Properties

Label 2448.4.a.bd.1.3
Level $2448$
Weight $4$
Character 2448.1
Self dual yes
Analytic conductor $144.437$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2448,4,Mod(1,2448)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2448, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2448.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2448 = 2^{4} \cdot 3^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2448.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(144.436675694\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.5912.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 14x - 10 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 51)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-2.75985\) of defining polynomial
Character \(\chi\) \(=\) 2448.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+7.65616 q^{5} +31.5852 q^{7} -7.18910 q^{11} +84.3331 q^{13} -17.0000 q^{17} +37.0838 q^{19} +150.218 q^{23} -66.3832 q^{25} +11.5846 q^{29} +53.2865 q^{31} +241.822 q^{35} -99.2134 q^{37} -118.249 q^{41} +456.016 q^{43} +571.014 q^{47} +654.627 q^{49} -462.867 q^{53} -55.0409 q^{55} +48.0674 q^{59} +59.5236 q^{61} +645.668 q^{65} +740.787 q^{67} -930.437 q^{71} -697.419 q^{73} -227.070 q^{77} -1036.04 q^{79} -22.2043 q^{83} -130.155 q^{85} +369.726 q^{89} +2663.68 q^{91} +283.920 q^{95} +1139.56 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 8 q^{5} + 8 q^{7} + 34 q^{11} + 36 q^{13} - 51 q^{17} + 142 q^{19} + 110 q^{23} - 193 q^{25} - 90 q^{29} + 148 q^{31} + 416 q^{35} + 110 q^{37} - 720 q^{41} + 146 q^{43} + 500 q^{47} + 379 q^{49}+ \cdots + 402 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 7.65616 0.684788 0.342394 0.939557i \(-0.388762\pi\)
0.342394 + 0.939557i \(0.388762\pi\)
\(6\) 0 0
\(7\) 31.5852 1.70544 0.852721 0.522366i \(-0.174951\pi\)
0.852721 + 0.522366i \(0.174951\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −7.18910 −0.197054 −0.0985271 0.995134i \(-0.531413\pi\)
−0.0985271 + 0.995134i \(0.531413\pi\)
\(12\) 0 0
\(13\) 84.3331 1.79921 0.899607 0.436700i \(-0.143853\pi\)
0.899607 + 0.436700i \(0.143853\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −17.0000 −0.242536
\(18\) 0 0
\(19\) 37.0838 0.447769 0.223885 0.974616i \(-0.428126\pi\)
0.223885 + 0.974616i \(0.428126\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 150.218 1.36185 0.680925 0.732353i \(-0.261578\pi\)
0.680925 + 0.732353i \(0.261578\pi\)
\(24\) 0 0
\(25\) −66.3832 −0.531066
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 11.5846 0.0741792 0.0370896 0.999312i \(-0.488191\pi\)
0.0370896 + 0.999312i \(0.488191\pi\)
\(30\) 0 0
\(31\) 53.2865 0.308727 0.154364 0.988014i \(-0.450667\pi\)
0.154364 + 0.988014i \(0.450667\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 241.822 1.16787
\(36\) 0 0
\(37\) −99.2134 −0.440827 −0.220413 0.975407i \(-0.570741\pi\)
−0.220413 + 0.975407i \(0.570741\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −118.249 −0.450425 −0.225213 0.974310i \(-0.572308\pi\)
−0.225213 + 0.974310i \(0.572308\pi\)
\(42\) 0 0
\(43\) 456.016 1.61725 0.808626 0.588323i \(-0.200211\pi\)
0.808626 + 0.588323i \(0.200211\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 571.014 1.77215 0.886073 0.463545i \(-0.153423\pi\)
0.886073 + 0.463545i \(0.153423\pi\)
\(48\) 0 0
\(49\) 654.627 1.90853
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −462.867 −1.19962 −0.599809 0.800143i \(-0.704757\pi\)
−0.599809 + 0.800143i \(0.704757\pi\)
\(54\) 0 0
\(55\) −55.0409 −0.134940
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 48.0674 0.106065 0.0530325 0.998593i \(-0.483111\pi\)
0.0530325 + 0.998593i \(0.483111\pi\)
\(60\) 0 0
\(61\) 59.5236 0.124938 0.0624689 0.998047i \(-0.480103\pi\)
0.0624689 + 0.998047i \(0.480103\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 645.668 1.23208
\(66\) 0 0
\(67\) 740.787 1.35077 0.675384 0.737466i \(-0.263978\pi\)
0.675384 + 0.737466i \(0.263978\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −930.437 −1.55525 −0.777623 0.628730i \(-0.783575\pi\)
−0.777623 + 0.628730i \(0.783575\pi\)
\(72\) 0 0
\(73\) −697.419 −1.11817 −0.559087 0.829109i \(-0.688848\pi\)
−0.559087 + 0.829109i \(0.688848\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −227.070 −0.336065
\(78\) 0 0
\(79\) −1036.04 −1.47549 −0.737747 0.675077i \(-0.764110\pi\)
−0.737747 + 0.675077i \(0.764110\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −22.2043 −0.0293643 −0.0146822 0.999892i \(-0.504674\pi\)
−0.0146822 + 0.999892i \(0.504674\pi\)
\(84\) 0 0
\(85\) −130.155 −0.166085
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 369.726 0.440346 0.220173 0.975461i \(-0.429338\pi\)
0.220173 + 0.975461i \(0.429338\pi\)
\(90\) 0 0
\(91\) 2663.68 3.06846
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 283.920 0.306627
\(96\) 0 0
\(97\) 1139.56 1.19283 0.596415 0.802676i \(-0.296591\pi\)
0.596415 + 0.802676i \(0.296591\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −703.083 −0.692667 −0.346334 0.938111i \(-0.612573\pi\)
−0.346334 + 0.938111i \(0.612573\pi\)
\(102\) 0 0
\(103\) 897.160 0.858250 0.429125 0.903245i \(-0.358822\pi\)
0.429125 + 0.903245i \(0.358822\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −1901.21 −1.71773 −0.858864 0.512203i \(-0.828829\pi\)
−0.858864 + 0.512203i \(0.828829\pi\)
\(108\) 0 0
\(109\) 584.555 0.513671 0.256836 0.966455i \(-0.417320\pi\)
0.256836 + 0.966455i \(0.417320\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 63.4225 0.0527990 0.0263995 0.999651i \(-0.491596\pi\)
0.0263995 + 0.999651i \(0.491596\pi\)
\(114\) 0 0
\(115\) 1150.09 0.932578
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −536.949 −0.413631
\(120\) 0 0
\(121\) −1279.32 −0.961170
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −1465.26 −1.04845
\(126\) 0 0
\(127\) −175.543 −0.122653 −0.0613266 0.998118i \(-0.519533\pi\)
−0.0613266 + 0.998118i \(0.519533\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 1865.42 1.24414 0.622070 0.782961i \(-0.286292\pi\)
0.622070 + 0.782961i \(0.286292\pi\)
\(132\) 0 0
\(133\) 1171.30 0.763644
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −1057.57 −0.659519 −0.329760 0.944065i \(-0.606968\pi\)
−0.329760 + 0.944065i \(0.606968\pi\)
\(138\) 0 0
\(139\) −904.833 −0.552136 −0.276068 0.961138i \(-0.589032\pi\)
−0.276068 + 0.961138i \(0.589032\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −606.279 −0.354543
\(144\) 0 0
\(145\) 88.6932 0.0507970
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −809.001 −0.444805 −0.222402 0.974955i \(-0.571390\pi\)
−0.222402 + 0.974955i \(0.571390\pi\)
\(150\) 0 0
\(151\) 352.121 0.189769 0.0948847 0.995488i \(-0.469752\pi\)
0.0948847 + 0.995488i \(0.469752\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 407.970 0.211413
\(156\) 0 0
\(157\) 537.882 0.273424 0.136712 0.990611i \(-0.456346\pi\)
0.136712 + 0.990611i \(0.456346\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 4744.66 2.32256
\(162\) 0 0
\(163\) −1922.74 −0.923933 −0.461966 0.886897i \(-0.652856\pi\)
−0.461966 + 0.886897i \(0.652856\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −2971.76 −1.37702 −0.688509 0.725228i \(-0.741734\pi\)
−0.688509 + 0.725228i \(0.741734\pi\)
\(168\) 0 0
\(169\) 4915.07 2.23717
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −988.564 −0.434446 −0.217223 0.976122i \(-0.569700\pi\)
−0.217223 + 0.976122i \(0.569700\pi\)
\(174\) 0 0
\(175\) −2096.73 −0.905702
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −1937.65 −0.809089 −0.404545 0.914518i \(-0.632570\pi\)
−0.404545 + 0.914518i \(0.632570\pi\)
\(180\) 0 0
\(181\) −2180.07 −0.895267 −0.447634 0.894217i \(-0.647733\pi\)
−0.447634 + 0.894217i \(0.647733\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −759.594 −0.301873
\(186\) 0 0
\(187\) 122.215 0.0477927
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 1675.78 0.634845 0.317423 0.948284i \(-0.397183\pi\)
0.317423 + 0.948284i \(0.397183\pi\)
\(192\) 0 0
\(193\) −257.961 −0.0962094 −0.0481047 0.998842i \(-0.515318\pi\)
−0.0481047 + 0.998842i \(0.515318\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 693.466 0.250799 0.125399 0.992106i \(-0.459979\pi\)
0.125399 + 0.992106i \(0.459979\pi\)
\(198\) 0 0
\(199\) 240.295 0.0855984 0.0427992 0.999084i \(-0.486372\pi\)
0.0427992 + 0.999084i \(0.486372\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 365.901 0.126508
\(204\) 0 0
\(205\) −905.335 −0.308446
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −266.599 −0.0882348
\(210\) 0 0
\(211\) −268.114 −0.0874774 −0.0437387 0.999043i \(-0.513927\pi\)
−0.0437387 + 0.999043i \(0.513927\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 3491.33 1.10747
\(216\) 0 0
\(217\) 1683.07 0.526516
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −1433.66 −0.436374
\(222\) 0 0
\(223\) 5524.43 1.65894 0.829468 0.558554i \(-0.188643\pi\)
0.829468 + 0.558554i \(0.188643\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −384.400 −0.112394 −0.0561972 0.998420i \(-0.517898\pi\)
−0.0561972 + 0.998420i \(0.517898\pi\)
\(228\) 0 0
\(229\) 1395.48 0.402690 0.201345 0.979520i \(-0.435469\pi\)
0.201345 + 0.979520i \(0.435469\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −3409.39 −0.958613 −0.479307 0.877648i \(-0.659112\pi\)
−0.479307 + 0.877648i \(0.659112\pi\)
\(234\) 0 0
\(235\) 4371.77 1.21354
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −1509.18 −0.408456 −0.204228 0.978923i \(-0.565468\pi\)
−0.204228 + 0.978923i \(0.565468\pi\)
\(240\) 0 0
\(241\) 3406.91 0.910615 0.455307 0.890334i \(-0.349529\pi\)
0.455307 + 0.890334i \(0.349529\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 5011.93 1.30694
\(246\) 0 0
\(247\) 3127.39 0.805633
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 3394.43 0.853605 0.426802 0.904345i \(-0.359640\pi\)
0.426802 + 0.904345i \(0.359640\pi\)
\(252\) 0 0
\(253\) −1079.93 −0.268358
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −1778.91 −0.431772 −0.215886 0.976419i \(-0.569264\pi\)
−0.215886 + 0.976419i \(0.569264\pi\)
\(258\) 0 0
\(259\) −3133.68 −0.751804
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −4316.88 −1.01213 −0.506065 0.862495i \(-0.668900\pi\)
−0.506065 + 0.862495i \(0.668900\pi\)
\(264\) 0 0
\(265\) −3543.79 −0.821483
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −6546.31 −1.48378 −0.741888 0.670524i \(-0.766069\pi\)
−0.741888 + 0.670524i \(0.766069\pi\)
\(270\) 0 0
\(271\) −3785.20 −0.848466 −0.424233 0.905553i \(-0.639456\pi\)
−0.424233 + 0.905553i \(0.639456\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 477.236 0.104649
\(276\) 0 0
\(277\) −3521.06 −0.763755 −0.381878 0.924213i \(-0.624722\pi\)
−0.381878 + 0.924213i \(0.624722\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 2922.30 0.620391 0.310195 0.950673i \(-0.399606\pi\)
0.310195 + 0.950673i \(0.399606\pi\)
\(282\) 0 0
\(283\) −735.075 −0.154402 −0.0772008 0.997016i \(-0.524598\pi\)
−0.0772008 + 0.997016i \(0.524598\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −3734.93 −0.768175
\(288\) 0 0
\(289\) 289.000 0.0588235
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 8702.92 1.73526 0.867628 0.497213i \(-0.165643\pi\)
0.867628 + 0.497213i \(0.165643\pi\)
\(294\) 0 0
\(295\) 368.011 0.0726320
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 12668.3 2.45026
\(300\) 0 0
\(301\) 14403.4 2.75813
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 455.722 0.0855559
\(306\) 0 0
\(307\) −2516.95 −0.467916 −0.233958 0.972247i \(-0.575168\pi\)
−0.233958 + 0.972247i \(0.575168\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 6593.31 1.20216 0.601081 0.799188i \(-0.294737\pi\)
0.601081 + 0.799188i \(0.294737\pi\)
\(312\) 0 0
\(313\) 4392.99 0.793312 0.396656 0.917967i \(-0.370171\pi\)
0.396656 + 0.917967i \(0.370171\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −2601.23 −0.460882 −0.230441 0.973086i \(-0.574017\pi\)
−0.230441 + 0.973086i \(0.574017\pi\)
\(318\) 0 0
\(319\) −83.2825 −0.0146173
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −630.425 −0.108600
\(324\) 0 0
\(325\) −5598.30 −0.955502
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 18035.6 3.02229
\(330\) 0 0
\(331\) 4670.49 0.775568 0.387784 0.921750i \(-0.373241\pi\)
0.387784 + 0.921750i \(0.373241\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 5671.58 0.924989
\(336\) 0 0
\(337\) 1801.67 0.291226 0.145613 0.989342i \(-0.453485\pi\)
0.145613 + 0.989342i \(0.453485\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −383.082 −0.0608360
\(342\) 0 0
\(343\) 9842.83 1.54945
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 168.340 0.0260431 0.0130216 0.999915i \(-0.495855\pi\)
0.0130216 + 0.999915i \(0.495855\pi\)
\(348\) 0 0
\(349\) −4447.85 −0.682200 −0.341100 0.940027i \(-0.610799\pi\)
−0.341100 + 0.940027i \(0.610799\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 10509.5 1.58460 0.792298 0.610135i \(-0.208885\pi\)
0.792298 + 0.610135i \(0.208885\pi\)
\(354\) 0 0
\(355\) −7123.57 −1.06501
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 8342.99 1.22654 0.613268 0.789875i \(-0.289855\pi\)
0.613268 + 0.789875i \(0.289855\pi\)
\(360\) 0 0
\(361\) −5483.79 −0.799503
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −5339.55 −0.765712
\(366\) 0 0
\(367\) −352.402 −0.0501232 −0.0250616 0.999686i \(-0.507978\pi\)
−0.0250616 + 0.999686i \(0.507978\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −14619.8 −2.04588
\(372\) 0 0
\(373\) 12563.2 1.74397 0.871983 0.489537i \(-0.162834\pi\)
0.871983 + 0.489537i \(0.162834\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 976.961 0.133464
\(378\) 0 0
\(379\) 1770.57 0.239969 0.119984 0.992776i \(-0.461716\pi\)
0.119984 + 0.992776i \(0.461716\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 4330.57 0.577759 0.288880 0.957365i \(-0.406717\pi\)
0.288880 + 0.957365i \(0.406717\pi\)
\(384\) 0 0
\(385\) −1738.48 −0.230133
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −10295.5 −1.34191 −0.670957 0.741496i \(-0.734117\pi\)
−0.670957 + 0.741496i \(0.734117\pi\)
\(390\) 0 0
\(391\) −2553.70 −0.330297
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −7932.12 −1.01040
\(396\) 0 0
\(397\) 93.1792 0.0117797 0.00588983 0.999983i \(-0.498125\pi\)
0.00588983 + 0.999983i \(0.498125\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 13320.9 1.65889 0.829443 0.558591i \(-0.188658\pi\)
0.829443 + 0.558591i \(0.188658\pi\)
\(402\) 0 0
\(403\) 4493.82 0.555466
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 713.255 0.0868667
\(408\) 0 0
\(409\) 9272.21 1.12098 0.560491 0.828161i \(-0.310613\pi\)
0.560491 + 0.828161i \(0.310613\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 1518.22 0.180888
\(414\) 0 0
\(415\) −170.000 −0.0201083
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 11325.4 1.32049 0.660244 0.751051i \(-0.270453\pi\)
0.660244 + 0.751051i \(0.270453\pi\)
\(420\) 0 0
\(421\) 6934.54 0.802776 0.401388 0.915908i \(-0.368528\pi\)
0.401388 + 0.915908i \(0.368528\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 1128.52 0.128802
\(426\) 0 0
\(427\) 1880.07 0.213074
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −2776.55 −0.310306 −0.155153 0.987890i \(-0.549587\pi\)
−0.155153 + 0.987890i \(0.549587\pi\)
\(432\) 0 0
\(433\) −3252.22 −0.360951 −0.180476 0.983579i \(-0.557764\pi\)
−0.180476 + 0.983579i \(0.557764\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 5570.65 0.609795
\(438\) 0 0
\(439\) 13345.7 1.45093 0.725464 0.688260i \(-0.241625\pi\)
0.725464 + 0.688260i \(0.241625\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 11639.6 1.24834 0.624169 0.781290i \(-0.285438\pi\)
0.624169 + 0.781290i \(0.285438\pi\)
\(444\) 0 0
\(445\) 2830.68 0.301544
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 6937.72 0.729201 0.364601 0.931164i \(-0.381206\pi\)
0.364601 + 0.931164i \(0.381206\pi\)
\(450\) 0 0
\(451\) 850.106 0.0887582
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 20393.6 2.10124
\(456\) 0 0
\(457\) −10285.8 −1.05284 −0.526422 0.850224i \(-0.676467\pi\)
−0.526422 + 0.850224i \(0.676467\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 625.833 0.0632277 0.0316138 0.999500i \(-0.489935\pi\)
0.0316138 + 0.999500i \(0.489935\pi\)
\(462\) 0 0
\(463\) 6055.97 0.607872 0.303936 0.952692i \(-0.401699\pi\)
0.303936 + 0.952692i \(0.401699\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −815.966 −0.0808531 −0.0404265 0.999183i \(-0.512872\pi\)
−0.0404265 + 0.999183i \(0.512872\pi\)
\(468\) 0 0
\(469\) 23397.9 2.30366
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −3278.35 −0.318686
\(474\) 0 0
\(475\) −2461.74 −0.237795
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −16219.1 −1.54712 −0.773559 0.633724i \(-0.781525\pi\)
−0.773559 + 0.633724i \(0.781525\pi\)
\(480\) 0 0
\(481\) −8366.97 −0.793142
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 8724.63 0.816835
\(486\) 0 0
\(487\) −2725.13 −0.253568 −0.126784 0.991930i \(-0.540465\pi\)
−0.126784 + 0.991930i \(0.540465\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −8344.13 −0.766935 −0.383468 0.923554i \(-0.625270\pi\)
−0.383468 + 0.923554i \(0.625270\pi\)
\(492\) 0 0
\(493\) −196.937 −0.0179911
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −29388.1 −2.65238
\(498\) 0 0
\(499\) −13762.0 −1.23461 −0.617306 0.786723i \(-0.711776\pi\)
−0.617306 + 0.786723i \(0.711776\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −11909.5 −1.05570 −0.527852 0.849336i \(-0.677003\pi\)
−0.527852 + 0.849336i \(0.677003\pi\)
\(504\) 0 0
\(505\) −5382.92 −0.474330
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −742.666 −0.0646721 −0.0323360 0.999477i \(-0.510295\pi\)
−0.0323360 + 0.999477i \(0.510295\pi\)
\(510\) 0 0
\(511\) −22028.1 −1.90698
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 6868.80 0.587719
\(516\) 0 0
\(517\) −4105.07 −0.349209
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 4815.73 0.404953 0.202477 0.979287i \(-0.435101\pi\)
0.202477 + 0.979287i \(0.435101\pi\)
\(522\) 0 0
\(523\) 16249.5 1.35858 0.679291 0.733869i \(-0.262287\pi\)
0.679291 + 0.733869i \(0.262287\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −905.871 −0.0748773
\(528\) 0 0
\(529\) 10398.4 0.854637
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −9972.33 −0.810412
\(534\) 0 0
\(535\) −14556.0 −1.17628
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −4706.18 −0.376085
\(540\) 0 0
\(541\) −5458.04 −0.433751 −0.216876 0.976199i \(-0.569587\pi\)
−0.216876 + 0.976199i \(0.569587\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 4475.44 0.351756
\(546\) 0 0
\(547\) −17237.0 −1.34735 −0.673677 0.739026i \(-0.735286\pi\)
−0.673677 + 0.739026i \(0.735286\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 429.600 0.0332152
\(552\) 0 0
\(553\) −32723.7 −2.51637
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 8452.71 0.643003 0.321502 0.946909i \(-0.395812\pi\)
0.321502 + 0.946909i \(0.395812\pi\)
\(558\) 0 0
\(559\) 38457.3 2.90978
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −8547.32 −0.639834 −0.319917 0.947446i \(-0.603655\pi\)
−0.319917 + 0.947446i \(0.603655\pi\)
\(564\) 0 0
\(565\) 485.573 0.0361561
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −19464.8 −1.43411 −0.717055 0.697017i \(-0.754510\pi\)
−0.717055 + 0.697017i \(0.754510\pi\)
\(570\) 0 0
\(571\) 3839.06 0.281366 0.140683 0.990055i \(-0.455070\pi\)
0.140683 + 0.990055i \(0.455070\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −9971.94 −0.723232
\(576\) 0 0
\(577\) −18797.7 −1.35625 −0.678127 0.734945i \(-0.737208\pi\)
−0.678127 + 0.734945i \(0.737208\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −701.328 −0.0500791
\(582\) 0 0
\(583\) 3327.60 0.236390
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 4217.92 0.296580 0.148290 0.988944i \(-0.452623\pi\)
0.148290 + 0.988944i \(0.452623\pi\)
\(588\) 0 0
\(589\) 1976.07 0.138238
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 3011.92 0.208575 0.104287 0.994547i \(-0.466744\pi\)
0.104287 + 0.994547i \(0.466744\pi\)
\(594\) 0 0
\(595\) −4110.97 −0.283249
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 15137.1 1.03253 0.516266 0.856428i \(-0.327322\pi\)
0.516266 + 0.856428i \(0.327322\pi\)
\(600\) 0 0
\(601\) −18980.1 −1.28821 −0.644104 0.764938i \(-0.722770\pi\)
−0.644104 + 0.764938i \(0.722770\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −9794.65 −0.658197
\(606\) 0 0
\(607\) 4593.63 0.307166 0.153583 0.988136i \(-0.450919\pi\)
0.153583 + 0.988136i \(0.450919\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 48155.3 3.18847
\(612\) 0 0
\(613\) −25654.3 −1.69032 −0.845160 0.534513i \(-0.820495\pi\)
−0.845160 + 0.534513i \(0.820495\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 7170.97 0.467897 0.233948 0.972249i \(-0.424835\pi\)
0.233948 + 0.972249i \(0.424835\pi\)
\(618\) 0 0
\(619\) 13560.6 0.880525 0.440263 0.897869i \(-0.354885\pi\)
0.440263 + 0.897869i \(0.354885\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 11677.9 0.750985
\(624\) 0 0
\(625\) −2920.36 −0.186903
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 1686.63 0.106916
\(630\) 0 0
\(631\) 1414.98 0.0892700 0.0446350 0.999003i \(-0.485788\pi\)
0.0446350 + 0.999003i \(0.485788\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −1343.99 −0.0839914
\(636\) 0 0
\(637\) 55206.7 3.43386
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 21708.4 1.33764 0.668822 0.743422i \(-0.266799\pi\)
0.668822 + 0.743422i \(0.266799\pi\)
\(642\) 0 0
\(643\) −7537.23 −0.462270 −0.231135 0.972922i \(-0.574244\pi\)
−0.231135 + 0.972922i \(0.574244\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −32667.3 −1.98498 −0.992491 0.122316i \(-0.960968\pi\)
−0.992491 + 0.122316i \(0.960968\pi\)
\(648\) 0 0
\(649\) −345.561 −0.0209006
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 25845.8 1.54889 0.774443 0.632644i \(-0.218030\pi\)
0.774443 + 0.632644i \(0.218030\pi\)
\(654\) 0 0
\(655\) 14281.9 0.851972
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −15741.2 −0.930485 −0.465243 0.885183i \(-0.654033\pi\)
−0.465243 + 0.885183i \(0.654033\pi\)
\(660\) 0 0
\(661\) 23495.2 1.38254 0.691269 0.722598i \(-0.257052\pi\)
0.691269 + 0.722598i \(0.257052\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 8967.67 0.522934
\(666\) 0 0
\(667\) 1740.21 0.101021
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −427.921 −0.0246195
\(672\) 0 0
\(673\) −7057.34 −0.404221 −0.202110 0.979363i \(-0.564780\pi\)
−0.202110 + 0.979363i \(0.564780\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −20756.4 −1.17833 −0.589167 0.808011i \(-0.700544\pi\)
−0.589167 + 0.808011i \(0.700544\pi\)
\(678\) 0 0
\(679\) 35993.2 2.03430
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −7013.65 −0.392928 −0.196464 0.980511i \(-0.562946\pi\)
−0.196464 + 0.980511i \(0.562946\pi\)
\(684\) 0 0
\(685\) −8096.91 −0.451631
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −39035.0 −2.15837
\(690\) 0 0
\(691\) 4897.47 0.269622 0.134811 0.990871i \(-0.456957\pi\)
0.134811 + 0.990871i \(0.456957\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −6927.54 −0.378096
\(696\) 0 0
\(697\) 2010.24 0.109244
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −17525.5 −0.944264 −0.472132 0.881528i \(-0.656515\pi\)
−0.472132 + 0.881528i \(0.656515\pi\)
\(702\) 0 0
\(703\) −3679.21 −0.197388
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −22207.1 −1.18130
\(708\) 0 0
\(709\) 32564.3 1.72493 0.862466 0.506115i \(-0.168919\pi\)
0.862466 + 0.506115i \(0.168919\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 8004.58 0.420440
\(714\) 0 0
\(715\) −4641.77 −0.242786
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 14498.2 0.752007 0.376004 0.926618i \(-0.377298\pi\)
0.376004 + 0.926618i \(0.377298\pi\)
\(720\) 0 0
\(721\) 28337.0 1.46370
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −769.020 −0.0393941
\(726\) 0 0
\(727\) 25787.6 1.31556 0.657778 0.753212i \(-0.271497\pi\)
0.657778 + 0.753212i \(0.271497\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −7752.28 −0.392241
\(732\) 0 0
\(733\) −4177.45 −0.210502 −0.105251 0.994446i \(-0.533565\pi\)
−0.105251 + 0.994446i \(0.533565\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −5325.59 −0.266175
\(738\) 0 0
\(739\) −14115.5 −0.702636 −0.351318 0.936256i \(-0.614266\pi\)
−0.351318 + 0.936256i \(0.614266\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 17992.0 0.888376 0.444188 0.895934i \(-0.353492\pi\)
0.444188 + 0.895934i \(0.353492\pi\)
\(744\) 0 0
\(745\) −6193.84 −0.304597
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −60050.2 −2.92949
\(750\) 0 0
\(751\) −2055.99 −0.0998989 −0.0499495 0.998752i \(-0.515906\pi\)
−0.0499495 + 0.998752i \(0.515906\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 2695.89 0.129952
\(756\) 0 0
\(757\) 12132.4 0.582508 0.291254 0.956646i \(-0.405927\pi\)
0.291254 + 0.956646i \(0.405927\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −9319.01 −0.443908 −0.221954 0.975057i \(-0.571243\pi\)
−0.221954 + 0.975057i \(0.571243\pi\)
\(762\) 0 0
\(763\) 18463.3 0.876037
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 4053.67 0.190834
\(768\) 0 0
\(769\) 38790.8 1.81903 0.909514 0.415672i \(-0.136454\pi\)
0.909514 + 0.415672i \(0.136454\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −12857.4 −0.598252 −0.299126 0.954214i \(-0.596695\pi\)
−0.299126 + 0.954214i \(0.596695\pi\)
\(774\) 0 0
\(775\) −3537.33 −0.163954
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −4385.14 −0.201687
\(780\) 0 0
\(781\) 6689.00 0.306468
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 4118.11 0.187238
\(786\) 0 0
\(787\) 26862.0 1.21668 0.608339 0.793677i \(-0.291836\pi\)
0.608339 + 0.793677i \(0.291836\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 2003.22 0.0900457
\(792\) 0 0
\(793\) 5019.81 0.224790
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 12471.5 0.554285 0.277142 0.960829i \(-0.410613\pi\)
0.277142 + 0.960829i \(0.410613\pi\)
\(798\) 0 0
\(799\) −9707.23 −0.429809
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 5013.82 0.220341
\(804\) 0 0
\(805\) 36325.9 1.59046
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 24760.8 1.07607 0.538037 0.842921i \(-0.319166\pi\)
0.538037 + 0.842921i \(0.319166\pi\)
\(810\) 0 0
\(811\) −11237.3 −0.486556 −0.243278 0.969957i \(-0.578223\pi\)
−0.243278 + 0.969957i \(0.578223\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −14720.8 −0.632698
\(816\) 0 0
\(817\) 16910.8 0.724156
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −39976.4 −1.69937 −0.849687 0.527287i \(-0.823209\pi\)
−0.849687 + 0.527287i \(0.823209\pi\)
\(822\) 0 0
\(823\) −36877.0 −1.56191 −0.780955 0.624588i \(-0.785267\pi\)
−0.780955 + 0.624588i \(0.785267\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −14311.9 −0.601781 −0.300890 0.953659i \(-0.597284\pi\)
−0.300890 + 0.953659i \(0.597284\pi\)
\(828\) 0 0
\(829\) −12629.7 −0.529130 −0.264565 0.964368i \(-0.585228\pi\)
−0.264565 + 0.964368i \(0.585228\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −11128.7 −0.462888
\(834\) 0 0
\(835\) −22752.3 −0.942965
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −18683.1 −0.768786 −0.384393 0.923170i \(-0.625589\pi\)
−0.384393 + 0.923170i \(0.625589\pi\)
\(840\) 0 0
\(841\) −24254.8 −0.994497
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 37630.6 1.53199
\(846\) 0 0
\(847\) −40407.5 −1.63922
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −14903.6 −0.600340
\(852\) 0 0
\(853\) −35648.7 −1.43094 −0.715468 0.698646i \(-0.753786\pi\)
−0.715468 + 0.698646i \(0.753786\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 49860.8 1.98741 0.993707 0.112010i \(-0.0357290\pi\)
0.993707 + 0.112010i \(0.0357290\pi\)
\(858\) 0 0
\(859\) −21487.0 −0.853466 −0.426733 0.904378i \(-0.640336\pi\)
−0.426733 + 0.904378i \(0.640336\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −15067.6 −0.594330 −0.297165 0.954826i \(-0.596041\pi\)
−0.297165 + 0.954826i \(0.596041\pi\)
\(864\) 0 0
\(865\) −7568.60 −0.297503
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 7448.23 0.290752
\(870\) 0 0
\(871\) 62472.8 2.43032
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −46280.6 −1.78808
\(876\) 0 0
\(877\) −24852.6 −0.956912 −0.478456 0.878111i \(-0.658803\pi\)
−0.478456 + 0.878111i \(0.658803\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −1840.51 −0.0703842 −0.0351921 0.999381i \(-0.511204\pi\)
−0.0351921 + 0.999381i \(0.511204\pi\)
\(882\) 0 0
\(883\) −49803.7 −1.89811 −0.949054 0.315115i \(-0.897957\pi\)
−0.949054 + 0.315115i \(0.897957\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 36314.7 1.37467 0.687333 0.726342i \(-0.258781\pi\)
0.687333 + 0.726342i \(0.258781\pi\)
\(888\) 0 0
\(889\) −5544.58 −0.209178
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 21175.4 0.793512
\(894\) 0 0
\(895\) −14835.0 −0.554054
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 617.300 0.0229011
\(900\) 0 0
\(901\) 7868.75 0.290950
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −16691.0 −0.613068
\(906\) 0 0
\(907\) −33679.5 −1.23297 −0.616487 0.787365i \(-0.711445\pi\)
−0.616487 + 0.787365i \(0.711445\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 32437.2 1.17968 0.589841 0.807519i \(-0.299190\pi\)
0.589841 + 0.807519i \(0.299190\pi\)
\(912\) 0 0
\(913\) 159.629 0.00578636
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 58919.7 2.12181
\(918\) 0 0
\(919\) 3511.45 0.126042 0.0630208 0.998012i \(-0.479927\pi\)
0.0630208 + 0.998012i \(0.479927\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −78466.6 −2.79822
\(924\) 0 0
\(925\) 6586.11 0.234108
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −13527.2 −0.477733 −0.238866 0.971052i \(-0.576776\pi\)
−0.238866 + 0.971052i \(0.576776\pi\)
\(930\) 0 0
\(931\) 24276.1 0.854583
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 935.695 0.0327278
\(936\) 0 0
\(937\) −8862.80 −0.309002 −0.154501 0.987993i \(-0.549377\pi\)
−0.154501 + 0.987993i \(0.549377\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −22824.0 −0.790693 −0.395346 0.918532i \(-0.629375\pi\)
−0.395346 + 0.918532i \(0.629375\pi\)
\(942\) 0 0
\(943\) −17763.1 −0.613412
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −26308.4 −0.902754 −0.451377 0.892333i \(-0.649067\pi\)
−0.451377 + 0.892333i \(0.649067\pi\)
\(948\) 0 0
\(949\) −58815.5 −2.01184
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −11947.5 −0.406106 −0.203053 0.979168i \(-0.565086\pi\)
−0.203053 + 0.979168i \(0.565086\pi\)
\(954\) 0 0
\(955\) 12830.1 0.434734
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −33403.5 −1.12477
\(960\) 0 0
\(961\) −26951.5 −0.904688
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −1974.99 −0.0658830
\(966\) 0 0
\(967\) −21505.3 −0.715163 −0.357581 0.933882i \(-0.616399\pi\)
−0.357581 + 0.933882i \(0.616399\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 45685.3 1.50990 0.754950 0.655783i \(-0.227661\pi\)
0.754950 + 0.655783i \(0.227661\pi\)
\(972\) 0 0
\(973\) −28579.4 −0.941636
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −31710.3 −1.03839 −0.519193 0.854657i \(-0.673767\pi\)
−0.519193 + 0.854657i \(0.673767\pi\)
\(978\) 0 0
\(979\) −2657.99 −0.0867721
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 46038.9 1.49381 0.746904 0.664932i \(-0.231540\pi\)
0.746904 + 0.664932i \(0.231540\pi\)
\(984\) 0 0
\(985\) 5309.28 0.171744
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 68501.8 2.20246
\(990\) 0 0
\(991\) −14394.9 −0.461420 −0.230710 0.973023i \(-0.574105\pi\)
−0.230710 + 0.973023i \(0.574105\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 1839.74 0.0586167
\(996\) 0 0
\(997\) −33473.4 −1.06330 −0.531652 0.846963i \(-0.678428\pi\)
−0.531652 + 0.846963i \(0.678428\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2448.4.a.bd.1.3 3
3.2 odd 2 816.4.a.s.1.1 3
4.3 odd 2 153.4.a.f.1.1 3
12.11 even 2 51.4.a.e.1.3 3
60.59 even 2 1275.4.a.q.1.1 3
84.83 odd 2 2499.4.a.n.1.3 3
204.203 even 2 867.4.a.k.1.3 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
51.4.a.e.1.3 3 12.11 even 2
153.4.a.f.1.1 3 4.3 odd 2
816.4.a.s.1.1 3 3.2 odd 2
867.4.a.k.1.3 3 204.203 even 2
1275.4.a.q.1.1 3 60.59 even 2
2448.4.a.bd.1.3 3 1.1 even 1 trivial
2499.4.a.n.1.3 3 84.83 odd 2