Properties

Label 2448.4.a.v.1.1
Level $2448$
Weight $4$
Character 2448.1
Self dual yes
Analytic conductor $144.437$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2448,4,Mod(1,2448)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2448, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2448.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2448 = 2^{4} \cdot 3^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2448.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(144.436675694\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{8})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2}\cdot 3 \)
Twist minimal: no (minimal twist has level 51)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-1.41421\) of defining polynomial
Character \(\chi\) \(=\) 2448.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-19.9706 q^{5} +20.9706 q^{7} +16.0294 q^{11} -34.9411 q^{13} +17.0000 q^{17} +80.8823 q^{19} -115.971 q^{23} +273.823 q^{25} -154.118 q^{29} -299.941 q^{31} -418.794 q^{35} +315.529 q^{37} -132.265 q^{41} +23.1177 q^{43} +260.912 q^{47} +96.7645 q^{49} +676.087 q^{53} -320.117 q^{55} +629.294 q^{59} -461.852 q^{61} +697.794 q^{65} +789.470 q^{67} -686.412 q^{71} +484.912 q^{73} +336.146 q^{77} -254.000 q^{79} +548.912 q^{83} -339.500 q^{85} -925.145 q^{89} -732.735 q^{91} -1615.26 q^{95} +732.617 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 6 q^{5} + 8 q^{7} + 66 q^{11} - 2 q^{13} + 34 q^{17} + 26 q^{19} - 198 q^{23} + 344 q^{25} - 444 q^{29} - 532 q^{31} - 600 q^{35} + 88 q^{37} - 570 q^{41} + 182 q^{43} + 420 q^{47} - 78 q^{49} + 300 q^{53}+ \cdots + 1024 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −19.9706 −1.78622 −0.893111 0.449837i \(-0.851482\pi\)
−0.893111 + 0.449837i \(0.851482\pi\)
\(6\) 0 0
\(7\) 20.9706 1.13230 0.566152 0.824301i \(-0.308432\pi\)
0.566152 + 0.824301i \(0.308432\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 16.0294 0.439369 0.219684 0.975571i \(-0.429497\pi\)
0.219684 + 0.975571i \(0.429497\pi\)
\(12\) 0 0
\(13\) −34.9411 −0.745456 −0.372728 0.927941i \(-0.621578\pi\)
−0.372728 + 0.927941i \(0.621578\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 17.0000 0.242536
\(18\) 0 0
\(19\) 80.8823 0.976614 0.488307 0.872672i \(-0.337615\pi\)
0.488307 + 0.872672i \(0.337615\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −115.971 −1.05137 −0.525686 0.850679i \(-0.676191\pi\)
−0.525686 + 0.850679i \(0.676191\pi\)
\(24\) 0 0
\(25\) 273.823 2.19059
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −154.118 −0.986860 −0.493430 0.869785i \(-0.664257\pi\)
−0.493430 + 0.869785i \(0.664257\pi\)
\(30\) 0 0
\(31\) −299.941 −1.73777 −0.868887 0.495010i \(-0.835164\pi\)
−0.868887 + 0.495010i \(0.835164\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −418.794 −2.02255
\(36\) 0 0
\(37\) 315.529 1.40196 0.700982 0.713179i \(-0.252745\pi\)
0.700982 + 0.713179i \(0.252745\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −132.265 −0.503813 −0.251906 0.967752i \(-0.581057\pi\)
−0.251906 + 0.967752i \(0.581057\pi\)
\(42\) 0 0
\(43\) 23.1177 0.0819866 0.0409933 0.999159i \(-0.486948\pi\)
0.0409933 + 0.999159i \(0.486948\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 260.912 0.809742 0.404871 0.914374i \(-0.367316\pi\)
0.404871 + 0.914374i \(0.367316\pi\)
\(48\) 0 0
\(49\) 96.7645 0.282112
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 676.087 1.75222 0.876111 0.482110i \(-0.160129\pi\)
0.876111 + 0.482110i \(0.160129\pi\)
\(54\) 0 0
\(55\) −320.117 −0.784810
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 629.294 1.38859 0.694297 0.719689i \(-0.255715\pi\)
0.694297 + 0.719689i \(0.255715\pi\)
\(60\) 0 0
\(61\) −461.852 −0.969411 −0.484706 0.874677i \(-0.661073\pi\)
−0.484706 + 0.874677i \(0.661073\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 697.794 1.33155
\(66\) 0 0
\(67\) 789.470 1.43954 0.719770 0.694213i \(-0.244247\pi\)
0.719770 + 0.694213i \(0.244247\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −686.412 −1.14735 −0.573677 0.819082i \(-0.694484\pi\)
−0.573677 + 0.819082i \(0.694484\pi\)
\(72\) 0 0
\(73\) 484.912 0.777461 0.388730 0.921352i \(-0.372914\pi\)
0.388730 + 0.921352i \(0.372914\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 336.146 0.497499
\(78\) 0 0
\(79\) −254.000 −0.361737 −0.180869 0.983507i \(-0.557891\pi\)
−0.180869 + 0.983507i \(0.557891\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 548.912 0.725914 0.362957 0.931806i \(-0.381767\pi\)
0.362957 + 0.931806i \(0.381767\pi\)
\(84\) 0 0
\(85\) −339.500 −0.433222
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −925.145 −1.10186 −0.550928 0.834553i \(-0.685726\pi\)
−0.550928 + 0.834553i \(0.685726\pi\)
\(90\) 0 0
\(91\) −732.735 −0.844082
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −1615.26 −1.74445
\(96\) 0 0
\(97\) 732.617 0.766866 0.383433 0.923569i \(-0.374742\pi\)
0.383433 + 0.923569i \(0.374742\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 128.528 0.126624 0.0633120 0.997994i \(-0.479834\pi\)
0.0633120 + 0.997994i \(0.479834\pi\)
\(102\) 0 0
\(103\) −5.35325 −0.00512108 −0.00256054 0.999997i \(-0.500815\pi\)
−0.00256054 + 0.999997i \(0.500815\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 473.382 0.427697 0.213848 0.976867i \(-0.431400\pi\)
0.213848 + 0.976867i \(0.431400\pi\)
\(108\) 0 0
\(109\) −352.353 −0.309627 −0.154813 0.987944i \(-0.549478\pi\)
−0.154813 + 0.987944i \(0.549478\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 733.617 0.610734 0.305367 0.952235i \(-0.401221\pi\)
0.305367 + 0.952235i \(0.401221\pi\)
\(114\) 0 0
\(115\) 2316.00 1.87798
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 356.500 0.274624
\(120\) 0 0
\(121\) −1074.06 −0.806955
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −2972.09 −2.12665
\(126\) 0 0
\(127\) −340.410 −0.237846 −0.118923 0.992903i \(-0.537944\pi\)
−0.118923 + 0.992903i \(0.537944\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −2133.85 −1.42317 −0.711586 0.702599i \(-0.752023\pi\)
−0.711586 + 0.702599i \(0.752023\pi\)
\(132\) 0 0
\(133\) 1696.15 1.10582
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −55.1455 −0.0343897 −0.0171949 0.999852i \(-0.505474\pi\)
−0.0171949 + 0.999852i \(0.505474\pi\)
\(138\) 0 0
\(139\) −256.266 −0.156375 −0.0781877 0.996939i \(-0.524913\pi\)
−0.0781877 + 0.996939i \(0.524913\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −560.087 −0.327530
\(144\) 0 0
\(145\) 3077.82 1.76275
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 84.3836 0.0463958 0.0231979 0.999731i \(-0.492615\pi\)
0.0231979 + 0.999731i \(0.492615\pi\)
\(150\) 0 0
\(151\) −1051.65 −0.566767 −0.283383 0.959007i \(-0.591457\pi\)
−0.283383 + 0.959007i \(0.591457\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 5989.99 3.10405
\(156\) 0 0
\(157\) 1587.47 0.806968 0.403484 0.914987i \(-0.367799\pi\)
0.403484 + 0.914987i \(0.367799\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −2431.97 −1.19047
\(162\) 0 0
\(163\) −1749.59 −0.840727 −0.420363 0.907356i \(-0.638097\pi\)
−0.420363 + 0.907356i \(0.638097\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −1624.21 −0.752604 −0.376302 0.926497i \(-0.622804\pi\)
−0.376302 + 0.926497i \(0.622804\pi\)
\(168\) 0 0
\(169\) −976.118 −0.444296
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 3734.50 1.64120 0.820602 0.571500i \(-0.193638\pi\)
0.820602 + 0.571500i \(0.193638\pi\)
\(174\) 0 0
\(175\) 5742.23 2.48041
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −1434.65 −0.599053 −0.299526 0.954088i \(-0.596829\pi\)
−0.299526 + 0.954088i \(0.596829\pi\)
\(180\) 0 0
\(181\) −219.263 −0.0900426 −0.0450213 0.998986i \(-0.514336\pi\)
−0.0450213 + 0.998986i \(0.514336\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −6301.29 −2.50422
\(186\) 0 0
\(187\) 272.500 0.106563
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −3116.44 −1.18062 −0.590308 0.807178i \(-0.700994\pi\)
−0.590308 + 0.807178i \(0.700994\pi\)
\(192\) 0 0
\(193\) −3921.82 −1.46269 −0.731344 0.682009i \(-0.761106\pi\)
−0.731344 + 0.682009i \(0.761106\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −3141.68 −1.13622 −0.568110 0.822953i \(-0.692325\pi\)
−0.568110 + 0.822953i \(0.692325\pi\)
\(198\) 0 0
\(199\) −1832.79 −0.652880 −0.326440 0.945218i \(-0.605849\pi\)
−0.326440 + 0.945218i \(0.605849\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −3231.94 −1.11743
\(204\) 0 0
\(205\) 2641.41 0.899921
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 1296.50 0.429094
\(210\) 0 0
\(211\) −4928.41 −1.60799 −0.803994 0.594637i \(-0.797296\pi\)
−0.803994 + 0.594637i \(0.797296\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −461.674 −0.146446
\(216\) 0 0
\(217\) −6289.93 −1.96769
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −593.999 −0.180800
\(222\) 0 0
\(223\) 75.4727 0.0226638 0.0113319 0.999936i \(-0.496393\pi\)
0.0113319 + 0.999936i \(0.496393\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −1629.97 −0.476587 −0.238293 0.971193i \(-0.576588\pi\)
−0.238293 + 0.971193i \(0.576588\pi\)
\(228\) 0 0
\(229\) 2000.35 0.577235 0.288617 0.957445i \(-0.406804\pi\)
0.288617 + 0.957445i \(0.406804\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 4225.26 1.18801 0.594004 0.804462i \(-0.297546\pi\)
0.594004 + 0.804462i \(0.297546\pi\)
\(234\) 0 0
\(235\) −5210.55 −1.44638
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −1614.97 −0.437086 −0.218543 0.975827i \(-0.570130\pi\)
−0.218543 + 0.975827i \(0.570130\pi\)
\(240\) 0 0
\(241\) −6761.67 −1.80729 −0.903646 0.428280i \(-0.859120\pi\)
−0.903646 + 0.428280i \(0.859120\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −1932.44 −0.503915
\(246\) 0 0
\(247\) −2826.12 −0.728022
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 2880.29 0.724313 0.362156 0.932117i \(-0.382041\pi\)
0.362156 + 0.932117i \(0.382041\pi\)
\(252\) 0 0
\(253\) −1858.94 −0.461940
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 1460.44 0.354474 0.177237 0.984168i \(-0.443284\pi\)
0.177237 + 0.984168i \(0.443284\pi\)
\(258\) 0 0
\(259\) 6616.82 1.58745
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −7601.29 −1.78219 −0.891094 0.453819i \(-0.850061\pi\)
−0.891094 + 0.453819i \(0.850061\pi\)
\(264\) 0 0
\(265\) −13501.8 −3.12986
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −6896.26 −1.56309 −0.781547 0.623846i \(-0.785569\pi\)
−0.781547 + 0.623846i \(0.785569\pi\)
\(270\) 0 0
\(271\) −849.234 −0.190359 −0.0951795 0.995460i \(-0.530342\pi\)
−0.0951795 + 0.995460i \(0.530342\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 4389.23 0.962476
\(276\) 0 0
\(277\) 4080.09 0.885013 0.442507 0.896765i \(-0.354089\pi\)
0.442507 + 0.896765i \(0.354089\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −4967.90 −1.05466 −0.527331 0.849660i \(-0.676807\pi\)
−0.527331 + 0.849660i \(0.676807\pi\)
\(282\) 0 0
\(283\) 1475.83 0.309996 0.154998 0.987915i \(-0.450463\pi\)
0.154998 + 0.987915i \(0.450463\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −2773.67 −0.570469
\(288\) 0 0
\(289\) 289.000 0.0588235
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −521.056 −0.103892 −0.0519461 0.998650i \(-0.516542\pi\)
−0.0519461 + 0.998650i \(0.516542\pi\)
\(294\) 0 0
\(295\) −12567.3 −2.48034
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 4052.14 0.783751
\(300\) 0 0
\(301\) 484.792 0.0928337
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 9223.44 1.73158
\(306\) 0 0
\(307\) 1718.23 0.319429 0.159715 0.987163i \(-0.448943\pi\)
0.159715 + 0.987163i \(0.448943\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 4916.05 0.896347 0.448173 0.893947i \(-0.352075\pi\)
0.448173 + 0.893947i \(0.352075\pi\)
\(312\) 0 0
\(313\) 7375.84 1.33197 0.665986 0.745964i \(-0.268011\pi\)
0.665986 + 0.745964i \(0.268011\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −522.706 −0.0926124 −0.0463062 0.998927i \(-0.514745\pi\)
−0.0463062 + 0.998927i \(0.514745\pi\)
\(318\) 0 0
\(319\) −2470.42 −0.433596
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 1375.00 0.236864
\(324\) 0 0
\(325\) −9567.70 −1.63299
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 5471.46 0.916874
\(330\) 0 0
\(331\) −5016.46 −0.833020 −0.416510 0.909131i \(-0.636747\pi\)
−0.416510 + 0.909131i \(0.636747\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −15766.2 −2.57134
\(336\) 0 0
\(337\) −10810.8 −1.74748 −0.873741 0.486392i \(-0.838313\pi\)
−0.873741 + 0.486392i \(0.838313\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −4807.89 −0.763524
\(342\) 0 0
\(343\) −5163.70 −0.812867
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −4137.35 −0.640070 −0.320035 0.947406i \(-0.603695\pi\)
−0.320035 + 0.947406i \(0.603695\pi\)
\(348\) 0 0
\(349\) 7531.11 1.15510 0.577552 0.816354i \(-0.304008\pi\)
0.577552 + 0.816354i \(0.304008\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 4872.29 0.734634 0.367317 0.930096i \(-0.380276\pi\)
0.367317 + 0.930096i \(0.380276\pi\)
\(354\) 0 0
\(355\) 13708.0 2.04943
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −31.9429 −0.00469604 −0.00234802 0.999997i \(-0.500747\pi\)
−0.00234802 + 0.999997i \(0.500747\pi\)
\(360\) 0 0
\(361\) −317.061 −0.0462256
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −9683.96 −1.38872
\(366\) 0 0
\(367\) −2262.42 −0.321791 −0.160895 0.986971i \(-0.551438\pi\)
−0.160895 + 0.986971i \(0.551438\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 14177.9 1.98405
\(372\) 0 0
\(373\) −5788.70 −0.803559 −0.401780 0.915736i \(-0.631608\pi\)
−0.401780 + 0.915736i \(0.631608\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 5385.05 0.735661
\(378\) 0 0
\(379\) −10940.9 −1.48284 −0.741420 0.671041i \(-0.765847\pi\)
−0.741420 + 0.671041i \(0.765847\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 2414.03 0.322066 0.161033 0.986949i \(-0.448517\pi\)
0.161033 + 0.986949i \(0.448517\pi\)
\(384\) 0 0
\(385\) −6713.03 −0.888644
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 4479.41 0.583844 0.291922 0.956442i \(-0.405705\pi\)
0.291922 + 0.956442i \(0.405705\pi\)
\(390\) 0 0
\(391\) −1971.50 −0.254995
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 5072.52 0.646143
\(396\) 0 0
\(397\) −1780.62 −0.225105 −0.112553 0.993646i \(-0.535903\pi\)
−0.112553 + 0.993646i \(0.535903\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 4067.97 0.506595 0.253297 0.967388i \(-0.418485\pi\)
0.253297 + 0.967388i \(0.418485\pi\)
\(402\) 0 0
\(403\) 10480.3 1.29543
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 5057.75 0.615979
\(408\) 0 0
\(409\) −632.302 −0.0764434 −0.0382217 0.999269i \(-0.512169\pi\)
−0.0382217 + 0.999269i \(0.512169\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 13196.6 1.57231
\(414\) 0 0
\(415\) −10962.1 −1.29664
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −1107.06 −0.129077 −0.0645386 0.997915i \(-0.520558\pi\)
−0.0645386 + 0.997915i \(0.520558\pi\)
\(420\) 0 0
\(421\) −15977.3 −1.84961 −0.924804 0.380444i \(-0.875771\pi\)
−0.924804 + 0.380444i \(0.875771\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 4655.00 0.531295
\(426\) 0 0
\(427\) −9685.30 −1.09767
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 10283.0 1.14922 0.574610 0.818427i \(-0.305154\pi\)
0.574610 + 0.818427i \(0.305154\pi\)
\(432\) 0 0
\(433\) −7084.29 −0.786257 −0.393128 0.919484i \(-0.628607\pi\)
−0.393128 + 0.919484i \(0.628607\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −9379.96 −1.02678
\(438\) 0 0
\(439\) 5308.51 0.577133 0.288567 0.957460i \(-0.406821\pi\)
0.288567 + 0.957460i \(0.406821\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 3533.26 0.378939 0.189470 0.981887i \(-0.439323\pi\)
0.189470 + 0.981887i \(0.439323\pi\)
\(444\) 0 0
\(445\) 18475.7 1.96816
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −4787.18 −0.503165 −0.251582 0.967836i \(-0.580951\pi\)
−0.251582 + 0.967836i \(0.580951\pi\)
\(450\) 0 0
\(451\) −2120.13 −0.221360
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 14633.1 1.50772
\(456\) 0 0
\(457\) 13168.8 1.34795 0.673973 0.738756i \(-0.264586\pi\)
0.673973 + 0.738756i \(0.264586\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 7145.81 0.721938 0.360969 0.932578i \(-0.382446\pi\)
0.360969 + 0.932578i \(0.382446\pi\)
\(462\) 0 0
\(463\) −9462.71 −0.949826 −0.474913 0.880033i \(-0.657520\pi\)
−0.474913 + 0.880033i \(0.657520\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −5306.09 −0.525774 −0.262887 0.964827i \(-0.584675\pi\)
−0.262887 + 0.964827i \(0.584675\pi\)
\(468\) 0 0
\(469\) 16555.6 1.63000
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 370.565 0.0360224
\(474\) 0 0
\(475\) 22147.5 2.13936
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 11731.4 1.11904 0.559522 0.828815i \(-0.310985\pi\)
0.559522 + 0.828815i \(0.310985\pi\)
\(480\) 0 0
\(481\) −11024.9 −1.04510
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −14630.8 −1.36979
\(486\) 0 0
\(487\) −11075.5 −1.03055 −0.515274 0.857026i \(-0.672310\pi\)
−0.515274 + 0.857026i \(0.672310\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 2009.14 0.184666 0.0923331 0.995728i \(-0.470568\pi\)
0.0923331 + 0.995728i \(0.470568\pi\)
\(492\) 0 0
\(493\) −2620.00 −0.239349
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −14394.4 −1.29915
\(498\) 0 0
\(499\) −9956.24 −0.893192 −0.446596 0.894736i \(-0.647364\pi\)
−0.446596 + 0.894736i \(0.647364\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 11760.9 1.04253 0.521266 0.853394i \(-0.325460\pi\)
0.521266 + 0.853394i \(0.325460\pi\)
\(504\) 0 0
\(505\) −2566.78 −0.226179
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 948.293 0.0825783 0.0412891 0.999147i \(-0.486854\pi\)
0.0412891 + 0.999147i \(0.486854\pi\)
\(510\) 0 0
\(511\) 10168.9 0.880322
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 106.907 0.00914738
\(516\) 0 0
\(517\) 4182.27 0.355775
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 9796.08 0.823751 0.411875 0.911240i \(-0.364874\pi\)
0.411875 + 0.911240i \(0.364874\pi\)
\(522\) 0 0
\(523\) 4501.89 0.376394 0.188197 0.982131i \(-0.439736\pi\)
0.188197 + 0.982131i \(0.439736\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −5099.00 −0.421472
\(528\) 0 0
\(529\) 1282.17 0.105381
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 4621.49 0.375570
\(534\) 0 0
\(535\) −9453.70 −0.763961
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 1551.08 0.123951
\(540\) 0 0
\(541\) −8419.68 −0.669114 −0.334557 0.942376i \(-0.608587\pi\)
−0.334557 + 0.942376i \(0.608587\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 7036.69 0.553062
\(546\) 0 0
\(547\) −4655.26 −0.363884 −0.181942 0.983309i \(-0.558238\pi\)
−0.181942 + 0.983309i \(0.558238\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −12465.4 −0.963781
\(552\) 0 0
\(553\) −5326.52 −0.409596
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −17855.9 −1.35831 −0.679157 0.733993i \(-0.737654\pi\)
−0.679157 + 0.733993i \(0.737654\pi\)
\(558\) 0 0
\(559\) −807.760 −0.0611174
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −21434.5 −1.60454 −0.802269 0.596962i \(-0.796374\pi\)
−0.802269 + 0.596962i \(0.796374\pi\)
\(564\) 0 0
\(565\) −14650.8 −1.09091
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 14412.8 1.06189 0.530945 0.847406i \(-0.321837\pi\)
0.530945 + 0.847406i \(0.321837\pi\)
\(570\) 0 0
\(571\) −4492.48 −0.329255 −0.164627 0.986356i \(-0.552642\pi\)
−0.164627 + 0.986356i \(0.552642\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −31755.5 −2.30312
\(576\) 0 0
\(577\) 9544.29 0.688621 0.344310 0.938856i \(-0.388113\pi\)
0.344310 + 0.938856i \(0.388113\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 11511.0 0.821956
\(582\) 0 0
\(583\) 10837.3 0.769872
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −15671.9 −1.10195 −0.550977 0.834520i \(-0.685745\pi\)
−0.550977 + 0.834520i \(0.685745\pi\)
\(588\) 0 0
\(589\) −24259.9 −1.69713
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −6737.03 −0.466537 −0.233269 0.972412i \(-0.574942\pi\)
−0.233269 + 0.972412i \(0.574942\pi\)
\(594\) 0 0
\(595\) −7119.50 −0.490539
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −25077.1 −1.71056 −0.855278 0.518169i \(-0.826614\pi\)
−0.855278 + 0.518169i \(0.826614\pi\)
\(600\) 0 0
\(601\) 18123.5 1.23007 0.615037 0.788499i \(-0.289141\pi\)
0.615037 + 0.788499i \(0.289141\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 21449.5 1.44140
\(606\) 0 0
\(607\) −18377.1 −1.22884 −0.614419 0.788980i \(-0.710610\pi\)
−0.614419 + 0.788980i \(0.710610\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −9116.55 −0.603627
\(612\) 0 0
\(613\) 19642.4 1.29421 0.647105 0.762401i \(-0.275979\pi\)
0.647105 + 0.762401i \(0.275979\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −8738.58 −0.570181 −0.285091 0.958501i \(-0.592024\pi\)
−0.285091 + 0.958501i \(0.592024\pi\)
\(618\) 0 0
\(619\) −18996.2 −1.23348 −0.616739 0.787168i \(-0.711547\pi\)
−0.616739 + 0.787168i \(0.711547\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −19400.8 −1.24764
\(624\) 0 0
\(625\) 25126.3 1.60808
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 5363.99 0.340026
\(630\) 0 0
\(631\) −18454.2 −1.16426 −0.582130 0.813096i \(-0.697781\pi\)
−0.582130 + 0.813096i \(0.697781\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 6798.17 0.424846
\(636\) 0 0
\(637\) −3381.06 −0.210302
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 2208.09 0.136060 0.0680300 0.997683i \(-0.478329\pi\)
0.0680300 + 0.997683i \(0.478329\pi\)
\(642\) 0 0
\(643\) 14048.7 0.861625 0.430813 0.902441i \(-0.358227\pi\)
0.430813 + 0.902441i \(0.358227\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 7959.60 0.483654 0.241827 0.970319i \(-0.422253\pi\)
0.241827 + 0.970319i \(0.422253\pi\)
\(648\) 0 0
\(649\) 10087.2 0.610105
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −8533.37 −0.511388 −0.255694 0.966758i \(-0.582304\pi\)
−0.255694 + 0.966758i \(0.582304\pi\)
\(654\) 0 0
\(655\) 42614.2 2.54210
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 8532.32 0.504358 0.252179 0.967681i \(-0.418853\pi\)
0.252179 + 0.967681i \(0.418853\pi\)
\(660\) 0 0
\(661\) 24194.0 1.42366 0.711828 0.702353i \(-0.247867\pi\)
0.711828 + 0.702353i \(0.247867\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −33873.0 −1.97525
\(666\) 0 0
\(667\) 17873.1 1.03756
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −7403.23 −0.425929
\(672\) 0 0
\(673\) −10069.6 −0.576750 −0.288375 0.957518i \(-0.593115\pi\)
−0.288375 + 0.957518i \(0.593115\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −13155.9 −0.746856 −0.373428 0.927659i \(-0.621818\pi\)
−0.373428 + 0.927659i \(0.621818\pi\)
\(678\) 0 0
\(679\) 15363.4 0.868326
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −21814.1 −1.22210 −0.611049 0.791593i \(-0.709252\pi\)
−0.611049 + 0.791593i \(0.709252\pi\)
\(684\) 0 0
\(685\) 1101.29 0.0614277
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −23623.3 −1.30620
\(690\) 0 0
\(691\) 8237.48 0.453500 0.226750 0.973953i \(-0.427190\pi\)
0.226750 + 0.973953i \(0.427190\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 5117.77 0.279321
\(696\) 0 0
\(697\) −2248.50 −0.122192
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −3684.13 −0.198499 −0.0992495 0.995063i \(-0.531644\pi\)
−0.0992495 + 0.995063i \(0.531644\pi\)
\(702\) 0 0
\(703\) 25520.7 1.36918
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 2695.31 0.143377
\(708\) 0 0
\(709\) 26765.8 1.41779 0.708894 0.705315i \(-0.249194\pi\)
0.708894 + 0.705315i \(0.249194\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 34784.3 1.82705
\(714\) 0 0
\(715\) 11185.2 0.585041
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 20163.3 1.04585 0.522924 0.852379i \(-0.324841\pi\)
0.522924 + 0.852379i \(0.324841\pi\)
\(720\) 0 0
\(721\) −112.261 −0.00579862
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −42201.0 −2.16180
\(726\) 0 0
\(727\) −23230.6 −1.18511 −0.592556 0.805529i \(-0.701881\pi\)
−0.592556 + 0.805529i \(0.701881\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 393.002 0.0198847
\(732\) 0 0
\(733\) −28594.4 −1.44087 −0.720436 0.693521i \(-0.756058\pi\)
−0.720436 + 0.693521i \(0.756058\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 12654.8 0.632489
\(738\) 0 0
\(739\) −8294.73 −0.412891 −0.206446 0.978458i \(-0.566190\pi\)
−0.206446 + 0.978458i \(0.566190\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −5881.61 −0.290411 −0.145205 0.989402i \(-0.546384\pi\)
−0.145205 + 0.989402i \(0.546384\pi\)
\(744\) 0 0
\(745\) −1685.19 −0.0828731
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 9927.08 0.484283
\(750\) 0 0
\(751\) −1255.39 −0.0609984 −0.0304992 0.999535i \(-0.509710\pi\)
−0.0304992 + 0.999535i \(0.509710\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 21002.0 1.01237
\(756\) 0 0
\(757\) −38652.8 −1.85582 −0.927912 0.372799i \(-0.878398\pi\)
−0.927912 + 0.372799i \(0.878398\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 3286.48 0.156550 0.0782752 0.996932i \(-0.475059\pi\)
0.0782752 + 0.996932i \(0.475059\pi\)
\(762\) 0 0
\(763\) −7389.05 −0.350592
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −21988.2 −1.03514
\(768\) 0 0
\(769\) −29939.6 −1.40396 −0.701982 0.712195i \(-0.747701\pi\)
−0.701982 + 0.712195i \(0.747701\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −40700.7 −1.89379 −0.946896 0.321541i \(-0.895799\pi\)
−0.946896 + 0.321541i \(0.895799\pi\)
\(774\) 0 0
\(775\) −82130.9 −3.80675
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −10697.9 −0.492030
\(780\) 0 0
\(781\) −11002.8 −0.504112
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −31702.7 −1.44142
\(786\) 0 0
\(787\) 8126.31 0.368071 0.184035 0.982920i \(-0.441084\pi\)
0.184035 + 0.982920i \(0.441084\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 15384.4 0.691536
\(792\) 0 0
\(793\) 16137.6 0.722653
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −11987.8 −0.532787 −0.266393 0.963864i \(-0.585832\pi\)
−0.266393 + 0.963864i \(0.585832\pi\)
\(798\) 0 0
\(799\) 4435.50 0.196391
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 7772.86 0.341592
\(804\) 0 0
\(805\) 48567.8 2.12645
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 36146.3 1.57087 0.785436 0.618943i \(-0.212439\pi\)
0.785436 + 0.618943i \(0.212439\pi\)
\(810\) 0 0
\(811\) 6244.38 0.270370 0.135185 0.990820i \(-0.456837\pi\)
0.135185 + 0.990820i \(0.456837\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 34940.3 1.50172
\(816\) 0 0
\(817\) 1869.82 0.0800692
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −28413.7 −1.20785 −0.603924 0.797042i \(-0.706397\pi\)
−0.603924 + 0.797042i \(0.706397\pi\)
\(822\) 0 0
\(823\) 18803.1 0.796399 0.398199 0.917299i \(-0.369635\pi\)
0.398199 + 0.917299i \(0.369635\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 33860.3 1.42375 0.711873 0.702309i \(-0.247847\pi\)
0.711873 + 0.702309i \(0.247847\pi\)
\(828\) 0 0
\(829\) −19746.0 −0.827270 −0.413635 0.910443i \(-0.635741\pi\)
−0.413635 + 0.910443i \(0.635741\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 1645.00 0.0684223
\(834\) 0 0
\(835\) 32436.3 1.34432
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −31045.8 −1.27750 −0.638748 0.769416i \(-0.720547\pi\)
−0.638748 + 0.769416i \(0.720547\pi\)
\(840\) 0 0
\(841\) −636.719 −0.0261068
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 19493.6 0.793611
\(846\) 0 0
\(847\) −22523.6 −0.913718
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −36592.1 −1.47398
\(852\) 0 0
\(853\) 36020.9 1.44587 0.722937 0.690914i \(-0.242792\pi\)
0.722937 + 0.690914i \(0.242792\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 35927.0 1.43202 0.716010 0.698090i \(-0.245966\pi\)
0.716010 + 0.698090i \(0.245966\pi\)
\(858\) 0 0
\(859\) 20914.3 0.830718 0.415359 0.909658i \(-0.363656\pi\)
0.415359 + 0.909658i \(0.363656\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −5395.57 −0.212824 −0.106412 0.994322i \(-0.533936\pi\)
−0.106412 + 0.994322i \(0.533936\pi\)
\(864\) 0 0
\(865\) −74580.0 −2.93156
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −4071.48 −0.158936
\(870\) 0 0
\(871\) −27585.0 −1.07311
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −62326.3 −2.40802
\(876\) 0 0
\(877\) −31305.2 −1.20536 −0.602681 0.797983i \(-0.705901\pi\)
−0.602681 + 0.797983i \(0.705901\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −19975.4 −0.763891 −0.381945 0.924185i \(-0.624746\pi\)
−0.381945 + 0.924185i \(0.624746\pi\)
\(882\) 0 0
\(883\) −32032.5 −1.22081 −0.610407 0.792088i \(-0.708994\pi\)
−0.610407 + 0.792088i \(0.708994\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 32668.4 1.23664 0.618319 0.785927i \(-0.287814\pi\)
0.618319 + 0.785927i \(0.287814\pi\)
\(888\) 0 0
\(889\) −7138.58 −0.269314
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 21103.1 0.790805
\(894\) 0 0
\(895\) 28650.7 1.07004
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 46226.3 1.71494
\(900\) 0 0
\(901\) 11493.5 0.424976
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 4378.81 0.160836
\(906\) 0 0
\(907\) 39521.1 1.44683 0.723417 0.690411i \(-0.242571\pi\)
0.723417 + 0.690411i \(0.242571\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 47835.9 1.73971 0.869854 0.493310i \(-0.164213\pi\)
0.869854 + 0.493310i \(0.164213\pi\)
\(912\) 0 0
\(913\) 8798.75 0.318944
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −44748.1 −1.61146
\(918\) 0 0
\(919\) 39689.7 1.42464 0.712319 0.701856i \(-0.247645\pi\)
0.712319 + 0.701856i \(0.247645\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 23984.0 0.855302
\(924\) 0 0
\(925\) 86399.2 3.07112
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 4579.27 0.161723 0.0808617 0.996725i \(-0.474233\pi\)
0.0808617 + 0.996725i \(0.474233\pi\)
\(930\) 0 0
\(931\) 7826.53 0.275515
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −5441.99 −0.190344
\(936\) 0 0
\(937\) −38046.5 −1.32649 −0.663246 0.748401i \(-0.730822\pi\)
−0.663246 + 0.748401i \(0.730822\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 9081.31 0.314604 0.157302 0.987551i \(-0.449720\pi\)
0.157302 + 0.987551i \(0.449720\pi\)
\(942\) 0 0
\(943\) 15338.8 0.529694
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 39575.9 1.35802 0.679009 0.734130i \(-0.262410\pi\)
0.679009 + 0.734130i \(0.262410\pi\)
\(948\) 0 0
\(949\) −16943.4 −0.579562
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 28601.6 0.972189 0.486095 0.873906i \(-0.338421\pi\)
0.486095 + 0.873906i \(0.338421\pi\)
\(954\) 0 0
\(955\) 62237.0 2.10884
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −1156.43 −0.0389396
\(960\) 0 0
\(961\) 60173.7 2.01986
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 78320.9 2.61268
\(966\) 0 0
\(967\) −2591.39 −0.0861773 −0.0430887 0.999071i \(-0.513720\pi\)
−0.0430887 + 0.999071i \(0.513720\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −49692.4 −1.64233 −0.821166 0.570689i \(-0.806676\pi\)
−0.821166 + 0.570689i \(0.806676\pi\)
\(972\) 0 0
\(973\) −5374.04 −0.177064
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 44489.8 1.45686 0.728432 0.685119i \(-0.240250\pi\)
0.728432 + 0.685119i \(0.240250\pi\)
\(978\) 0 0
\(979\) −14829.6 −0.484121
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −37606.9 −1.22022 −0.610109 0.792318i \(-0.708874\pi\)
−0.610109 + 0.792318i \(0.708874\pi\)
\(984\) 0 0
\(985\) 62741.0 2.02954
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −2680.98 −0.0861983
\(990\) 0 0
\(991\) 55446.9 1.77732 0.888662 0.458563i \(-0.151636\pi\)
0.888662 + 0.458563i \(0.151636\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 36601.9 1.16619
\(996\) 0 0
\(997\) −39314.6 −1.24885 −0.624426 0.781084i \(-0.714667\pi\)
−0.624426 + 0.781084i \(0.714667\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2448.4.a.v.1.1 2
3.2 odd 2 816.4.a.o.1.2 2
4.3 odd 2 153.4.a.e.1.1 2
12.11 even 2 51.4.a.d.1.2 2
60.59 even 2 1275.4.a.m.1.1 2
84.83 odd 2 2499.4.a.l.1.2 2
204.203 even 2 867.4.a.j.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
51.4.a.d.1.2 2 12.11 even 2
153.4.a.e.1.1 2 4.3 odd 2
816.4.a.o.1.2 2 3.2 odd 2
867.4.a.j.1.2 2 204.203 even 2
1275.4.a.m.1.1 2 60.59 even 2
2448.4.a.v.1.1 2 1.1 even 1 trivial
2499.4.a.l.1.2 2 84.83 odd 2