Defining parameters
| Level: | \( N \) | \(=\) | \( 245 = 5 \cdot 7^{2} \) |
| Weight: | \( k \) | \(=\) | \( 10 \) |
| Character orbit: | \([\chi]\) | \(=\) | 245.a (trivial) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 15 \) | ||
| Sturm bound: | \(280\) | ||
| Trace bound: | \(3\) | ||
| Distinguishing \(T_p\): | \(2\), \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{10}(\Gamma_0(245))\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 260 | 123 | 137 |
| Cusp forms | 244 | 123 | 121 |
| Eisenstein series | 16 | 0 | 16 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
| \(5\) | \(7\) | Fricke | Total | Cusp | Eisenstein | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| All | New | Old | All | New | Old | All | New | Old | ||||||
| \(+\) | \(+\) | \(+\) | \(62\) | \(29\) | \(33\) | \(58\) | \(29\) | \(29\) | \(4\) | \(0\) | \(4\) | |||
| \(+\) | \(-\) | \(-\) | \(67\) | \(33\) | \(34\) | \(63\) | \(33\) | \(30\) | \(4\) | \(0\) | \(4\) | |||
| \(-\) | \(+\) | \(-\) | \(66\) | \(31\) | \(35\) | \(62\) | \(31\) | \(31\) | \(4\) | \(0\) | \(4\) | |||
| \(-\) | \(-\) | \(+\) | \(65\) | \(30\) | \(35\) | \(61\) | \(30\) | \(31\) | \(4\) | \(0\) | \(4\) | |||
| Plus space | \(+\) | \(127\) | \(59\) | \(68\) | \(119\) | \(59\) | \(60\) | \(8\) | \(0\) | \(8\) | ||||
| Minus space | \(-\) | \(133\) | \(64\) | \(69\) | \(125\) | \(64\) | \(61\) | \(8\) | \(0\) | \(8\) | ||||
Trace form
Decomposition of \(S_{10}^{\mathrm{new}}(\Gamma_0(245))\) into newform subspaces
Decomposition of \(S_{10}^{\mathrm{old}}(\Gamma_0(245))\) into lower level spaces
\( S_{10}^{\mathrm{old}}(\Gamma_0(245)) \simeq \) \(S_{10}^{\mathrm{new}}(\Gamma_0(5))\)\(^{\oplus 3}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_0(7))\)\(^{\oplus 4}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_0(35))\)\(^{\oplus 2}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_0(49))\)\(^{\oplus 2}\)