Properties

Label 2448.4.a.bo.1.1
Level $2448$
Weight $4$
Character 2448.1
Self dual yes
Analytic conductor $144.437$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2448,4,Mod(1,2448)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2448, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2448.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2448 = 2^{4} \cdot 3^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2448.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(144.436675694\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.4.1506848.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 17x^{2} + 18 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 153)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-1.06515\) of defining polynomial
Character \(\chi\) \(=\) 2448.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-20.6288 q^{5} +5.24213 q^{7} +5.21023 q^{11} -14.8007 q^{13} +17.0000 q^{17} -26.2601 q^{19} +165.443 q^{23} +300.546 q^{25} +42.3983 q^{29} -263.956 q^{31} -108.139 q^{35} -322.217 q^{37} -321.529 q^{41} -385.799 q^{43} +309.308 q^{47} -315.520 q^{49} -192.701 q^{53} -107.481 q^{55} -587.082 q^{59} -241.163 q^{61} +305.320 q^{65} -205.396 q^{67} +933.035 q^{71} -869.875 q^{73} +27.3127 q^{77} -102.161 q^{79} +298.886 q^{83} -350.689 q^{85} +666.125 q^{89} -77.5871 q^{91} +541.714 q^{95} +1351.60 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 22 q^{5} + 24 q^{7} + 50 q^{11} + 26 q^{13} + 68 q^{17} - 34 q^{19} + 382 q^{23} + 138 q^{25} - 540 q^{29} + 356 q^{31} + 304 q^{35} - 404 q^{37} + 114 q^{41} - 570 q^{43} + 496 q^{47} - 224 q^{49}+ \cdots - 76 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −20.6288 −1.84509 −0.922547 0.385885i \(-0.873896\pi\)
−0.922547 + 0.385885i \(0.873896\pi\)
\(6\) 0 0
\(7\) 5.24213 0.283049 0.141524 0.989935i \(-0.454800\pi\)
0.141524 + 0.989935i \(0.454800\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 5.21023 0.142813 0.0714065 0.997447i \(-0.477251\pi\)
0.0714065 + 0.997447i \(0.477251\pi\)
\(12\) 0 0
\(13\) −14.8007 −0.315767 −0.157883 0.987458i \(-0.550467\pi\)
−0.157883 + 0.987458i \(0.550467\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 17.0000 0.242536
\(18\) 0 0
\(19\) −26.2601 −0.317078 −0.158539 0.987353i \(-0.550678\pi\)
−0.158539 + 0.987353i \(0.550678\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 165.443 1.49988 0.749941 0.661504i \(-0.230082\pi\)
0.749941 + 0.661504i \(0.230082\pi\)
\(24\) 0 0
\(25\) 300.546 2.40437
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 42.3983 0.271488 0.135744 0.990744i \(-0.456657\pi\)
0.135744 + 0.990744i \(0.456657\pi\)
\(30\) 0 0
\(31\) −263.956 −1.52929 −0.764644 0.644452i \(-0.777085\pi\)
−0.764644 + 0.644452i \(0.777085\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −108.139 −0.522251
\(36\) 0 0
\(37\) −322.217 −1.43168 −0.715840 0.698264i \(-0.753956\pi\)
−0.715840 + 0.698264i \(0.753956\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −321.529 −1.22474 −0.612371 0.790571i \(-0.709784\pi\)
−0.612371 + 0.790571i \(0.709784\pi\)
\(42\) 0 0
\(43\) −385.799 −1.36823 −0.684114 0.729375i \(-0.739811\pi\)
−0.684114 + 0.729375i \(0.739811\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 309.308 0.959942 0.479971 0.877284i \(-0.340647\pi\)
0.479971 + 0.877284i \(0.340647\pi\)
\(48\) 0 0
\(49\) −315.520 −0.919884
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −192.701 −0.499426 −0.249713 0.968320i \(-0.580336\pi\)
−0.249713 + 0.968320i \(0.580336\pi\)
\(54\) 0 0
\(55\) −107.481 −0.263504
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −587.082 −1.29545 −0.647725 0.761874i \(-0.724279\pi\)
−0.647725 + 0.761874i \(0.724279\pi\)
\(60\) 0 0
\(61\) −241.163 −0.506192 −0.253096 0.967441i \(-0.581449\pi\)
−0.253096 + 0.967441i \(0.581449\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 305.320 0.582619
\(66\) 0 0
\(67\) −205.396 −0.374525 −0.187262 0.982310i \(-0.559961\pi\)
−0.187262 + 0.982310i \(0.559961\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 933.035 1.55959 0.779795 0.626035i \(-0.215323\pi\)
0.779795 + 0.626035i \(0.215323\pi\)
\(72\) 0 0
\(73\) −869.875 −1.39467 −0.697337 0.716744i \(-0.745632\pi\)
−0.697337 + 0.716744i \(0.745632\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 27.3127 0.0404230
\(78\) 0 0
\(79\) −102.161 −0.145494 −0.0727470 0.997350i \(-0.523177\pi\)
−0.0727470 + 0.997350i \(0.523177\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 298.886 0.395265 0.197633 0.980276i \(-0.436675\pi\)
0.197633 + 0.980276i \(0.436675\pi\)
\(84\) 0 0
\(85\) −350.689 −0.447501
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 666.125 0.793361 0.396680 0.917957i \(-0.370162\pi\)
0.396680 + 0.917957i \(0.370162\pi\)
\(90\) 0 0
\(91\) −77.5871 −0.0893773
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 541.714 0.585038
\(96\) 0 0
\(97\) 1351.60 1.41478 0.707391 0.706822i \(-0.249872\pi\)
0.707391 + 0.706822i \(0.249872\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 1628.22 1.60410 0.802050 0.597256i \(-0.203743\pi\)
0.802050 + 0.597256i \(0.203743\pi\)
\(102\) 0 0
\(103\) −48.4374 −0.0463367 −0.0231684 0.999732i \(-0.507375\pi\)
−0.0231684 + 0.999732i \(0.507375\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 1493.56 1.34942 0.674711 0.738082i \(-0.264268\pi\)
0.674711 + 0.738082i \(0.264268\pi\)
\(108\) 0 0
\(109\) 694.642 0.610410 0.305205 0.952287i \(-0.401275\pi\)
0.305205 + 0.952287i \(0.401275\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −1302.15 −1.08404 −0.542018 0.840367i \(-0.682340\pi\)
−0.542018 + 0.840367i \(0.682340\pi\)
\(114\) 0 0
\(115\) −3412.89 −2.76742
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 89.1163 0.0686494
\(120\) 0 0
\(121\) −1303.85 −0.979604
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −3621.31 −2.59120
\(126\) 0 0
\(127\) 2100.00 1.46728 0.733642 0.679536i \(-0.237819\pi\)
0.733642 + 0.679536i \(0.237819\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −963.258 −0.642444 −0.321222 0.947004i \(-0.604094\pi\)
−0.321222 + 0.947004i \(0.604094\pi\)
\(132\) 0 0
\(133\) −137.659 −0.0897484
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −311.771 −0.194426 −0.0972130 0.995264i \(-0.530993\pi\)
−0.0972130 + 0.995264i \(0.530993\pi\)
\(138\) 0 0
\(139\) 1039.05 0.634035 0.317018 0.948420i \(-0.397319\pi\)
0.317018 + 0.948420i \(0.397319\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −77.1149 −0.0450956
\(144\) 0 0
\(145\) −874.624 −0.500921
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −375.216 −0.206301 −0.103151 0.994666i \(-0.532892\pi\)
−0.103151 + 0.994666i \(0.532892\pi\)
\(150\) 0 0
\(151\) 2602.60 1.40262 0.701312 0.712854i \(-0.252598\pi\)
0.701312 + 0.712854i \(0.252598\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 5445.10 2.82168
\(156\) 0 0
\(157\) −3134.77 −1.59351 −0.796756 0.604301i \(-0.793453\pi\)
−0.796756 + 0.604301i \(0.793453\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 867.276 0.424540
\(162\) 0 0
\(163\) 52.9329 0.0254357 0.0127179 0.999919i \(-0.495952\pi\)
0.0127179 + 0.999919i \(0.495952\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −3554.79 −1.64717 −0.823586 0.567192i \(-0.808030\pi\)
−0.823586 + 0.567192i \(0.808030\pi\)
\(168\) 0 0
\(169\) −1977.94 −0.900291
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −134.253 −0.0590006 −0.0295003 0.999565i \(-0.509392\pi\)
−0.0295003 + 0.999565i \(0.509392\pi\)
\(174\) 0 0
\(175\) 1575.50 0.680554
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −2368.80 −0.989119 −0.494559 0.869144i \(-0.664671\pi\)
−0.494559 + 0.869144i \(0.664671\pi\)
\(180\) 0 0
\(181\) 1320.79 0.542396 0.271198 0.962524i \(-0.412580\pi\)
0.271198 + 0.962524i \(0.412580\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 6646.95 2.64158
\(186\) 0 0
\(187\) 88.5739 0.0346373
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −549.534 −0.208183 −0.104091 0.994568i \(-0.533193\pi\)
−0.104091 + 0.994568i \(0.533193\pi\)
\(192\) 0 0
\(193\) 4191.18 1.56315 0.781575 0.623811i \(-0.214417\pi\)
0.781575 + 0.623811i \(0.214417\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 3963.36 1.43339 0.716695 0.697386i \(-0.245654\pi\)
0.716695 + 0.697386i \(0.245654\pi\)
\(198\) 0 0
\(199\) 4603.54 1.63988 0.819940 0.572450i \(-0.194007\pi\)
0.819940 + 0.572450i \(0.194007\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 222.257 0.0768444
\(204\) 0 0
\(205\) 6632.75 2.25976
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −136.821 −0.0452829
\(210\) 0 0
\(211\) 3972.74 1.29618 0.648091 0.761563i \(-0.275568\pi\)
0.648091 + 0.761563i \(0.275568\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 7958.56 2.52451
\(216\) 0 0
\(217\) −1383.69 −0.432863
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −251.611 −0.0765847
\(222\) 0 0
\(223\) −3347.58 −1.00525 −0.502624 0.864505i \(-0.667632\pi\)
−0.502624 + 0.864505i \(0.667632\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 2809.86 0.821572 0.410786 0.911732i \(-0.365254\pi\)
0.410786 + 0.911732i \(0.365254\pi\)
\(228\) 0 0
\(229\) 5978.12 1.72509 0.862544 0.505981i \(-0.168870\pi\)
0.862544 + 0.505981i \(0.168870\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 2877.85 0.809160 0.404580 0.914503i \(-0.367418\pi\)
0.404580 + 0.914503i \(0.367418\pi\)
\(234\) 0 0
\(235\) −6380.65 −1.77118
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −836.275 −0.226335 −0.113168 0.993576i \(-0.536100\pi\)
−0.113168 + 0.993576i \(0.536100\pi\)
\(240\) 0 0
\(241\) 1336.21 0.357148 0.178574 0.983926i \(-0.442852\pi\)
0.178574 + 0.983926i \(0.442852\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 6508.79 1.69727
\(246\) 0 0
\(247\) 388.667 0.100123
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −5582.36 −1.40381 −0.701903 0.712273i \(-0.747666\pi\)
−0.701903 + 0.712273i \(0.747666\pi\)
\(252\) 0 0
\(253\) 861.998 0.214203
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −4627.76 −1.12324 −0.561618 0.827397i \(-0.689821\pi\)
−0.561618 + 0.827397i \(0.689821\pi\)
\(258\) 0 0
\(259\) −1689.11 −0.405235
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 399.519 0.0936708 0.0468354 0.998903i \(-0.485086\pi\)
0.0468354 + 0.998903i \(0.485086\pi\)
\(264\) 0 0
\(265\) 3975.20 0.921488
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 2204.10 0.499577 0.249789 0.968300i \(-0.419639\pi\)
0.249789 + 0.968300i \(0.419639\pi\)
\(270\) 0 0
\(271\) 2363.70 0.529833 0.264916 0.964271i \(-0.414656\pi\)
0.264916 + 0.964271i \(0.414656\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 1565.92 0.343376
\(276\) 0 0
\(277\) −3988.65 −0.865179 −0.432589 0.901591i \(-0.642400\pi\)
−0.432589 + 0.901591i \(0.642400\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 1494.96 0.317373 0.158686 0.987329i \(-0.449274\pi\)
0.158686 + 0.987329i \(0.449274\pi\)
\(282\) 0 0
\(283\) −5973.29 −1.25468 −0.627341 0.778744i \(-0.715857\pi\)
−0.627341 + 0.778744i \(0.715857\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −1685.50 −0.346661
\(288\) 0 0
\(289\) 289.000 0.0588235
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 5706.31 1.13777 0.568884 0.822417i \(-0.307375\pi\)
0.568884 + 0.822417i \(0.307375\pi\)
\(294\) 0 0
\(295\) 12110.8 2.39023
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −2448.67 −0.473613
\(300\) 0 0
\(301\) −2022.41 −0.387275
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 4974.89 0.933973
\(306\) 0 0
\(307\) −4684.64 −0.870900 −0.435450 0.900213i \(-0.643411\pi\)
−0.435450 + 0.900213i \(0.643411\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 4086.74 0.745138 0.372569 0.928005i \(-0.378477\pi\)
0.372569 + 0.928005i \(0.378477\pi\)
\(312\) 0 0
\(313\) 6893.79 1.24492 0.622460 0.782651i \(-0.286133\pi\)
0.622460 + 0.782651i \(0.286133\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −4907.72 −0.869542 −0.434771 0.900541i \(-0.643171\pi\)
−0.434771 + 0.900541i \(0.643171\pi\)
\(318\) 0 0
\(319\) 220.905 0.0387721
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −446.422 −0.0769027
\(324\) 0 0
\(325\) −4448.29 −0.759220
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 1621.44 0.271710
\(330\) 0 0
\(331\) 8884.92 1.47541 0.737703 0.675126i \(-0.235911\pi\)
0.737703 + 0.675126i \(0.235911\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 4237.07 0.691033
\(336\) 0 0
\(337\) −5398.17 −0.872572 −0.436286 0.899808i \(-0.643706\pi\)
−0.436286 + 0.899808i \(0.643706\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −1375.27 −0.218402
\(342\) 0 0
\(343\) −3452.05 −0.543420
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 6120.24 0.946835 0.473417 0.880838i \(-0.343020\pi\)
0.473417 + 0.880838i \(0.343020\pi\)
\(348\) 0 0
\(349\) −4211.65 −0.645972 −0.322986 0.946404i \(-0.604687\pi\)
−0.322986 + 0.946404i \(0.604687\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 982.908 0.148201 0.0741005 0.997251i \(-0.476391\pi\)
0.0741005 + 0.997251i \(0.476391\pi\)
\(354\) 0 0
\(355\) −19247.4 −2.87759
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 12216.9 1.79605 0.898027 0.439940i \(-0.145000\pi\)
0.898027 + 0.439940i \(0.145000\pi\)
\(360\) 0 0
\(361\) −6169.41 −0.899462
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 17944.5 2.57330
\(366\) 0 0
\(367\) 3054.02 0.434383 0.217192 0.976129i \(-0.430310\pi\)
0.217192 + 0.976129i \(0.430310\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −1010.17 −0.141362
\(372\) 0 0
\(373\) 5547.11 0.770023 0.385012 0.922912i \(-0.374197\pi\)
0.385012 + 0.922912i \(0.374197\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −627.523 −0.0857269
\(378\) 0 0
\(379\) −3793.70 −0.514168 −0.257084 0.966389i \(-0.582762\pi\)
−0.257084 + 0.966389i \(0.582762\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 10645.4 1.42024 0.710122 0.704079i \(-0.248640\pi\)
0.710122 + 0.704079i \(0.248640\pi\)
\(384\) 0 0
\(385\) −563.428 −0.0745843
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −551.008 −0.0718180 −0.0359090 0.999355i \(-0.511433\pi\)
−0.0359090 + 0.999355i \(0.511433\pi\)
\(390\) 0 0
\(391\) 2812.54 0.363775
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 2107.46 0.268450
\(396\) 0 0
\(397\) −12508.7 −1.58135 −0.790674 0.612238i \(-0.790269\pi\)
−0.790674 + 0.612238i \(0.790269\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 9724.10 1.21097 0.605484 0.795857i \(-0.292979\pi\)
0.605484 + 0.795857i \(0.292979\pi\)
\(402\) 0 0
\(403\) 3906.73 0.482898
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −1678.83 −0.204463
\(408\) 0 0
\(409\) −1698.84 −0.205385 −0.102693 0.994713i \(-0.532746\pi\)
−0.102693 + 0.994713i \(0.532746\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −3077.56 −0.366675
\(414\) 0 0
\(415\) −6165.66 −0.729302
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 2663.86 0.310592 0.155296 0.987868i \(-0.450367\pi\)
0.155296 + 0.987868i \(0.450367\pi\)
\(420\) 0 0
\(421\) 776.756 0.0899211 0.0449606 0.998989i \(-0.485684\pi\)
0.0449606 + 0.998989i \(0.485684\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 5109.29 0.583146
\(426\) 0 0
\(427\) −1264.21 −0.143277
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −5951.70 −0.665158 −0.332579 0.943075i \(-0.607919\pi\)
−0.332579 + 0.943075i \(0.607919\pi\)
\(432\) 0 0
\(433\) 154.417 0.0171382 0.00856908 0.999963i \(-0.497272\pi\)
0.00856908 + 0.999963i \(0.497272\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −4344.56 −0.475580
\(438\) 0 0
\(439\) 12859.5 1.39806 0.699031 0.715091i \(-0.253615\pi\)
0.699031 + 0.715091i \(0.253615\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −16428.4 −1.76193 −0.880967 0.473177i \(-0.843107\pi\)
−0.880967 + 0.473177i \(0.843107\pi\)
\(444\) 0 0
\(445\) −13741.3 −1.46383
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 700.731 0.0736516 0.0368258 0.999322i \(-0.488275\pi\)
0.0368258 + 0.999322i \(0.488275\pi\)
\(450\) 0 0
\(451\) −1675.24 −0.174909
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 1600.53 0.164910
\(456\) 0 0
\(457\) 3127.81 0.320159 0.160080 0.987104i \(-0.448825\pi\)
0.160080 + 0.987104i \(0.448825\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 12198.4 1.23240 0.616200 0.787590i \(-0.288671\pi\)
0.616200 + 0.787590i \(0.288671\pi\)
\(462\) 0 0
\(463\) 5054.14 0.507313 0.253657 0.967294i \(-0.418367\pi\)
0.253657 + 0.967294i \(0.418367\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 8366.25 0.829002 0.414501 0.910049i \(-0.363956\pi\)
0.414501 + 0.910049i \(0.363956\pi\)
\(468\) 0 0
\(469\) −1076.71 −0.106009
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −2010.10 −0.195401
\(474\) 0 0
\(475\) −7892.38 −0.762373
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −3942.17 −0.376038 −0.188019 0.982165i \(-0.560207\pi\)
−0.188019 + 0.982165i \(0.560207\pi\)
\(480\) 0 0
\(481\) 4769.03 0.452077
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −27881.8 −2.61041
\(486\) 0 0
\(487\) −160.598 −0.0149433 −0.00747165 0.999972i \(-0.502378\pi\)
−0.00747165 + 0.999972i \(0.502378\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 17380.5 1.59750 0.798748 0.601666i \(-0.205496\pi\)
0.798748 + 0.601666i \(0.205496\pi\)
\(492\) 0 0
\(493\) 720.770 0.0658456
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 4891.09 0.441440
\(498\) 0 0
\(499\) −17648.5 −1.58328 −0.791640 0.610988i \(-0.790772\pi\)
−0.791640 + 0.610988i \(0.790772\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 2367.22 0.209839 0.104920 0.994481i \(-0.466541\pi\)
0.104920 + 0.994481i \(0.466541\pi\)
\(504\) 0 0
\(505\) −33588.2 −2.95972
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −13983.5 −1.21770 −0.608850 0.793286i \(-0.708369\pi\)
−0.608850 + 0.793286i \(0.708369\pi\)
\(510\) 0 0
\(511\) −4560.00 −0.394760
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 999.205 0.0854956
\(516\) 0 0
\(517\) 1611.57 0.137092
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 14012.1 1.17828 0.589139 0.808032i \(-0.299467\pi\)
0.589139 + 0.808032i \(0.299467\pi\)
\(522\) 0 0
\(523\) 6665.75 0.557310 0.278655 0.960391i \(-0.410111\pi\)
0.278655 + 0.960391i \(0.410111\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −4487.26 −0.370907
\(528\) 0 0
\(529\) 15204.5 1.24965
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 4758.85 0.386733
\(534\) 0 0
\(535\) −30810.4 −2.48981
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −1643.93 −0.131371
\(540\) 0 0
\(541\) −2658.37 −0.211261 −0.105631 0.994405i \(-0.533686\pi\)
−0.105631 + 0.994405i \(0.533686\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −14329.6 −1.12626
\(546\) 0 0
\(547\) 20140.6 1.57431 0.787156 0.616755i \(-0.211553\pi\)
0.787156 + 0.616755i \(0.211553\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −1113.38 −0.0860829
\(552\) 0 0
\(553\) −535.543 −0.0411819
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 10449.2 0.794874 0.397437 0.917629i \(-0.369900\pi\)
0.397437 + 0.917629i \(0.369900\pi\)
\(558\) 0 0
\(559\) 5710.08 0.432041
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 6606.44 0.494544 0.247272 0.968946i \(-0.420466\pi\)
0.247272 + 0.968946i \(0.420466\pi\)
\(564\) 0 0
\(565\) 26861.8 2.00015
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 6016.94 0.443310 0.221655 0.975125i \(-0.428854\pi\)
0.221655 + 0.975125i \(0.428854\pi\)
\(570\) 0 0
\(571\) 10560.4 0.773974 0.386987 0.922085i \(-0.373516\pi\)
0.386987 + 0.922085i \(0.373516\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 49723.4 3.60627
\(576\) 0 0
\(577\) −9374.56 −0.676374 −0.338187 0.941079i \(-0.609814\pi\)
−0.338187 + 0.941079i \(0.609814\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 1566.80 0.111879
\(582\) 0 0
\(583\) −1004.02 −0.0713246
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 16742.5 1.17724 0.588618 0.808411i \(-0.299672\pi\)
0.588618 + 0.808411i \(0.299672\pi\)
\(588\) 0 0
\(589\) 6931.52 0.484904
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −16820.2 −1.16480 −0.582398 0.812904i \(-0.697885\pi\)
−0.582398 + 0.812904i \(0.697885\pi\)
\(594\) 0 0
\(595\) −1838.36 −0.126665
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 16523.6 1.12711 0.563553 0.826080i \(-0.309434\pi\)
0.563553 + 0.826080i \(0.309434\pi\)
\(600\) 0 0
\(601\) 1133.13 0.0769075 0.0384537 0.999260i \(-0.487757\pi\)
0.0384537 + 0.999260i \(0.487757\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 26896.9 1.80746
\(606\) 0 0
\(607\) −210.365 −0.0140667 −0.00703333 0.999975i \(-0.502239\pi\)
−0.00703333 + 0.999975i \(0.502239\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −4577.97 −0.303118
\(612\) 0 0
\(613\) −4813.64 −0.317163 −0.158582 0.987346i \(-0.550692\pi\)
−0.158582 + 0.987346i \(0.550692\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −19782.2 −1.29076 −0.645381 0.763861i \(-0.723301\pi\)
−0.645381 + 0.763861i \(0.723301\pi\)
\(618\) 0 0
\(619\) −6340.53 −0.411709 −0.205854 0.978583i \(-0.565997\pi\)
−0.205854 + 0.978583i \(0.565997\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 3491.92 0.224560
\(624\) 0 0
\(625\) 37134.8 2.37663
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −5477.69 −0.347233
\(630\) 0 0
\(631\) 4591.83 0.289696 0.144848 0.989454i \(-0.453731\pi\)
0.144848 + 0.989454i \(0.453731\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −43320.5 −2.70728
\(636\) 0 0
\(637\) 4669.91 0.290469
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 3018.43 0.185992 0.0929961 0.995666i \(-0.470356\pi\)
0.0929961 + 0.995666i \(0.470356\pi\)
\(642\) 0 0
\(643\) 25834.1 1.58444 0.792222 0.610233i \(-0.208924\pi\)
0.792222 + 0.610233i \(0.208924\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 4123.41 0.250553 0.125277 0.992122i \(-0.460018\pi\)
0.125277 + 0.992122i \(0.460018\pi\)
\(648\) 0 0
\(649\) −3058.83 −0.185007
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 18013.5 1.07951 0.539757 0.841821i \(-0.318516\pi\)
0.539757 + 0.841821i \(0.318516\pi\)
\(654\) 0 0
\(655\) 19870.8 1.18537
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 5886.59 0.347965 0.173982 0.984749i \(-0.444336\pi\)
0.173982 + 0.984749i \(0.444336\pi\)
\(660\) 0 0
\(661\) −1099.06 −0.0646722 −0.0323361 0.999477i \(-0.510295\pi\)
−0.0323361 + 0.999477i \(0.510295\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 2839.74 0.165594
\(666\) 0 0
\(667\) 7014.51 0.407201
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −1256.51 −0.0722909
\(672\) 0 0
\(673\) −5682.62 −0.325481 −0.162741 0.986669i \(-0.552033\pi\)
−0.162741 + 0.986669i \(0.552033\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 4491.71 0.254993 0.127497 0.991839i \(-0.459306\pi\)
0.127497 + 0.991839i \(0.459306\pi\)
\(678\) 0 0
\(679\) 7085.25 0.400452
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −11533.2 −0.646131 −0.323065 0.946377i \(-0.604713\pi\)
−0.323065 + 0.946377i \(0.604713\pi\)
\(684\) 0 0
\(685\) 6431.45 0.358734
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 2852.11 0.157702
\(690\) 0 0
\(691\) −28818.2 −1.58654 −0.793268 0.608873i \(-0.791622\pi\)
−0.793268 + 0.608873i \(0.791622\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −21434.3 −1.16985
\(696\) 0 0
\(697\) −5466.00 −0.297044
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −16494.8 −0.888730 −0.444365 0.895846i \(-0.646571\pi\)
−0.444365 + 0.895846i \(0.646571\pi\)
\(702\) 0 0
\(703\) 8461.45 0.453954
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 8535.36 0.454038
\(708\) 0 0
\(709\) 26363.9 1.39650 0.698248 0.715856i \(-0.253963\pi\)
0.698248 + 0.715856i \(0.253963\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −43669.8 −2.29375
\(714\) 0 0
\(715\) 1590.79 0.0832056
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −15410.9 −0.799348 −0.399674 0.916657i \(-0.630877\pi\)
−0.399674 + 0.916657i \(0.630877\pi\)
\(720\) 0 0
\(721\) −253.915 −0.0131155
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 12742.6 0.652759
\(726\) 0 0
\(727\) 3399.02 0.173401 0.0867005 0.996234i \(-0.472368\pi\)
0.0867005 + 0.996234i \(0.472368\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −6558.58 −0.331844
\(732\) 0 0
\(733\) −1731.67 −0.0872585 −0.0436293 0.999048i \(-0.513892\pi\)
−0.0436293 + 0.999048i \(0.513892\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −1070.16 −0.0534870
\(738\) 0 0
\(739\) 34116.1 1.69821 0.849107 0.528221i \(-0.177141\pi\)
0.849107 + 0.528221i \(0.177141\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 16893.3 0.834126 0.417063 0.908878i \(-0.363059\pi\)
0.417063 + 0.908878i \(0.363059\pi\)
\(744\) 0 0
\(745\) 7740.24 0.380645
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 7829.45 0.381952
\(750\) 0 0
\(751\) −32492.2 −1.57877 −0.789385 0.613898i \(-0.789601\pi\)
−0.789385 + 0.613898i \(0.789601\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −53688.4 −2.58797
\(756\) 0 0
\(757\) 31568.5 1.51569 0.757845 0.652434i \(-0.226252\pi\)
0.757845 + 0.652434i \(0.226252\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −21878.0 −1.04215 −0.521076 0.853510i \(-0.674469\pi\)
−0.521076 + 0.853510i \(0.674469\pi\)
\(762\) 0 0
\(763\) 3641.41 0.172776
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 8689.20 0.409060
\(768\) 0 0
\(769\) 12510.4 0.586653 0.293327 0.956012i \(-0.405238\pi\)
0.293327 + 0.956012i \(0.405238\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −3483.57 −0.162090 −0.0810448 0.996710i \(-0.525826\pi\)
−0.0810448 + 0.996710i \(0.525826\pi\)
\(774\) 0 0
\(775\) −79331.1 −3.67698
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 8443.39 0.388338
\(780\) 0 0
\(781\) 4861.33 0.222730
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 64666.4 2.94018
\(786\) 0 0
\(787\) 21827.4 0.988643 0.494322 0.869279i \(-0.335416\pi\)
0.494322 + 0.869279i \(0.335416\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −6826.05 −0.306835
\(792\) 0 0
\(793\) 3569.37 0.159839
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −31873.4 −1.41658 −0.708289 0.705922i \(-0.750533\pi\)
−0.708289 + 0.705922i \(0.750533\pi\)
\(798\) 0 0
\(799\) 5258.24 0.232820
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −4532.25 −0.199178
\(804\) 0 0
\(805\) −17890.8 −0.783316
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 19243.8 0.836312 0.418156 0.908375i \(-0.362677\pi\)
0.418156 + 0.908375i \(0.362677\pi\)
\(810\) 0 0
\(811\) −8969.81 −0.388376 −0.194188 0.980964i \(-0.562207\pi\)
−0.194188 + 0.980964i \(0.562207\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −1091.94 −0.0469313
\(816\) 0 0
\(817\) 10131.1 0.433835
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −3644.00 −0.154904 −0.0774522 0.996996i \(-0.524679\pi\)
−0.0774522 + 0.996996i \(0.524679\pi\)
\(822\) 0 0
\(823\) 7219.82 0.305793 0.152896 0.988242i \(-0.451140\pi\)
0.152896 + 0.988242i \(0.451140\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 5356.59 0.225232 0.112616 0.993639i \(-0.464077\pi\)
0.112616 + 0.993639i \(0.464077\pi\)
\(828\) 0 0
\(829\) −14161.8 −0.593319 −0.296659 0.954983i \(-0.595873\pi\)
−0.296659 + 0.954983i \(0.595873\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −5363.84 −0.223105
\(834\) 0 0
\(835\) 73330.9 3.03919
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −12912.5 −0.531333 −0.265667 0.964065i \(-0.585592\pi\)
−0.265667 + 0.964065i \(0.585592\pi\)
\(840\) 0 0
\(841\) −22591.4 −0.926294
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 40802.5 1.66112
\(846\) 0 0
\(847\) −6834.97 −0.277276
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −53308.7 −2.14735
\(852\) 0 0
\(853\) −6526.03 −0.261954 −0.130977 0.991385i \(-0.541811\pi\)
−0.130977 + 0.991385i \(0.541811\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 19431.8 0.774536 0.387268 0.921967i \(-0.373419\pi\)
0.387268 + 0.921967i \(0.373419\pi\)
\(858\) 0 0
\(859\) −8373.86 −0.332610 −0.166305 0.986074i \(-0.553184\pi\)
−0.166305 + 0.986074i \(0.553184\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 13066.9 0.515412 0.257706 0.966223i \(-0.417033\pi\)
0.257706 + 0.966223i \(0.417033\pi\)
\(864\) 0 0
\(865\) 2769.48 0.108862
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −532.283 −0.0207785
\(870\) 0 0
\(871\) 3040.00 0.118262
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −18983.4 −0.733435
\(876\) 0 0
\(877\) −40889.1 −1.57438 −0.787188 0.616713i \(-0.788464\pi\)
−0.787188 + 0.616713i \(0.788464\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −16437.8 −0.628608 −0.314304 0.949322i \(-0.601771\pi\)
−0.314304 + 0.949322i \(0.601771\pi\)
\(882\) 0 0
\(883\) 37873.1 1.44341 0.721705 0.692201i \(-0.243359\pi\)
0.721705 + 0.692201i \(0.243359\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 35145.6 1.33041 0.665205 0.746661i \(-0.268344\pi\)
0.665205 + 0.746661i \(0.268344\pi\)
\(888\) 0 0
\(889\) 11008.5 0.415313
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −8122.47 −0.304376
\(894\) 0 0
\(895\) 48865.4 1.82502
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −11191.3 −0.415184
\(900\) 0 0
\(901\) −3275.93 −0.121129
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −27246.3 −1.00077
\(906\) 0 0
\(907\) −4884.66 −0.178823 −0.0894116 0.995995i \(-0.528499\pi\)
−0.0894116 + 0.995995i \(0.528499\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 44687.5 1.62521 0.812603 0.582818i \(-0.198050\pi\)
0.812603 + 0.582818i \(0.198050\pi\)
\(912\) 0 0
\(913\) 1557.27 0.0564491
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −5049.52 −0.181843
\(918\) 0 0
\(919\) −43322.8 −1.55505 −0.777524 0.628853i \(-0.783525\pi\)
−0.777524 + 0.628853i \(0.783525\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −13809.5 −0.492467
\(924\) 0 0
\(925\) −96841.2 −3.44229
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 31035.2 1.09605 0.548025 0.836462i \(-0.315380\pi\)
0.548025 + 0.836462i \(0.315380\pi\)
\(930\) 0 0
\(931\) 8285.59 0.291675
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −1827.17 −0.0639090
\(936\) 0 0
\(937\) −28794.9 −1.00394 −0.501968 0.864886i \(-0.667390\pi\)
−0.501968 + 0.864886i \(0.667390\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −11949.5 −0.413966 −0.206983 0.978344i \(-0.566365\pi\)
−0.206983 + 0.978344i \(0.566365\pi\)
\(942\) 0 0
\(943\) −53194.8 −1.83697
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −20143.1 −0.691197 −0.345599 0.938382i \(-0.612324\pi\)
−0.345599 + 0.938382i \(0.612324\pi\)
\(948\) 0 0
\(949\) 12874.7 0.440391
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −36544.6 −1.24218 −0.621090 0.783739i \(-0.713310\pi\)
−0.621090 + 0.783739i \(0.713310\pi\)
\(954\) 0 0
\(955\) 11336.2 0.384117
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −1634.34 −0.0550320
\(960\) 0 0
\(961\) 39881.9 1.33872
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −86459.0 −2.88416
\(966\) 0 0
\(967\) 40645.1 1.35166 0.675831 0.737056i \(-0.263785\pi\)
0.675831 + 0.737056i \(0.263785\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 711.265 0.0235073 0.0117536 0.999931i \(-0.496259\pi\)
0.0117536 + 0.999931i \(0.496259\pi\)
\(972\) 0 0
\(973\) 5446.83 0.179463
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 57865.1 1.89485 0.947425 0.319979i \(-0.103676\pi\)
0.947425 + 0.319979i \(0.103676\pi\)
\(978\) 0 0
\(979\) 3470.67 0.113302
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 4983.77 0.161707 0.0808534 0.996726i \(-0.474235\pi\)
0.0808534 + 0.996726i \(0.474235\pi\)
\(984\) 0 0
\(985\) −81759.4 −2.64474
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −63827.8 −2.05218
\(990\) 0 0
\(991\) −20463.6 −0.655952 −0.327976 0.944686i \(-0.606367\pi\)
−0.327976 + 0.944686i \(0.606367\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −94965.3 −3.02573
\(996\) 0 0
\(997\) 37140.8 1.17980 0.589900 0.807476i \(-0.299167\pi\)
0.589900 + 0.807476i \(0.299167\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2448.4.a.bo.1.1 4
3.2 odd 2 2448.4.a.bs.1.4 4
4.3 odd 2 153.4.a.h.1.4 4
12.11 even 2 153.4.a.i.1.1 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
153.4.a.h.1.4 4 4.3 odd 2
153.4.a.i.1.1 yes 4 12.11 even 2
2448.4.a.bo.1.1 4 1.1 even 1 trivial
2448.4.a.bs.1.4 4 3.2 odd 2