(0.441907\pi\)
\(368\) 4.72049e10 0.134175
\(369\) −1.05744e10 −0.0296917
\(370\) −4.18002e10 −0.115950
\(371\) 0 0
\(372\) 3.19346e11 0.864605
\(373\) −2.45212e11 −0.655923 −0.327961 0.944691i \(-0.606362\pi\)
−0.327961 + 0.944691i \(0.606362\pi\)
\(374\) −2.94741e9 −0.00778964
\(375\) −3.36269e10 −0.0878105
\(376\) 2.80278e11 0.723175
\(377\) 2.71417e11 0.691991
\(378\) 0 0
\(379\) 3.62591e11 0.902694 0.451347 0.892348i \(-0.350944\pi\)
0.451347 + 0.892348i \(0.350944\pi\)
\(380\) 9.78413e10 0.240711
\(381\) 7.44552e11 1.81022
\(382\) 2.70550e11 0.650073
\(383\) −7.23039e10 −0.171699 −0.0858494 0.996308i \(-0.527360\pi\)
−0.0858494 + 0.996308i \(0.527360\pi\)
\(384\) 1.54916e11 0.363584
\(385\) 0 0
\(386\) −3.88064e11 −0.889734
\(387\) −2.24111e10 −0.0507882
\(388\) 3.81097e11 0.853674
\(389\) 3.00609e11 0.665624 0.332812 0.942993i \(-0.392002\pi\)
0.332812 + 0.942993i \(0.392002\pi\)
\(390\) −1.82308e11 −0.399038
\(391\) −2.36216e10 −0.0511110
\(392\) 0 0
\(393\) −2.49698e11 −0.528017
\(394\) 5.07291e11 1.06053
\(395\) −2.43429e11 −0.503136
\(396\) −1.56930e9 −0.00320683
\(397\) 2.86335e11 0.578518 0.289259 0.957251i \(-0.406591\pi\)
0.289259 + 0.957251i \(0.406591\pi\)
\(398\) 5.51219e10 0.110116
\(399\) 0 0
\(400\) −1.84819e10 −0.0360975
\(401\) 8.19964e11 1.58360 0.791800 0.610781i \(-0.209144\pi\)
0.791800 + 0.610781i \(0.209144\pi\)
\(402\) −2.03931e11 −0.389462
\(403\) 1.16250e12 2.19543
\(404\) −1.76094e11 −0.328873
\(405\) −2.33064e11 −0.430456
\(406\) 0 0
\(407\) 3.49087e10 0.0630607
\(408\) 3.95593e10 0.0706769
\(409\) −9.67528e11 −1.70966 −0.854828 0.518911i \(-0.826337\pi\)
−0.854828 + 0.518911i \(0.826337\pi\)
\(410\) 1.43387e11 0.250601
\(411\) 1.03328e11 0.178620
\(412\) −2.63710e11 −0.450908
\(413\) 0 0
\(414\) 1.09678e10 0.0183492
\(415\) 4.64667e11 0.768998
\(416\) 7.51511e11 1.23031
\(417\) 9.07803e11 1.47021
\(418\) 7.12560e10 0.114164
\(419\) 8.51357e10 0.134942 0.0674712 0.997721i \(-0.478507\pi\)
0.0674712 + 0.997721i \(0.478507\pi\)
\(420\) 0 0
\(421\) 5.61043e10 0.0870415 0.0435207 0.999053i \(-0.486143\pi\)
0.0435207 + 0.999053i \(0.486143\pi\)
\(422\) −1.37178e11 −0.210562
\(423\) 1.64463e10 0.0249767
\(424\) 8.24224e10 0.123851
\(425\) 9.24846e9 0.0137505
\(426\) 4.61153e11 0.678425
\(427\) 0 0
\(428\) 5.40093e11 0.777985
\(429\) 1.52251e11 0.217022
\(430\) 3.03892e11 0.428659
\(431\) −1.36440e11 −0.190456 −0.0952278 0.995456i \(-0.530358\pi\)
−0.0952278 + 0.995456i \(0.530358\pi\)
\(432\) −1.32909e11 −0.183602
\(433\) −3.25710e11 −0.445282 −0.222641 0.974900i \(-0.571468\pi\)
−0.222641 + 0.974900i \(0.571468\pi\)
\(434\) 0 0
\(435\) −1.70386e11 −0.228156
\(436\) −2.84320e11 −0.376806
\(437\) 5.71072e11 0.749074
\(438\) −3.20560e11 −0.416175
\(439\) −1.44336e11 −0.185474 −0.0927372 0.995691i \(-0.529562\pi\)
−0.0927372 + 0.995691i \(0.529562\pi\)
\(440\) 6.11160e10 0.0777352
\(441\) 0 0
\(442\) 5.01404e10 0.0624867
\(443\) −9.59823e11 −1.18406 −0.592031 0.805915i \(-0.701674\pi\)
−0.592031 + 0.805915i \(0.701674\pi\)
\(444\) −1.63136e11 −0.199217
\(445\) −1.65268e11 −0.199788
\(446\) −2.85919e11 −0.342166
\(447\) 4.53754e11 0.537572
\(448\) 0 0
\(449\) −1.02004e12 −1.18443 −0.592215 0.805780i \(-0.701747\pi\)
−0.592215 + 0.805780i \(0.701747\pi\)
\(450\) −4.29416e9 −0.00493653
\(451\) −1.19747e11 −0.136292
\(452\) −1.49948e11 −0.168974
\(453\) 1.43797e12 1.60438
\(454\) −1.06792e12 −1.17975
\(455\) 0 0
\(456\) −9.56379e11 −1.03583
\(457\) −6.45199e11 −0.691944 −0.345972 0.938245i \(-0.612451\pi\)
−0.345972 + 0.938245i \(0.612451\pi\)
\(458\) 6.40892e11 0.680598
\(459\) 6.65084e10 0.0699390
\(460\) 1.70542e11 0.177591
\(461\) −1.04575e12 −1.07838 −0.539192 0.842183i \(-0.681270\pi\)
−0.539192 + 0.842183i \(0.681270\pi\)
\(462\) 0 0
\(463\) 6.01465e11 0.608269 0.304134 0.952629i \(-0.401633\pi\)
0.304134 + 0.952629i \(0.401633\pi\)
\(464\) −9.36469e10 −0.0937913
\(465\) −7.29776e11 −0.723855
\(466\) 1.64758e11 0.161849
\(467\) −9.53000e11 −0.927186 −0.463593 0.886048i \(-0.653440\pi\)
−0.463593 + 0.886048i \(0.653440\pi\)
\(468\) 2.66964e10 0.0257244
\(469\) 0 0
\(470\) −2.23010e11 −0.210806
\(471\) −6.72491e11 −0.629640
\(472\) 1.07372e12 0.995757
\(473\) −2.53790e11 −0.233131
\(474\) 8.28490e11 0.753850
\(475\) −2.23589e11 −0.201525
\(476\) 0 0
\(477\) 4.83642e9 0.00427751
\(478\) 1.06454e11 0.0932690
\(479\) −1.99157e12 −1.72857 −0.864283 0.503005i \(-0.832228\pi\)
−0.864283 + 0.503005i \(0.832228\pi\)
\(480\) −4.71772e11 −0.405646
\(481\) −5.93856e11 −0.505857
\(482\) 4.20981e11 0.355263
\(483\) 0 0
\(484\) 6.27119e11 0.519452
\(485\) −8.70891e11 −0.714703
\(486\) −6.06833e10 −0.0493408
\(487\) −2.40847e12 −1.94027 −0.970134 0.242570i \(-0.922010\pi\)
−0.970134 + 0.242570i \(0.922010\pi\)
\(488\) 1.51421e12 1.20864
\(489\) 1.38679e12 1.09678
\(490\) 0 0
\(491\) 2.85374e11 0.221589 0.110794 0.993843i \(-0.464661\pi\)
0.110794 + 0.993843i \(0.464661\pi\)
\(492\) 5.59605e11 0.430565
\(493\) 4.68614e10 0.0357276
\(494\) −1.21219e12 −0.915794
\(495\) 3.58619e9 0.00268479
\(496\) −4.01097e11 −0.297565
\(497\) 0 0
\(498\) −1.58145e12 −1.15219
\(499\) 2.11594e12 1.52775 0.763873 0.645367i \(-0.223296\pi\)
0.763873 + 0.645367i \(0.223296\pi\)
\(500\) −6.67715e10 −0.0477778
\(501\) 1.54024e12 1.09224
\(502\) −1.71709e12 −1.20677
\(503\) −7.41865e11 −0.516736 −0.258368 0.966047i \(-0.583185\pi\)
−0.258368 + 0.966047i \(0.583185\pi\)
\(504\) 0 0
\(505\) 4.02414e11 0.275335
\(506\) 1.24203e11 0.0842274
\(507\) −1.12943e12 −0.759143
\(508\) 1.47842e12 0.984946
\(509\) −1.62377e12 −1.07225 −0.536124 0.844140i \(-0.680112\pi\)
−0.536124 + 0.844140i \(0.680112\pi\)
\(510\) −3.14763e10 −0.0206024
\(511\) 0 0
\(512\) −5.53160e11 −0.355742
\(513\) −1.60790e12 −1.02501
\(514\) 5.93890e11 0.375294
\(515\) 6.02635e11 0.377504
\(516\) 1.18602e12 0.736490
\(517\) 1.86243e11 0.114649
\(518\) 0 0
\(519\) −2.14310e12 −1.29655
\(520\) −1.03969e12 −0.623573
\(521\) −1.48817e12 −0.884877 −0.442439 0.896799i \(-0.645887\pi\)
−0.442439 + 0.896799i \(0.645887\pi\)
\(522\) −2.17583e10 −0.0128265
\(523\) −2.41360e12 −1.41061 −0.705306 0.708903i \(-0.749190\pi\)
−0.705306 + 0.708903i \(0.749190\pi\)
\(524\) −4.95814e11 −0.287295
\(525\) 0 0
\(526\) 2.32001e12 1.32146
\(527\) 2.00711e11 0.113351
\(528\) −5.25312e10 −0.0294147
\(529\) −8.05747e11 −0.447351
\(530\) −6.55815e10 −0.0361027
\(531\) 6.30044e10 0.0343911
\(532\) 0 0
\(533\) 2.03711e12 1.09331
\(534\) 5.62475e11 0.299342
\(535\) −1.23423e12 −0.651336
\(536\) −1.16300e12 −0.608609
\(537\) 1.58136e12 0.820630
\(538\) −1.42480e12 −0.733218
\(539\) 0 0
\(540\) −4.80174e11 −0.243011
\(541\) −2.14334e12 −1.07573 −0.537864 0.843032i \(-0.680769\pi\)
−0.537864 + 0.843032i \(0.680769\pi\)
\(542\) 1.70484e12 0.848570
\(543\) 2.27070e12 1.12089
\(544\) 1.29752e11 0.0635213
\(545\) 6.49734e11 0.315465
\(546\) 0 0
\(547\) 1.02462e12 0.489349 0.244675 0.969605i \(-0.421319\pi\)
0.244675 + 0.969605i \(0.421319\pi\)
\(548\) 2.05174e11 0.0971875
\(549\) 8.88514e10 0.0417435
\(550\) −4.86285e10 −0.0226599
\(551\) −1.13291e12 −0.523618
\(552\) −1.66701e12 −0.764211
\(553\) 0 0
\(554\) 1.63935e12 0.739399
\(555\) 3.72801e11 0.166786
\(556\) 1.80259e12 0.799944
\(557\) −3.18977e12 −1.40414 −0.702070 0.712108i \(-0.747741\pi\)
−0.702070 + 0.712108i \(0.747741\pi\)
\(558\) −9.31924e10 −0.0406936
\(559\) 4.31740e12 1.87012
\(560\) 0 0
\(561\) 2.62869e10 0.0112049
\(562\) 2.62453e12 1.10978
\(563\) −1.08826e12 −0.456503 −0.228252 0.973602i \(-0.573301\pi\)
−0.228252 + 0.973602i \(0.573301\pi\)
\(564\) −8.70353e11 −0.362192
\(565\) 3.42666e11 0.141466
\(566\) 1.02465e12 0.419662
\(567\) 0 0
\(568\) 2.62992e12 1.06017
\(569\) −3.28834e12 −1.31514 −0.657569 0.753394i \(-0.728415\pi\)
−0.657569 + 0.753394i \(0.728415\pi\)
\(570\) 7.60967e11 0.301946
\(571\) −1.88806e12 −0.743283 −0.371641 0.928376i \(-0.621205\pi\)
−0.371641 + 0.928376i \(0.621205\pi\)
\(572\) 3.02319e11 0.118082
\(573\) −2.41294e12 −0.935084
\(574\) 0 0
\(575\) −3.89727e11 −0.148681
\(576\) −7.74889e10 −0.0293318
\(577\) −1.12881e12 −0.423963 −0.211982 0.977274i \(-0.567992\pi\)
−0.211982 + 0.977274i \(0.567992\pi\)
\(578\) −1.82276e12 −0.679289
\(579\) 3.46101e12 1.27982
\(580\) −3.38328e11 −0.124140
\(581\) 0 0
\(582\) 2.96400e12 1.07084
\(583\) 5.47692e10 0.0196349
\(584\) −1.82813e12 −0.650353
\(585\) −6.10072e10 −0.0215367
\(586\) −1.16503e11 −0.0408128
\(587\) −6.31776e11 −0.219630 −0.109815 0.993952i \(-0.535026\pi\)
−0.109815 + 0.993952i \(0.535026\pi\)
\(588\) 0 0
\(589\) −4.85237e12 −1.66125
\(590\) −8.54335e11 −0.290265
\(591\) −4.52436e12 −1.52550
\(592\) 2.04898e11 0.0685630
\(593\) 4.97504e12 1.65215 0.826077 0.563557i \(-0.190568\pi\)
0.826077 + 0.563557i \(0.190568\pi\)
\(594\) −3.49702e11 −0.115255
\(595\) 0 0
\(596\) 9.00999e11 0.292493
\(597\) −4.91613e11 −0.158394
\(598\) −2.11290e12 −0.675652
\(599\) −4.55686e12 −1.44626 −0.723128 0.690714i \(-0.757296\pi\)
−0.723128 + 0.690714i \(0.757296\pi\)
\(600\) 6.52678e11 0.205598
\(601\) 5.78188e12 1.80773 0.903866 0.427815i \(-0.140717\pi\)
0.903866 + 0.427815i \(0.140717\pi\)
\(602\) 0 0
\(603\) −6.82431e10 −0.0210199
\(604\) 2.85532e12 0.872948
\(605\) −1.43311e12 −0.434890
\(606\) −1.36958e12 −0.412536
\(607\) 7.37332e11 0.220452 0.110226 0.993907i \(-0.464843\pi\)
0.110226 + 0.993907i \(0.464843\pi\)
\(608\) −3.13687e12 −0.930958
\(609\) 0 0
\(610\) −1.20482e12 −0.352320
\(611\) −3.16831e12 −0.919691
\(612\) 4.60926e9 0.00132816
\(613\) −3.50587e12 −1.00282 −0.501410 0.865210i \(-0.667185\pi\)
−0.501410 + 0.865210i \(0.667185\pi\)
\(614\) 1.53022e12 0.434507
\(615\) −1.27882e12 −0.360473
\(616\) 0 0
\(617\) 2.47222e12 0.686759 0.343380 0.939197i \(-0.388428\pi\)
0.343380 + 0.939197i \(0.388428\pi\)
\(618\) −2.05102e12 −0.565615
\(619\) 1.57589e12 0.431436 0.215718 0.976456i \(-0.430791\pi\)
0.215718 + 0.976456i \(0.430791\pi\)
\(620\) −1.44908e12 −0.393850
\(621\) −2.80264e12 −0.756232
\(622\) 4.29331e11 0.115010
\(623\) 0 0
\(624\) 8.93645e11 0.235958
\(625\) 1.52588e11 0.0400000
\(626\) −1.09529e12 −0.285066
\(627\) −6.35508e11 −0.164217
\(628\) −1.33534e12 −0.342588
\(629\) −1.02532e11 −0.0261175
\(630\) 0 0
\(631\) 4.95895e11 0.124525 0.0622627 0.998060i \(-0.480168\pi\)
0.0622627 + 0.998060i \(0.480168\pi\)
\(632\) 4.72481e12 1.17803
\(633\) 1.22345e12 0.302878
\(634\) −4.80946e12 −1.18221
\(635\) −3.37853e12 −0.824605
\(636\) −2.55948e11 −0.0620291
\(637\) 0 0
\(638\) −2.46398e11 −0.0588767
\(639\) 1.54319e11 0.0366156
\(640\) −7.02956e11 −0.165622
\(641\) 1.72054e12 0.402535 0.201268 0.979536i \(-0.435494\pi\)
0.201268 + 0.979536i \(0.435494\pi\)
\(642\) 4.20060e12 0.975897
\(643\) −8.19457e12 −1.89050 −0.945250 0.326346i \(-0.894182\pi\)
−0.945250 + 0.326346i \(0.894182\pi\)
\(644\) 0 0
\(645\) −2.71031e12 −0.616596
\(646\) −2.09290e11 −0.0472826
\(647\) 2.56336e12 0.575097 0.287549 0.957766i \(-0.407160\pi\)
0.287549 + 0.957766i \(0.407160\pi\)
\(648\) 4.52364e12 1.00786
\(649\) 7.13483e11 0.157864
\(650\) 8.27253e11 0.181772
\(651\) 0 0
\(652\) 2.75368e12 0.596760
\(653\) −2.23256e12 −0.480499 −0.240250 0.970711i \(-0.577229\pi\)
−0.240250 + 0.970711i \(0.577229\pi\)
\(654\) −2.21131e12 −0.472662
\(655\) 1.13305e12 0.240526
\(656\) −7.02863e11 −0.148185
\(657\) −1.07272e11 −0.0224616
\(658\) 0 0
\(659\) 6.47077e12 1.33651 0.668254 0.743933i \(-0.267042\pi\)
0.668254 + 0.743933i \(0.267042\pi\)
\(660\) −1.89785e11 −0.0389326
\(661\) 2.35514e12 0.479856 0.239928 0.970791i \(-0.422876\pi\)
0.239928 + 0.970791i \(0.422876\pi\)
\(662\) 4.55248e12 0.921270
\(663\) −4.47185e11 −0.0898827
\(664\) −9.01890e12 −1.80052
\(665\) 0 0
\(666\) 4.76067e10 0.00937636
\(667\) −1.97472e12 −0.386314
\(668\) 3.05839e12 0.594291
\(669\) 2.55002e12 0.492182
\(670\) 9.25371e11 0.177410
\(671\) 1.00618e12 0.191613
\(672\) 0 0
\(673\) −1.00068e13 −1.88030 −0.940149 0.340764i \(-0.889314\pi\)
−0.940149 + 0.340764i \(0.889314\pi\)
\(674\) −3.12900e12 −0.584032
\(675\) 1.09730e12 0.203451
\(676\) −2.24266e12 −0.413051
\(677\) 4.75925e12 0.870742 0.435371 0.900251i \(-0.356617\pi\)
0.435371 + 0.900251i \(0.356617\pi\)
\(678\) −1.16623e12 −0.211959
\(679\) 0 0
\(680\) −1.79507e11 −0.0321952
\(681\) 9.52446e12 1.69699
\(682\) −1.05534e12 −0.186794
\(683\) 5.44016e11 0.0956575 0.0478287 0.998856i \(-0.484770\pi\)
0.0478287 + 0.998856i \(0.484770\pi\)
\(684\) −1.11433e11 −0.0194653
\(685\) −4.68869e11 −0.0813662
\(686\) 0 0
\(687\) −5.71590e12 −0.978992
\(688\) −1.48963e12 −0.253473
\(689\) −9.31717e11 −0.157506
\(690\) 1.32640e12 0.222769
\(691\) −8.57339e12 −1.43054 −0.715272 0.698846i \(-0.753697\pi\)
−0.715272 + 0.698846i \(0.753697\pi\)
\(692\) −4.25546e12 −0.705455
\(693\) 0 0
\(694\) −2.34743e12 −0.384127
\(695\) −4.11931e12 −0.669720
\(696\) 3.30708e12 0.534199
\(697\) 3.51716e11 0.0564476
\(698\) 4.35585e12 0.694582
\(699\) −1.46942e12 −0.232809
\(700\) 0 0
\(701\) 1.25396e13 1.96133 0.980666 0.195687i \(-0.0626935\pi\)
0.980666 + 0.195687i \(0.0626935\pi\)
\(702\) 5.94902e12 0.924545
\(703\) 2.47880e12 0.382774
\(704\) −8.77510e11 −0.134640
\(705\) 1.98895e12 0.303230
\(706\) 6.68609e12 1.01286
\(707\) 0 0
\(708\) −3.33426e12 −0.498712
\(709\) 4.37869e12 0.650782 0.325391 0.945580i \(-0.394504\pi\)
0.325391 + 0.945580i \(0.394504\pi\)
\(710\) −2.09256e12 −0.309040
\(711\) 2.77244e11 0.0406864
\(712\) 3.20775e12 0.467779
\(713\) −8.45790e12 −1.22563
\(714\) 0 0
\(715\) −6.90865e11 −0.0988590
\(716\) 3.14004e12 0.446506
\(717\) −9.49429e11 −0.134161
\(718\) 2.09261e11 0.0293852
\(719\) −7.76448e12 −1.08351 −0.541754 0.840537i \(-0.682240\pi\)
−0.541754 + 0.840537i \(0.682240\pi\)
\(720\) 2.10493e10 0.00291905
\(721\) 0 0
\(722\) 7.63086e10 0.0104510
\(723\) −3.75458e12 −0.511022
\(724\) 4.50884e12 0.609875
\(725\) 7.73154e11 0.103931
\(726\) 4.87745e12 0.651596
\(727\) −7.08318e11 −0.0940423 −0.0470211 0.998894i \(-0.514973\pi\)
−0.0470211 + 0.998894i \(0.514973\pi\)
\(728\) 0 0
\(729\) 7.88106e12 1.03350
\(730\) 1.45460e12 0.189579
\(731\) 7.45421e11 0.0965547
\(732\) −4.70211e12 −0.605331
\(733\) −6.81304e12 −0.871712 −0.435856 0.900017i \(-0.643554\pi\)
−0.435856 + 0.900017i \(0.643554\pi\)
\(734\) 1.94820e12 0.247743
\(735\) 0 0
\(736\) −5.46771e12 −0.686839
\(737\) −7.72807e11 −0.0964866
\(738\) −1.63306e11 −0.0202651
\(739\) 9.20369e12 1.13517 0.567586 0.823314i \(-0.307877\pi\)
0.567586 + 0.823314i \(0.307877\pi\)
\(740\) 7.40256e11 0.0907484
\(741\) 1.08111e13 1.31731
\(742\) 0 0
\(743\) −8.72196e12 −1.04994 −0.524970 0.851121i \(-0.675923\pi\)
−0.524970 + 0.851121i \(0.675923\pi\)
\(744\) 1.41645e13 1.69482
\(745\) −2.05898e12 −0.244878
\(746\) −3.78695e12 −0.447678
\(747\) −5.29215e11 −0.0621856
\(748\) 5.21968e10 0.00609658
\(749\) 0 0
\(750\) −5.19320e11 −0.0599321
\(751\) −1.63201e13 −1.87216 −0.936078 0.351793i \(-0.885572\pi\)
−0.936078 + 0.351793i \(0.885572\pi\)
\(752\) 1.09316e12 0.124653
\(753\) 1.53141e13 1.73586
\(754\) 4.19164e12 0.472295
\(755\) −6.52504e12 −0.730839
\(756\) 0 0
\(757\) −3.23287e12 −0.357813 −0.178907 0.983866i \(-0.557256\pi\)
−0.178907 + 0.983866i \(0.557256\pi\)
\(758\) 5.59970e12 0.616103
\(759\) −1.10772e12 −0.121155
\(760\) 4.33973e12 0.471847
\(761\) 6.46766e11 0.0699063 0.0349531 0.999389i \(-0.488872\pi\)
0.0349531 + 0.999389i \(0.488872\pi\)
\(762\) 1.14985e13 1.23551
\(763\) 0 0
\(764\) −4.79127e12 −0.508781
\(765\) −1.05332e10 −0.00111195
\(766\) −1.11663e12 −0.117187
\(767\) −1.21376e13 −1.26634
\(768\) 1.00694e13 1.04442
\(769\) 2.42101e12 0.249648 0.124824 0.992179i \(-0.460163\pi\)
0.124824 + 0.992179i \(0.460163\pi\)
\(770\) 0 0
\(771\) −5.29670e12 −0.539835
\(772\) 6.87237e12 0.696352
\(773\) 4.43910e12 0.447185 0.223592 0.974683i \(-0.428222\pi\)
0.223592 + 0.974683i \(0.428222\pi\)
\(774\) −3.46107e11 −0.0346638
\(775\) 3.31148e12 0.329735
\(776\) 1.69035e13 1.67339
\(777\) 0 0
\(778\) 4.64248e12 0.454299
\(779\) −8.50304e12 −0.827286
\(780\) 3.22856e12 0.312308
\(781\) 1.74756e12 0.168075
\(782\) −3.64802e11 −0.0348840
\(783\) 5.55998e12 0.528622
\(784\) 0 0
\(785\) 3.05154e12 0.286818
\(786\) −3.85622e12 −0.360380
\(787\) 1.72989e13 1.60744 0.803718 0.595011i \(-0.202852\pi\)
0.803718 + 0.595011i \(0.202852\pi\)
\(788\) −8.98382e12 −0.830029
\(789\) −2.06914e13 −1.90083
\(790\) −3.75941e12 −0.343398
\(791\) 0 0
\(792\) −6.96057e10 −0.00628611
\(793\) −1.71169e13 −1.53708
\(794\) 4.42203e12 0.394848
\(795\) 5.84899e11 0.0519313
\(796\) −9.76175e11 −0.0861825
\(797\) 1.37776e13 1.20951 0.604756 0.796410i \(-0.293270\pi\)
0.604756 + 0.796410i \(0.293270\pi\)
\(798\) 0 0
\(799\) −5.47024e11 −0.0474838
\(800\) 2.14075e12 0.184782
\(801\) 1.88226e11 0.0161560
\(802\) 1.26632e13 1.08083
\(803\) −1.21478e12 −0.103105
\(804\) 3.61149e12 0.304814
\(805\) 0 0
\(806\) 1.79531e13 1.49842
\(807\) 1.27073e13 1.05468
\(808\) −7.81061e12 −0.644665
\(809\) 1.38369e13 1.13572 0.567860 0.823125i \(-0.307772\pi\)
0.567860 + 0.823125i \(0.307772\pi\)
\(810\) −3.59935e12 −0.293793
\(811\) 1.96078e13 1.59161 0.795804 0.605555i \(-0.207049\pi\)
0.795804 + 0.605555i \(0.207049\pi\)
\(812\) 0 0
\(813\) −1.52049e13 −1.22061
\(814\) 5.39114e11 0.0430399
\(815\) −6.29278e12 −0.499613
\(816\) 1.54292e11 0.0121825
\(817\) −1.80212e13 −1.41509
\(818\) −1.49421e13 −1.16687
\(819\) 0 0
\(820\) −2.53930e12 −0.196134
\(821\) 2.41017e13 1.85142 0.925708 0.378239i \(-0.123470\pi\)
0.925708 + 0.378239i \(0.123470\pi\)
\(822\) 1.59576e12 0.121911
\(823\) 8.20762e12 0.623617 0.311809 0.950145i \(-0.399065\pi\)
0.311809 + 0.950145i \(0.399065\pi\)
\(824\) −1.16968e13 −0.883881
\(825\) 4.33701e11 0.0325947
\(826\) 0 0
\(827\) 2.84612e12 0.211582 0.105791 0.994388i \(-0.466263\pi\)
0.105791 + 0.994388i \(0.466263\pi\)
\(828\) −1.94233e11 −0.0143610
\(829\) 5.88562e12 0.432809 0.216405 0.976304i \(-0.430567\pi\)
0.216405 + 0.976304i \(0.430567\pi\)
\(830\) 7.17612e12 0.524853
\(831\) −1.46208e13 −1.06357
\(832\) 1.49279e13 1.08005
\(833\) 0 0
\(834\) 1.40197e13 1.00344
\(835\) −6.98911e12 −0.497546
\(836\) −1.26190e12 −0.0893505
\(837\) 2.38138e13 1.67712
\(838\) 1.31480e12 0.0921003
\(839\) 8.44799e12 0.588606 0.294303 0.955712i \(-0.404913\pi\)
0.294303 + 0.955712i \(0.404913\pi\)
\(840\) 0 0
\(841\) −1.05896e13 −0.729959
\(842\) 8.66450e11 0.0594072
\(843\) −2.34073e13 −1.59634
\(844\) 2.42934e12 0.164796
\(845\) 5.12498e12 0.345810
\(846\) 2.53989e11 0.0170470
\(847\) 0 0
\(848\) 3.21470e11 0.0213481
\(849\) −9.13847e12 −0.603655
\(850\) 1.42829e11 0.00938495
\(851\) 4.32066e12 0.282402
\(852\) −8.16674e12 −0.530970
\(853\) 7.17311e12 0.463913 0.231957 0.972726i \(-0.425487\pi\)
0.231957 + 0.972726i \(0.425487\pi\)
\(854\) 0 0
\(855\) 2.54649e11 0.0162965
\(856\) 2.39557e13 1.52502
\(857\) −2.17636e13 −1.37821 −0.689107 0.724660i \(-0.741997\pi\)
−0.689107 + 0.724660i \(0.741997\pi\)
\(858\) 2.35130e12 0.148121
\(859\) 9.02945e12 0.565838 0.282919 0.959144i \(-0.408697\pi\)
0.282919 + 0.959144i \(0.408697\pi\)
\(860\) −5.38175e12 −0.335491
\(861\) 0 0
\(862\) −2.10712e12 −0.129989
\(863\) −1.84428e13 −1.13182 −0.565910 0.824467i \(-0.691475\pi\)
−0.565910 + 0.824467i \(0.691475\pi\)
\(864\) 1.53947e13 0.939854
\(865\) 9.72468e12 0.590613
\(866\) −5.03012e12 −0.303912
\(867\) 1.62566e13 0.977111
\(868\) 0 0
\(869\) 3.13961e12 0.186761
\(870\) −2.63136e12 −0.155720
\(871\) 1.31468e13 0.773993
\(872\) −1.26109e13 −0.738623
\(873\) 9.91868e11 0.0577950
\(874\) 8.81940e12 0.511255
\(875\) 0 0
\(876\) 5.67693e12 0.325721
\(877\) −1.12140e13 −0.640120 −0.320060 0.947397i \(-0.603703\pi\)
−0.320060 + 0.947397i \(0.603703\pi\)
\(878\) −2.22906e12 −0.126589
\(879\) 1.03905e12 0.0587064
\(880\) 2.38369e11 0.0133992
\(881\) −3.00664e13 −1.68147 −0.840735 0.541446i \(-0.817877\pi\)
−0.840735 + 0.541446i \(0.817877\pi\)
\(882\) 0 0
\(883\) −1.58968e13 −0.880007 −0.440004 0.897996i \(-0.645023\pi\)
−0.440004 + 0.897996i \(0.645023\pi\)
\(884\) −8.87956e11 −0.0489053
\(885\) 7.61952e12 0.417526
\(886\) −1.48231e13 −0.808141
\(887\) −1.46131e13 −0.792658 −0.396329 0.918109i \(-0.629716\pi\)
−0.396329 + 0.918109i \(0.629716\pi\)
\(888\) −7.23585e12 −0.390509
\(889\) 0 0
\(890\) −2.55233e12 −0.136358
\(891\) 3.00593e12 0.159782
\(892\) 5.06346e12 0.267797
\(893\) 1.32248e13 0.695915
\(894\) 7.00758e12 0.366901
\(895\) −7.17570e12 −0.373819
\(896\) 0 0
\(897\) 1.88442e13 0.971878
\(898\) −1.57531e13 −0.808393
\(899\) 1.67791e13 0.856742
\(900\) 7.60469e10 0.00386359
\(901\) −1.60866e11 −0.00813208
\(902\) −1.84933e12 −0.0930217
\(903\) 0 0
\(904\) −6.65093e12 −0.331226
\(905\) −1.03037e13 −0.510593
\(906\) 2.22074e13 1.09502
\(907\) 1.41504e12 0.0694281 0.0347141 0.999397i \(-0.488948\pi\)
0.0347141 + 0.999397i \(0.488948\pi\)
\(908\) 1.89123e13 0.923333
\(909\) −4.58315e11 −0.0222652
\(910\) 0 0
\(911\) −1.61901e13 −0.778784 −0.389392 0.921072i \(-0.627315\pi\)
−0.389392 + 0.921072i \(0.627315\pi\)
\(912\) −3.73014e12 −0.178545
\(913\) −5.99301e12 −0.285447
\(914\) −9.96417e12 −0.472262
\(915\) 1.07454e13 0.506788
\(916\) −1.13498e13 −0.532671
\(917\) 0 0
\(918\) 1.02713e12 0.0477345
\(919\) −1.60413e13 −0.741858 −0.370929 0.928661i \(-0.620961\pi\)
−0.370929 + 0.928661i \(0.620961\pi\)
\(920\) 7.56435e12 0.348118
\(921\) −1.36475e13 −0.625008
\(922\) −1.61501e13 −0.736014
\(923\) −2.97290e13 −1.34826
\(924\) 0 0
\(925\) −1.69165e12 −0.0759753
\(926\) 9.28876e12 0.415153
\(927\) −6.86349e11 −0.0305271
\(928\) 1.08470e13 0.480115
\(929\) 3.98759e13 1.75647 0.878233 0.478233i \(-0.158723\pi\)
0.878233 + 0.478233i \(0.158723\pi\)
\(930\) −1.12703e13 −0.494042
\(931\) 0 0
\(932\) −2.91777e12 −0.126672
\(933\) −3.82906e12 −0.165434
\(934\) −1.47177e13 −0.632819
\(935\) −1.19281e11 −0.00510411
\(936\) 1.18411e12 0.0504256
\(937\) 5.95427e12 0.252348 0.126174 0.992008i \(-0.459730\pi\)
0.126174 + 0.992008i \(0.459730\pi\)
\(938\) 0 0
\(939\) 9.76855e12 0.410048
\(940\) 3.94937e12 0.164988
\(941\) −9.86055e12 −0.409966 −0.204983 0.978766i \(-0.565714\pi\)
−0.204983 + 0.978766i \(0.565714\pi\)
\(942\) −1.03857e13 −0.429739
\(943\) −1.48212e13 −0.610353
\(944\) 4.18782e12 0.171638
\(945\) 0 0
\(946\) −3.91943e12 −0.159115
\(947\) −2.10061e13 −0.848732 −0.424366 0.905491i \(-0.639503\pi\)
−0.424366 + 0.905491i \(0.639503\pi\)
\(948\) −1.46721e13 −0.590002
\(949\) 2.06655e13 0.827080
\(950\) −3.45302e12 −0.137544
\(951\) 4.28939e13 1.70053
\(952\) 0 0
\(953\) −4.25218e13 −1.66991 −0.834955 0.550318i \(-0.814506\pi\)
−0.834955 + 0.550318i \(0.814506\pi\)
\(954\) 7.46916e10 0.00291947
\(955\) 1.09491e13 0.425956
\(956\) −1.88524e12 −0.0729972
\(957\) 2.19754e12 0.0846901
\(958\) −3.07570e13 −1.17977
\(959\) 0 0
\(960\) −9.37122e12 −0.356103
\(961\) 4.54266e13 1.71813
\(962\) −9.17125e12 −0.345256
\(963\) 1.40568e12 0.0526707
\(964\) −7.45531e12 −0.278048
\(965\) −1.57049e13 −0.582992
\(966\) 0 0
\(967\) −1.21906e13 −0.448338 −0.224169 0.974550i \(-0.571967\pi\)
−0.224169 + 0.974550i \(0.571967\pi\)
\(968\) 2.78157e13 1.01824
\(969\) 1.86658e12 0.0680128
\(970\) −1.34497e13 −0.487796
\(971\) −5.38639e12 −0.194452 −0.0972258 0.995262i \(-0.530997\pi\)
−0.0972258 + 0.995262i \(0.530997\pi\)
\(972\) 1.07466e12 0.0386167
\(973\) 0 0
\(974\) −3.71954e13 −1.32426
\(975\) −7.37798e12 −0.261467
\(976\) 5.90583e12 0.208332
\(977\) −1.89284e13 −0.664643 −0.332321 0.943166i \(-0.607832\pi\)
−0.332321 + 0.943166i \(0.607832\pi\)
\(978\) 2.14169e13 0.748570
\(979\) 2.13153e12 0.0741600
\(980\) 0 0
\(981\) −7.39990e11 −0.0255103
\(982\) 4.40719e12 0.151238
\(983\) −3.98513e13 −1.36129 −0.680647 0.732612i \(-0.738301\pi\)
−0.680647 + 0.732612i \(0.738301\pi\)
\(984\) 2.48212e13 0.844004
\(985\) 2.05300e13 0.694907
\(986\) 7.23708e11 0.0243847
\(987\) 0 0
\(988\) 2.14671e13 0.716748
\(989\) −3.14118e13 −1.04402
\(990\) 5.53836e10 0.00183241
\(991\) −3.44424e13 −1.13439 −0.567194 0.823584i \(-0.691971\pi\)
−0.567194 + 0.823584i \(0.691971\pi\)
\(992\) 4.64588e13 1.52323
\(993\) −4.06020e13 −1.32518
\(994\) 0 0
\(995\) 2.23078e12 0.0721527
\(996\) 2.80066e13 0.901765
\(997\) −4.12406e13 −1.32189 −0.660947 0.750433i \(-0.729845\pi\)
−0.660947 + 0.750433i \(0.729845\pi\)
\(998\) 3.26777e13 1.04271
\(999\) −1.21652e13 −0.386432
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 245.10.a.e.1.3 4
7.6 odd 2 35.10.a.c.1.3 4
21.20 even 2 315.10.a.g.1.2 4
35.13 even 4 175.10.b.e.99.4 8
35.27 even 4 175.10.b.e.99.5 8
35.34 odd 2 175.10.a.e.1.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
35.10.a.c.1.3 4 7.6 odd 2
175.10.a.e.1.2 4 35.34 odd 2
175.10.b.e.99.4 8 35.13 even 4
175.10.b.e.99.5 8 35.27 even 4
245.10.a.e.1.3 4 1.1 even 1 trivial
315.10.a.g.1.2 4 21.20 even 2