Properties

Label 2448.4.a.v.1.2
Level $2448$
Weight $4$
Character 2448.1
Self dual yes
Analytic conductor $144.437$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2448,4,Mod(1,2448)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2448, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2448.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2448 = 2^{4} \cdot 3^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2448.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(144.436675694\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{8})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2}\cdot 3 \)
Twist minimal: no (minimal twist has level 51)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(1.41421\) of defining polynomial
Character \(\chi\) \(=\) 2448.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+13.9706 q^{5} -12.9706 q^{7} +49.9706 q^{11} +32.9411 q^{13} +17.0000 q^{17} -54.8823 q^{19} -82.0294 q^{23} +70.1766 q^{25} -289.882 q^{29} -232.059 q^{31} -181.206 q^{35} -227.529 q^{37} -437.735 q^{41} +158.882 q^{43} +159.088 q^{47} -174.765 q^{49} -376.087 q^{53} +698.117 q^{55} -185.294 q^{59} +861.852 q^{61} +460.206 q^{65} +178.530 q^{67} -1161.59 q^{71} +383.088 q^{73} -648.146 q^{77} -254.000 q^{79} +447.088 q^{83} +237.500 q^{85} +1213.15 q^{89} -427.265 q^{91} -766.736 q^{95} +291.383 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 6 q^{5} + 8 q^{7} + 66 q^{11} - 2 q^{13} + 34 q^{17} + 26 q^{19} - 198 q^{23} + 344 q^{25} - 444 q^{29} - 532 q^{31} - 600 q^{35} + 88 q^{37} - 570 q^{41} + 182 q^{43} + 420 q^{47} - 78 q^{49} + 300 q^{53}+ \cdots + 1024 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 13.9706 1.24957 0.624783 0.780799i \(-0.285188\pi\)
0.624783 + 0.780799i \(0.285188\pi\)
\(6\) 0 0
\(7\) −12.9706 −0.700345 −0.350172 0.936685i \(-0.613877\pi\)
−0.350172 + 0.936685i \(0.613877\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 49.9706 1.36970 0.684850 0.728684i \(-0.259868\pi\)
0.684850 + 0.728684i \(0.259868\pi\)
\(12\) 0 0
\(13\) 32.9411 0.702786 0.351393 0.936228i \(-0.385708\pi\)
0.351393 + 0.936228i \(0.385708\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 17.0000 0.242536
\(18\) 0 0
\(19\) −54.8823 −0.662676 −0.331338 0.943512i \(-0.607500\pi\)
−0.331338 + 0.943512i \(0.607500\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −82.0294 −0.743666 −0.371833 0.928300i \(-0.621271\pi\)
−0.371833 + 0.928300i \(0.621271\pi\)
\(24\) 0 0
\(25\) 70.1766 0.561413
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −289.882 −1.85620 −0.928100 0.372332i \(-0.878558\pi\)
−0.928100 + 0.372332i \(0.878558\pi\)
\(30\) 0 0
\(31\) −232.059 −1.34448 −0.672242 0.740331i \(-0.734669\pi\)
−0.672242 + 0.740331i \(0.734669\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −181.206 −0.875126
\(36\) 0 0
\(37\) −227.529 −1.01096 −0.505480 0.862838i \(-0.668685\pi\)
−0.505480 + 0.862838i \(0.668685\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −437.735 −1.66738 −0.833692 0.552230i \(-0.813777\pi\)
−0.833692 + 0.552230i \(0.813777\pi\)
\(42\) 0 0
\(43\) 158.882 0.563472 0.281736 0.959492i \(-0.409090\pi\)
0.281736 + 0.959492i \(0.409090\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 159.088 0.493732 0.246866 0.969050i \(-0.420599\pi\)
0.246866 + 0.969050i \(0.420599\pi\)
\(48\) 0 0
\(49\) −174.765 −0.509517
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −376.087 −0.974709 −0.487355 0.873204i \(-0.662038\pi\)
−0.487355 + 0.873204i \(0.662038\pi\)
\(54\) 0 0
\(55\) 698.117 1.71153
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −185.294 −0.408867 −0.204434 0.978880i \(-0.565535\pi\)
−0.204434 + 0.978880i \(0.565535\pi\)
\(60\) 0 0
\(61\) 861.852 1.80900 0.904499 0.426477i \(-0.140245\pi\)
0.904499 + 0.426477i \(0.140245\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 460.206 0.878177
\(66\) 0 0
\(67\) 178.530 0.325536 0.162768 0.986664i \(-0.447958\pi\)
0.162768 + 0.986664i \(0.447958\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −1161.59 −1.94162 −0.970811 0.239847i \(-0.922903\pi\)
−0.970811 + 0.239847i \(0.922903\pi\)
\(72\) 0 0
\(73\) 383.088 0.614207 0.307103 0.951676i \(-0.400640\pi\)
0.307103 + 0.951676i \(0.400640\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −648.146 −0.959261
\(78\) 0 0
\(79\) −254.000 −0.361737 −0.180869 0.983507i \(-0.557891\pi\)
−0.180869 + 0.983507i \(0.557891\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 447.088 0.591257 0.295628 0.955303i \(-0.404471\pi\)
0.295628 + 0.955303i \(0.404471\pi\)
\(84\) 0 0
\(85\) 237.500 0.303064
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 1213.15 1.44487 0.722433 0.691440i \(-0.243024\pi\)
0.722433 + 0.691440i \(0.243024\pi\)
\(90\) 0 0
\(91\) −427.265 −0.492193
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −766.736 −0.828057
\(96\) 0 0
\(97\) 291.383 0.305004 0.152502 0.988303i \(-0.451267\pi\)
0.152502 + 0.988303i \(0.451267\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −1568.53 −1.54529 −0.772645 0.634838i \(-0.781067\pi\)
−0.772645 + 0.634838i \(0.781067\pi\)
\(102\) 0 0
\(103\) −412.647 −0.394750 −0.197375 0.980328i \(-0.563242\pi\)
−0.197375 + 0.980328i \(0.563242\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −239.382 −0.216280 −0.108140 0.994136i \(-0.534489\pi\)
−0.108140 + 0.994136i \(0.534489\pi\)
\(108\) 0 0
\(109\) −759.647 −0.667532 −0.333766 0.942656i \(-0.608319\pi\)
−0.333766 + 0.942656i \(0.608319\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 292.383 0.243408 0.121704 0.992566i \(-0.461164\pi\)
0.121704 + 0.992566i \(0.461164\pi\)
\(114\) 0 0
\(115\) −1146.00 −0.929259
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −220.500 −0.169859
\(120\) 0 0
\(121\) 1166.06 0.876076
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −765.913 −0.548043
\(126\) 0 0
\(127\) 2646.41 1.84906 0.924531 0.381107i \(-0.124457\pi\)
0.924531 + 0.381107i \(0.124457\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −1964.15 −1.30999 −0.654994 0.755634i \(-0.727329\pi\)
−0.654994 + 0.755634i \(0.727329\pi\)
\(132\) 0 0
\(133\) 711.854 0.464102
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 2083.15 1.29909 0.649544 0.760324i \(-0.274960\pi\)
0.649544 + 0.760324i \(0.274960\pi\)
\(138\) 0 0
\(139\) −1715.73 −1.04695 −0.523477 0.852040i \(-0.675365\pi\)
−0.523477 + 0.852040i \(0.675365\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 1646.09 0.962606
\(144\) 0 0
\(145\) −4049.82 −2.31944
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 1679.62 0.923487 0.461743 0.887014i \(-0.347224\pi\)
0.461743 + 0.887014i \(0.347224\pi\)
\(150\) 0 0
\(151\) −644.353 −0.347263 −0.173632 0.984811i \(-0.555550\pi\)
−0.173632 + 0.984811i \(0.555550\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −3241.99 −1.68002
\(156\) 0 0
\(157\) 2130.53 1.08302 0.541512 0.840693i \(-0.317852\pi\)
0.541512 + 0.840693i \(0.317852\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 1063.97 0.520822
\(162\) 0 0
\(163\) −3582.41 −1.72145 −0.860724 0.509072i \(-0.829989\pi\)
−0.860724 + 0.509072i \(0.829989\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −1861.79 −0.862694 −0.431347 0.902186i \(-0.641962\pi\)
−0.431347 + 0.902186i \(0.641962\pi\)
\(168\) 0 0
\(169\) −1111.88 −0.506091
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −2612.50 −1.14812 −0.574059 0.818814i \(-0.694632\pi\)
−0.574059 + 0.818814i \(0.694632\pi\)
\(174\) 0 0
\(175\) −910.230 −0.393183
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 126.646 0.0528824 0.0264412 0.999650i \(-0.491583\pi\)
0.0264412 + 0.999650i \(0.491583\pi\)
\(180\) 0 0
\(181\) 1783.26 0.732314 0.366157 0.930553i \(-0.380673\pi\)
0.366157 + 0.930553i \(0.380673\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −3178.71 −1.26326
\(186\) 0 0
\(187\) 849.500 0.332201
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 2144.44 0.812388 0.406194 0.913787i \(-0.366856\pi\)
0.406194 + 0.913787i \(0.366856\pi\)
\(192\) 0 0
\(193\) 3205.82 1.19565 0.597823 0.801628i \(-0.296032\pi\)
0.597823 + 0.801628i \(0.296032\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −2768.32 −1.00119 −0.500596 0.865681i \(-0.666886\pi\)
−0.500596 + 0.865681i \(0.666886\pi\)
\(198\) 0 0
\(199\) 712.792 0.253912 0.126956 0.991908i \(-0.459479\pi\)
0.126956 + 0.991908i \(0.459479\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 3759.94 1.29998
\(204\) 0 0
\(205\) −6115.41 −2.08350
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −2742.50 −0.907667
\(210\) 0 0
\(211\) −787.591 −0.256967 −0.128483 0.991712i \(-0.541011\pi\)
−0.128483 + 0.991712i \(0.541011\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 2219.67 0.704096
\(216\) 0 0
\(217\) 3009.93 0.941602
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 559.999 0.170451
\(222\) 0 0
\(223\) 2926.53 0.878811 0.439405 0.898289i \(-0.355189\pi\)
0.439405 + 0.898289i \(0.355189\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −6212.03 −1.81633 −0.908164 0.418614i \(-0.862516\pi\)
−0.908164 + 0.418614i \(0.862516\pi\)
\(228\) 0 0
\(229\) −4516.35 −1.30327 −0.651635 0.758533i \(-0.725916\pi\)
−0.651635 + 0.758533i \(0.725916\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −3547.26 −0.997376 −0.498688 0.866782i \(-0.666185\pi\)
−0.498688 + 0.866782i \(0.666185\pi\)
\(234\) 0 0
\(235\) 2222.55 0.616951
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 726.969 0.196752 0.0983760 0.995149i \(-0.468635\pi\)
0.0983760 + 0.995149i \(0.468635\pi\)
\(240\) 0 0
\(241\) 1689.67 0.451623 0.225812 0.974171i \(-0.427497\pi\)
0.225812 + 0.974171i \(0.427497\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −2441.56 −0.636675
\(246\) 0 0
\(247\) −1807.88 −0.465720
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 911.707 0.229269 0.114634 0.993408i \(-0.463430\pi\)
0.114634 + 0.993408i \(0.463430\pi\)
\(252\) 0 0
\(253\) −4099.06 −1.01860
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 3123.56 0.758141 0.379070 0.925368i \(-0.376244\pi\)
0.379070 + 0.925368i \(0.376244\pi\)
\(258\) 0 0
\(259\) 2951.18 0.708021
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 137.288 0.0321884 0.0160942 0.999870i \(-0.494877\pi\)
0.0160942 + 0.999870i \(0.494877\pi\)
\(264\) 0 0
\(265\) −5254.15 −1.21796
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 2030.26 0.460175 0.230087 0.973170i \(-0.426099\pi\)
0.230087 + 0.973170i \(0.426099\pi\)
\(270\) 0 0
\(271\) 1187.23 0.266123 0.133061 0.991108i \(-0.457519\pi\)
0.133061 + 0.991108i \(0.457519\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 3506.77 0.768967
\(276\) 0 0
\(277\) 3027.91 0.656786 0.328393 0.944541i \(-0.393493\pi\)
0.328393 + 0.944541i \(0.393493\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 5519.90 1.17185 0.585925 0.810365i \(-0.300731\pi\)
0.585925 + 0.810365i \(0.300731\pi\)
\(282\) 0 0
\(283\) 5888.17 1.23680 0.618402 0.785862i \(-0.287780\pi\)
0.618402 + 0.785862i \(0.287780\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 5677.67 1.16774
\(288\) 0 0
\(289\) 289.000 0.0588235
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 2873.06 0.572852 0.286426 0.958102i \(-0.407533\pi\)
0.286426 + 0.958102i \(0.407533\pi\)
\(294\) 0 0
\(295\) −2588.65 −0.510906
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −2702.14 −0.522638
\(300\) 0 0
\(301\) −2060.79 −0.394625
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 12040.6 2.26046
\(306\) 0 0
\(307\) −318.234 −0.0591614 −0.0295807 0.999562i \(-0.509417\pi\)
−0.0295807 + 0.999562i \(0.509417\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −1940.05 −0.353731 −0.176866 0.984235i \(-0.556596\pi\)
−0.176866 + 0.984235i \(0.556596\pi\)
\(312\) 0 0
\(313\) −5487.84 −0.991026 −0.495513 0.868600i \(-0.665020\pi\)
−0.495513 + 0.868600i \(0.665020\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −1337.29 −0.236940 −0.118470 0.992958i \(-0.537799\pi\)
−0.118470 + 0.992958i \(0.537799\pi\)
\(318\) 0 0
\(319\) −14485.6 −2.54243
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −932.998 −0.160723
\(324\) 0 0
\(325\) 2311.70 0.394553
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −2063.46 −0.345783
\(330\) 0 0
\(331\) 4826.46 0.801470 0.400735 0.916194i \(-0.368755\pi\)
0.400735 + 0.916194i \(0.368755\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 2494.16 0.406778
\(336\) 0 0
\(337\) −8265.21 −1.33601 −0.668004 0.744158i \(-0.732851\pi\)
−0.668004 + 0.744158i \(0.732851\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −11596.1 −1.84154
\(342\) 0 0
\(343\) 6715.70 1.05718
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 5841.35 0.903688 0.451844 0.892097i \(-0.350766\pi\)
0.451844 + 0.892097i \(0.350766\pi\)
\(348\) 0 0
\(349\) −3873.11 −0.594048 −0.297024 0.954870i \(-0.595994\pi\)
−0.297024 + 0.954870i \(0.595994\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −4020.29 −0.606171 −0.303085 0.952963i \(-0.598017\pi\)
−0.303085 + 0.952963i \(0.598017\pi\)
\(354\) 0 0
\(355\) −16228.0 −2.42618
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −2272.06 −0.334024 −0.167012 0.985955i \(-0.553412\pi\)
−0.167012 + 0.985955i \(0.553412\pi\)
\(360\) 0 0
\(361\) −3846.94 −0.560860
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 5351.96 0.767491
\(366\) 0 0
\(367\) −7353.58 −1.04592 −0.522962 0.852356i \(-0.675173\pi\)
−0.522962 + 0.852356i \(0.675173\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 4878.07 0.682632
\(372\) 0 0
\(373\) 320.701 0.0445182 0.0222591 0.999752i \(-0.492914\pi\)
0.0222591 + 0.999752i \(0.492914\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −9549.05 −1.30451
\(378\) 0 0
\(379\) 700.903 0.0949946 0.0474973 0.998871i \(-0.484875\pi\)
0.0474973 + 0.998871i \(0.484875\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 8217.97 1.09639 0.548196 0.836350i \(-0.315315\pi\)
0.548196 + 0.836350i \(0.315315\pi\)
\(384\) 0 0
\(385\) −9054.97 −1.19866
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 3800.59 0.495366 0.247683 0.968841i \(-0.420331\pi\)
0.247683 + 0.968841i \(0.420331\pi\)
\(390\) 0 0
\(391\) −1394.50 −0.180366
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −3548.52 −0.452014
\(396\) 0 0
\(397\) −5955.38 −0.752876 −0.376438 0.926442i \(-0.622851\pi\)
−0.376438 + 0.926442i \(0.622851\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −581.967 −0.0724739 −0.0362370 0.999343i \(-0.511537\pi\)
−0.0362370 + 0.999343i \(0.511537\pi\)
\(402\) 0 0
\(403\) −7644.28 −0.944885
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −11369.8 −1.38471
\(408\) 0 0
\(409\) −11357.7 −1.37311 −0.686555 0.727078i \(-0.740878\pi\)
−0.686555 + 0.727078i \(0.740878\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 2403.36 0.286348
\(414\) 0 0
\(415\) 6246.08 0.738814
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −20.9420 −0.00244173 −0.00122086 0.999999i \(-0.500389\pi\)
−0.00122086 + 0.999999i \(0.500389\pi\)
\(420\) 0 0
\(421\) 4455.28 0.515765 0.257882 0.966176i \(-0.416975\pi\)
0.257882 + 0.966176i \(0.416975\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 1193.00 0.136163
\(426\) 0 0
\(427\) −11178.7 −1.26692
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −2410.99 −0.269451 −0.134725 0.990883i \(-0.543015\pi\)
−0.134725 + 0.990883i \(0.543015\pi\)
\(432\) 0 0
\(433\) −1653.71 −0.183539 −0.0917693 0.995780i \(-0.529252\pi\)
−0.0917693 + 0.995780i \(0.529252\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 4501.96 0.492810
\(438\) 0 0
\(439\) −14852.5 −1.61474 −0.807371 0.590044i \(-0.799110\pi\)
−0.807371 + 0.590044i \(0.799110\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −5393.26 −0.578423 −0.289212 0.957265i \(-0.593393\pi\)
−0.289212 + 0.957265i \(0.593393\pi\)
\(444\) 0 0
\(445\) 16948.3 1.80546
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −6144.82 −0.645862 −0.322931 0.946422i \(-0.604668\pi\)
−0.322931 + 0.946422i \(0.604668\pi\)
\(450\) 0 0
\(451\) −21873.9 −2.28381
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −5969.13 −0.615027
\(456\) 0 0
\(457\) 6041.18 0.618369 0.309184 0.951002i \(-0.399944\pi\)
0.309184 + 0.951002i \(0.399944\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −13829.8 −1.39722 −0.698610 0.715503i \(-0.746198\pi\)
−0.698610 + 0.715503i \(0.746198\pi\)
\(462\) 0 0
\(463\) −12585.3 −1.26326 −0.631629 0.775271i \(-0.717613\pi\)
−0.631629 + 0.775271i \(0.717613\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −6561.91 −0.650212 −0.325106 0.945678i \(-0.605400\pi\)
−0.325106 + 0.945678i \(0.605400\pi\)
\(468\) 0 0
\(469\) −2315.63 −0.227987
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 7939.44 0.771788
\(474\) 0 0
\(475\) −3851.45 −0.372035
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −16609.4 −1.58435 −0.792175 0.610294i \(-0.791051\pi\)
−0.792175 + 0.610294i \(0.791051\pi\)
\(480\) 0 0
\(481\) −7495.06 −0.710489
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 4070.78 0.381123
\(486\) 0 0
\(487\) 7999.46 0.744333 0.372166 0.928166i \(-0.378615\pi\)
0.372166 + 0.928166i \(0.378615\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −11669.1 −1.07255 −0.536274 0.844044i \(-0.680169\pi\)
−0.536274 + 0.844044i \(0.680169\pi\)
\(492\) 0 0
\(493\) −4928.00 −0.450194
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 15066.4 1.35980
\(498\) 0 0
\(499\) 20896.2 1.87464 0.937319 0.348473i \(-0.113300\pi\)
0.937319 + 0.348473i \(0.113300\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 17429.1 1.54498 0.772490 0.635028i \(-0.219011\pi\)
0.772490 + 0.635028i \(0.219011\pi\)
\(504\) 0 0
\(505\) −21913.2 −1.93094
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −1020.29 −0.0888481 −0.0444240 0.999013i \(-0.514145\pi\)
−0.0444240 + 0.999013i \(0.514145\pi\)
\(510\) 0 0
\(511\) −4968.87 −0.430156
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −5764.91 −0.493266
\(516\) 0 0
\(517\) 7949.73 0.676265
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 5281.92 0.444155 0.222078 0.975029i \(-0.428716\pi\)
0.222078 + 0.975029i \(0.428716\pi\)
\(522\) 0 0
\(523\) 15906.1 1.32988 0.664938 0.746898i \(-0.268458\pi\)
0.664938 + 0.746898i \(0.268458\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −3945.00 −0.326085
\(528\) 0 0
\(529\) −5438.17 −0.446961
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −14419.5 −1.17181
\(534\) 0 0
\(535\) −3344.30 −0.270255
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −8733.08 −0.697886
\(540\) 0 0
\(541\) 21923.7 1.74228 0.871139 0.491036i \(-0.163382\pi\)
0.871139 + 0.491036i \(0.163382\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −10612.7 −0.834124
\(546\) 0 0
\(547\) −4960.74 −0.387762 −0.193881 0.981025i \(-0.562108\pi\)
−0.193881 + 0.981025i \(0.562108\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 15909.4 1.23006
\(552\) 0 0
\(553\) 3294.52 0.253341
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −22404.1 −1.70429 −0.852146 0.523305i \(-0.824699\pi\)
−0.852146 + 0.523305i \(0.824699\pi\)
\(558\) 0 0
\(559\) 5233.76 0.396001
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −17361.5 −1.29965 −0.649824 0.760085i \(-0.725157\pi\)
−0.649824 + 0.760085i \(0.725157\pi\)
\(564\) 0 0
\(565\) 4084.75 0.304154
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −1980.78 −0.145938 −0.0729690 0.997334i \(-0.523247\pi\)
−0.0729690 + 0.997334i \(0.523247\pi\)
\(570\) 0 0
\(571\) 19164.5 1.40457 0.702284 0.711897i \(-0.252164\pi\)
0.702284 + 0.711897i \(0.252164\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −5756.55 −0.417504
\(576\) 0 0
\(577\) 8729.71 0.629848 0.314924 0.949117i \(-0.398021\pi\)
0.314924 + 0.949117i \(0.398021\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −5798.99 −0.414084
\(582\) 0 0
\(583\) −18793.3 −1.33506
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 2927.87 0.205871 0.102935 0.994688i \(-0.467177\pi\)
0.102935 + 0.994688i \(0.467177\pi\)
\(588\) 0 0
\(589\) 12735.9 0.890958
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −2154.97 −0.149231 −0.0746157 0.997212i \(-0.523773\pi\)
−0.0746157 + 0.997212i \(0.523773\pi\)
\(594\) 0 0
\(595\) −3080.50 −0.212249
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 7065.12 0.481925 0.240963 0.970534i \(-0.422537\pi\)
0.240963 + 0.970534i \(0.422537\pi\)
\(600\) 0 0
\(601\) 10656.5 0.723272 0.361636 0.932319i \(-0.382218\pi\)
0.361636 + 0.932319i \(0.382218\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 16290.5 1.09471
\(606\) 0 0
\(607\) −82.8667 −0.00554111 −0.00277056 0.999996i \(-0.500882\pi\)
−0.00277056 + 0.999996i \(0.500882\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 5240.55 0.346988
\(612\) 0 0
\(613\) −15588.4 −1.02710 −0.513549 0.858060i \(-0.671670\pi\)
−0.513549 + 0.858060i \(0.671670\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 4430.58 0.289090 0.144545 0.989498i \(-0.453828\pi\)
0.144545 + 0.989498i \(0.453828\pi\)
\(618\) 0 0
\(619\) −3111.78 −0.202056 −0.101028 0.994884i \(-0.532213\pi\)
−0.101028 + 0.994884i \(0.532213\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −15735.2 −1.01190
\(624\) 0 0
\(625\) −19472.3 −1.24623
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −3867.99 −0.245194
\(630\) 0 0
\(631\) 14808.2 0.934236 0.467118 0.884195i \(-0.345292\pi\)
0.467118 + 0.884195i \(0.345292\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 36971.8 2.31052
\(636\) 0 0
\(637\) −5756.94 −0.358082
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 9233.91 0.568982 0.284491 0.958679i \(-0.408175\pi\)
0.284491 + 0.958679i \(0.408175\pi\)
\(642\) 0 0
\(643\) −11712.7 −0.718355 −0.359177 0.933269i \(-0.616943\pi\)
−0.359177 + 0.933269i \(0.616943\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −12099.6 −0.735216 −0.367608 0.929981i \(-0.619823\pi\)
−0.367608 + 0.929981i \(0.619823\pi\)
\(648\) 0 0
\(649\) −9259.22 −0.560025
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 8335.37 0.499523 0.249761 0.968307i \(-0.419648\pi\)
0.249761 + 0.968307i \(0.419648\pi\)
\(654\) 0 0
\(655\) −27440.2 −1.63691
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 7751.68 0.458213 0.229107 0.973401i \(-0.426420\pi\)
0.229107 + 0.973401i \(0.426420\pi\)
\(660\) 0 0
\(661\) 13808.0 0.812510 0.406255 0.913760i \(-0.366834\pi\)
0.406255 + 0.913760i \(0.366834\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 9945.00 0.579925
\(666\) 0 0
\(667\) 23778.9 1.38039
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 43067.2 2.47778
\(672\) 0 0
\(673\) −8406.44 −0.481493 −0.240746 0.970588i \(-0.577392\pi\)
−0.240746 + 0.970588i \(0.577392\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 19257.9 1.09327 0.546633 0.837372i \(-0.315909\pi\)
0.546633 + 0.837372i \(0.315909\pi\)
\(678\) 0 0
\(679\) −3779.40 −0.213608
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −3451.93 −0.193388 −0.0966942 0.995314i \(-0.530827\pi\)
−0.0966942 + 0.995314i \(0.530827\pi\)
\(684\) 0 0
\(685\) 29102.7 1.62330
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −12388.7 −0.685012
\(690\) 0 0
\(691\) 26090.5 1.43637 0.718184 0.695853i \(-0.244974\pi\)
0.718184 + 0.695853i \(0.244974\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −23969.8 −1.30824
\(696\) 0 0
\(697\) −7441.50 −0.404400
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −22283.9 −1.20064 −0.600321 0.799759i \(-0.704961\pi\)
−0.600321 + 0.799759i \(0.704961\pi\)
\(702\) 0 0
\(703\) 12487.3 0.669940
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 20344.7 1.08224
\(708\) 0 0
\(709\) −4561.83 −0.241640 −0.120820 0.992674i \(-0.538552\pi\)
−0.120820 + 0.992674i \(0.538552\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 19035.7 0.999847
\(714\) 0 0
\(715\) 22996.8 1.20284
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 12458.7 0.646218 0.323109 0.946362i \(-0.395272\pi\)
0.323109 + 0.946362i \(0.395272\pi\)
\(720\) 0 0
\(721\) 5352.26 0.276461
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −20343.0 −1.04209
\(726\) 0 0
\(727\) −19361.4 −0.987721 −0.493860 0.869541i \(-0.664415\pi\)
−0.493860 + 0.869541i \(0.664415\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 2701.00 0.136662
\(732\) 0 0
\(733\) 21638.4 1.09036 0.545180 0.838319i \(-0.316461\pi\)
0.545180 + 0.838319i \(0.316461\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 8921.24 0.445886
\(738\) 0 0
\(739\) 33520.7 1.66858 0.834290 0.551326i \(-0.185878\pi\)
0.834290 + 0.551326i \(0.185878\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −28486.4 −1.40655 −0.703274 0.710919i \(-0.748279\pi\)
−0.703274 + 0.710919i \(0.748279\pi\)
\(744\) 0 0
\(745\) 23465.2 1.15396
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 3104.92 0.151470
\(750\) 0 0
\(751\) 29427.4 1.42985 0.714927 0.699199i \(-0.246460\pi\)
0.714927 + 0.699199i \(0.246460\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −9001.98 −0.433928
\(756\) 0 0
\(757\) 30790.8 1.47835 0.739174 0.673514i \(-0.235216\pi\)
0.739174 + 0.673514i \(0.235216\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 17677.5 0.842062 0.421031 0.907046i \(-0.361668\pi\)
0.421031 + 0.907046i \(0.361668\pi\)
\(762\) 0 0
\(763\) 9853.05 0.467502
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −6103.78 −0.287346
\(768\) 0 0
\(769\) 6309.56 0.295876 0.147938 0.988997i \(-0.452736\pi\)
0.147938 + 0.988997i \(0.452736\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −10323.3 −0.480343 −0.240171 0.970731i \(-0.577204\pi\)
−0.240171 + 0.970731i \(0.577204\pi\)
\(774\) 0 0
\(775\) −16285.1 −0.754811
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 24023.9 1.10494
\(780\) 0 0
\(781\) −58045.2 −2.65944
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 29764.7 1.35331
\(786\) 0 0
\(787\) −11118.3 −0.503589 −0.251795 0.967781i \(-0.581021\pi\)
−0.251795 + 0.967781i \(0.581021\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −3792.37 −0.170469
\(792\) 0 0
\(793\) 28390.4 1.27134
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −32556.2 −1.44692 −0.723462 0.690364i \(-0.757450\pi\)
−0.723462 + 0.690364i \(0.757450\pi\)
\(798\) 0 0
\(799\) 2704.50 0.119748
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 19143.1 0.841279
\(804\) 0 0
\(805\) 14864.2 0.650802
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −39644.3 −1.72289 −0.861445 0.507851i \(-0.830440\pi\)
−0.861445 + 0.507851i \(0.830440\pi\)
\(810\) 0 0
\(811\) 7839.62 0.339440 0.169720 0.985492i \(-0.445714\pi\)
0.169720 + 0.985492i \(0.445714\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −50048.3 −2.15106
\(816\) 0 0
\(817\) −8719.82 −0.373400
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −344.345 −0.0146379 −0.00731895 0.999973i \(-0.502330\pi\)
−0.00731895 + 0.999973i \(0.502330\pi\)
\(822\) 0 0
\(823\) 43172.9 1.82857 0.914284 0.405074i \(-0.132754\pi\)
0.914284 + 0.405074i \(0.132754\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −21158.3 −0.889656 −0.444828 0.895616i \(-0.646735\pi\)
−0.444828 + 0.895616i \(0.646735\pi\)
\(828\) 0 0
\(829\) −10514.0 −0.440490 −0.220245 0.975445i \(-0.570686\pi\)
−0.220245 + 0.975445i \(0.570686\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −2971.00 −0.123576
\(834\) 0 0
\(835\) −26010.3 −1.07799
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −10036.2 −0.412978 −0.206489 0.978449i \(-0.566204\pi\)
−0.206489 + 0.978449i \(0.566204\pi\)
\(840\) 0 0
\(841\) 59642.7 2.44548
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −15533.6 −0.632394
\(846\) 0 0
\(847\) −15124.4 −0.613555
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 18664.1 0.751817
\(852\) 0 0
\(853\) 9343.14 0.375033 0.187516 0.982261i \(-0.439956\pi\)
0.187516 + 0.982261i \(0.439956\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −25235.0 −1.00585 −0.502923 0.864331i \(-0.667742\pi\)
−0.502923 + 0.864331i \(0.667742\pi\)
\(858\) 0 0
\(859\) 39717.7 1.57759 0.788795 0.614656i \(-0.210705\pi\)
0.788795 + 0.614656i \(0.210705\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −26812.4 −1.05760 −0.528798 0.848748i \(-0.677357\pi\)
−0.528798 + 0.848748i \(0.677357\pi\)
\(864\) 0 0
\(865\) −36498.0 −1.43465
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −12692.5 −0.495471
\(870\) 0 0
\(871\) 5880.97 0.228782
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 9934.33 0.383819
\(876\) 0 0
\(877\) −33850.8 −1.30338 −0.651688 0.758487i \(-0.725939\pi\)
−0.651688 + 0.758487i \(0.725939\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 19939.4 0.762514 0.381257 0.924469i \(-0.375491\pi\)
0.381257 + 0.924469i \(0.375491\pi\)
\(882\) 0 0
\(883\) −31421.5 −1.19753 −0.598765 0.800925i \(-0.704342\pi\)
−0.598765 + 0.800925i \(0.704342\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 14713.6 0.556971 0.278486 0.960440i \(-0.410168\pi\)
0.278486 + 0.960440i \(0.410168\pi\)
\(888\) 0 0
\(889\) −34325.4 −1.29498
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −8731.12 −0.327185
\(894\) 0 0
\(895\) 1769.31 0.0660801
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 67269.7 2.49563
\(900\) 0 0
\(901\) −6393.49 −0.236402
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 24913.2 0.915075
\(906\) 0 0
\(907\) −36405.1 −1.33276 −0.666380 0.745612i \(-0.732157\pi\)
−0.666380 + 0.745612i \(0.732157\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 1574.12 0.0572481 0.0286241 0.999590i \(-0.490887\pi\)
0.0286241 + 0.999590i \(0.490887\pi\)
\(912\) 0 0
\(913\) 22341.3 0.809844
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 25476.1 0.917442
\(918\) 0 0
\(919\) −44823.7 −1.60892 −0.804460 0.594007i \(-0.797545\pi\)
−0.804460 + 0.594007i \(0.797545\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −38264.0 −1.36455
\(924\) 0 0
\(925\) −15967.2 −0.567566
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 10654.7 0.376287 0.188143 0.982142i \(-0.439753\pi\)
0.188143 + 0.982142i \(0.439753\pi\)
\(930\) 0 0
\(931\) 9591.47 0.337645
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 11868.0 0.415107
\(936\) 0 0
\(937\) 46738.5 1.62954 0.814770 0.579784i \(-0.196863\pi\)
0.814770 + 0.579784i \(0.196863\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 31346.7 1.08594 0.542972 0.839751i \(-0.317299\pi\)
0.542972 + 0.839751i \(0.317299\pi\)
\(942\) 0 0
\(943\) 35907.2 1.23998
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −18191.9 −0.624242 −0.312121 0.950042i \(-0.601039\pi\)
−0.312121 + 0.950042i \(0.601039\pi\)
\(948\) 0 0
\(949\) 12619.4 0.431656
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −47969.6 −1.63052 −0.815261 0.579094i \(-0.803407\pi\)
−0.815261 + 0.579094i \(0.803407\pi\)
\(954\) 0 0
\(955\) 29959.0 1.01513
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −27019.6 −0.909810
\(960\) 0 0
\(961\) 24060.3 0.807637
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 44787.1 1.49404
\(966\) 0 0
\(967\) −51466.6 −1.71154 −0.855768 0.517360i \(-0.826915\pi\)
−0.855768 + 0.517360i \(0.826915\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −4007.62 −0.132452 −0.0662259 0.997805i \(-0.521096\pi\)
−0.0662259 + 0.997805i \(0.521096\pi\)
\(972\) 0 0
\(973\) 22254.0 0.733229
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 37362.2 1.22346 0.611731 0.791066i \(-0.290474\pi\)
0.611731 + 0.791066i \(0.290474\pi\)
\(978\) 0 0
\(979\) 60621.6 1.97903
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −38659.1 −1.25436 −0.627179 0.778875i \(-0.715790\pi\)
−0.627179 + 0.778875i \(0.715790\pi\)
\(984\) 0 0
\(985\) −38675.0 −1.25106
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −13033.0 −0.419035
\(990\) 0 0
\(991\) −46.8701 −0.00150240 −0.000751200 1.00000i \(-0.500239\pi\)
−0.000751200 1.00000i \(0.500239\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 9958.11 0.317280
\(996\) 0 0
\(997\) −16913.4 −0.537265 −0.268633 0.963243i \(-0.586572\pi\)
−0.268633 + 0.963243i \(0.586572\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2448.4.a.v.1.2 2
3.2 odd 2 816.4.a.o.1.1 2
4.3 odd 2 153.4.a.e.1.2 2
12.11 even 2 51.4.a.d.1.1 2
60.59 even 2 1275.4.a.m.1.2 2
84.83 odd 2 2499.4.a.l.1.1 2
204.203 even 2 867.4.a.j.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
51.4.a.d.1.1 2 12.11 even 2
153.4.a.e.1.2 2 4.3 odd 2
816.4.a.o.1.1 2 3.2 odd 2
867.4.a.j.1.1 2 204.203 even 2
1275.4.a.m.1.2 2 60.59 even 2
2448.4.a.v.1.2 2 1.1 even 1 trivial
2499.4.a.l.1.1 2 84.83 odd 2