Properties

Label 245.10.a
Level $245$
Weight $10$
Character orbit 245.a
Rep. character $\chi_{245}(1,\cdot)$
Character field $\Q$
Dimension $123$
Newform subspaces $15$
Sturm bound $280$
Trace bound $3$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 245 = 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 245.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 15 \)
Sturm bound: \(280\)
Trace bound: \(3\)
Distinguishing \(T_p\): \(2\), \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{10}(\Gamma_0(245))\).

Total New Old
Modular forms 260 123 137
Cusp forms 244 123 121
Eisenstein series 16 0 16

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(5\)\(7\)FrickeTotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
\(+\)\(+\)\(+\)\(62\)\(29\)\(33\)\(58\)\(29\)\(29\)\(4\)\(0\)\(4\)
\(+\)\(-\)\(-\)\(67\)\(33\)\(34\)\(63\)\(33\)\(30\)\(4\)\(0\)\(4\)
\(-\)\(+\)\(-\)\(66\)\(31\)\(35\)\(62\)\(31\)\(31\)\(4\)\(0\)\(4\)
\(-\)\(-\)\(+\)\(65\)\(30\)\(35\)\(61\)\(30\)\(31\)\(4\)\(0\)\(4\)
Plus space\(+\)\(127\)\(59\)\(68\)\(119\)\(59\)\(60\)\(8\)\(0\)\(8\)
Minus space\(-\)\(133\)\(64\)\(69\)\(125\)\(64\)\(61\)\(8\)\(0\)\(8\)

Trace form

\( 123 q + 50 q^{2} + 146 q^{3} + 30976 q^{4} - 625 q^{5} + 120 q^{6} + 55332 q^{8} + 747647 q^{9} - 21250 q^{10} - 66196 q^{11} + 199436 q^{12} - 93534 q^{13} - 31250 q^{15} + 7517236 q^{16} + 356990 q^{17}+ \cdots + 485561676 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{10}^{\mathrm{new}}(\Gamma_0(245))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 5 7
245.10.a.a 245.a 1.a $1$ $126.184$ \(\Q\) None 5.10.a.a \(-8\) \(114\) \(625\) \(0\) $-$ $-$ $\mathrm{SU}(2)$ \(q-8q^{2}+114q^{3}-448q^{4}+5^{4}q^{5}+\cdots\)
245.10.a.b 245.a 1.a $1$ $126.184$ \(\Q\) None 35.10.a.a \(28\) \(116\) \(-625\) \(0\) $+$ $-$ $\mathrm{SU}(2)$ \(q+28q^{2}+116q^{3}+272q^{4}-5^{4}q^{5}+\cdots\)
245.10.a.c 245.a 1.a $2$ $126.184$ \(\Q(\sqrt{2}) \) None 35.10.a.b \(-24\) \(174\) \(-1250\) \(0\) $+$ $-$ $\mathrm{SU}(2)$ \(q+(-12+\beta )q^{2}+(87-54\beta )q^{3}+(-360+\cdots)q^{4}+\cdots\)
245.10.a.d 245.a 1.a $2$ $126.184$ \(\Q(\sqrt{1009}) \) None 5.10.a.b \(-10\) \(-260\) \(-1250\) \(0\) $+$ $-$ $\mathrm{SU}(2)$ \(q+(-5-\beta )q^{2}+(-130-2\beta )q^{3}+(522+\cdots)q^{4}+\cdots\)
245.10.a.e 245.a 1.a $4$ $126.184$ \(\mathbb{Q}[x]/(x^{4} - \cdots)\) None 35.10.a.c \(-19\) \(18\) \(2500\) \(0\) $-$ $-$ $\mathrm{SU}(2)$ \(q+(-5-\beta _{1})q^{2}+(4-\beta _{2})q^{3}+(435+\cdots)q^{4}+\cdots\)
245.10.a.f 245.a 1.a $5$ $126.184$ \(\mathbb{Q}[x]/(x^{5} - \cdots)\) None 35.10.a.d \(2\) \(-140\) \(3125\) \(0\) $-$ $-$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}+(-28-\beta _{2})q^{3}+(168-4\beta _{1}+\cdots)q^{4}+\cdots\)
245.10.a.g 245.a 1.a $6$ $126.184$ \(\mathbb{Q}[x]/(x^{6} - \cdots)\) None 35.10.a.e \(15\) \(124\) \(-3750\) \(0\) $+$ $-$ $\mathrm{SU}(2)$ \(q+(3-\beta _{1})q^{2}+(20+\beta _{1}-\beta _{2})q^{3}+(503+\cdots)q^{4}+\cdots\)
245.10.a.h 245.a 1.a $9$ $126.184$ \(\mathbb{Q}[x]/(x^{9} - \cdots)\) None 245.10.a.h \(1\) \(-268\) \(5625\) \(0\) $-$ $-$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}+(-30-\beta _{1}+\beta _{3})q^{3}+(208+\cdots)q^{4}+\cdots\)
245.10.a.i 245.a 1.a $9$ $126.184$ \(\mathbb{Q}[x]/(x^{9} - \cdots)\) None 245.10.a.h \(1\) \(268\) \(-5625\) \(0\) $+$ $-$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}+(30+\beta _{1}-\beta _{3})q^{3}+(208+\cdots)q^{4}+\cdots\)
245.10.a.j 245.a 1.a $11$ $126.184$ \(\mathbb{Q}[x]/(x^{11} - \cdots)\) None 35.10.e.a \(-33\) \(-56\) \(6875\) \(0\) $-$ $-$ $\mathrm{SU}(2)$ \(q+(-3+\beta _{1})q^{2}+(-5-\beta _{3})q^{3}+(250+\cdots)q^{4}+\cdots\)
245.10.a.k 245.a 1.a $11$ $126.184$ \(\mathbb{Q}[x]/(x^{11} - \cdots)\) None 35.10.e.a \(-33\) \(56\) \(-6875\) \(0\) $+$ $+$ $\mathrm{SU}(2)$ \(q+(-3+\beta _{1})q^{2}+(5+\beta _{3})q^{3}+(250+\cdots)q^{4}+\cdots\)
245.10.a.l 245.a 1.a $13$ $126.184$ \(\mathbb{Q}[x]/(x^{13} - \cdots)\) None 35.10.e.b \(-1\) \(-268\) \(-8125\) \(0\) $+$ $-$ $\mathrm{SU}(2)$ \(q-\beta _{1}q^{2}+(-21-\beta _{3})q^{3}+(274+\beta _{1}+\cdots)q^{4}+\cdots\)
245.10.a.m 245.a 1.a $13$ $126.184$ \(\mathbb{Q}[x]/(x^{13} - \cdots)\) None 35.10.e.b \(-1\) \(268\) \(8125\) \(0\) $-$ $+$ $\mathrm{SU}(2)$ \(q-\beta _{1}q^{2}+(21+\beta _{3})q^{3}+(274+\beta _{1}+\cdots)q^{4}+\cdots\)
245.10.a.n 245.a 1.a $18$ $126.184$ \(\mathbb{Q}[x]/(x^{18} - \cdots)\) None 245.10.a.n \(66\) \(-112\) \(-11250\) \(0\) $+$ $+$ $\mathrm{SU}(2)$ \(q+(4-\beta _{1})q^{2}+(-6+\beta _{4})q^{3}+(249+\cdots)q^{4}+\cdots\)
245.10.a.o 245.a 1.a $18$ $126.184$ \(\mathbb{Q}[x]/(x^{18} - \cdots)\) None 245.10.a.n \(66\) \(112\) \(11250\) \(0\) $-$ $+$ $\mathrm{SU}(2)$ \(q+(4-\beta _{1})q^{2}+(6-\beta _{4})q^{3}+(249-6\beta _{1}+\cdots)q^{4}+\cdots\)

Decomposition of \(S_{10}^{\mathrm{old}}(\Gamma_0(245))\) into lower level spaces

\( S_{10}^{\mathrm{old}}(\Gamma_0(245)) \simeq \) \(S_{10}^{\mathrm{new}}(\Gamma_0(5))\)\(^{\oplus 3}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_0(7))\)\(^{\oplus 4}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_0(35))\)\(^{\oplus 2}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_0(49))\)\(^{\oplus 2}\)