Properties

Label 2448.2.dd
Level $2448$
Weight $2$
Character orbit 2448.dd
Rep. character $\chi_{2448}(625,\cdot)$
Character field $\Q(\zeta_{12})$
Dimension $424$
Sturm bound $864$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2448 = 2^{4} \cdot 3^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2448.dd (of order \(12\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 153 \)
Character field: \(\Q(\zeta_{12})\)
Sturm bound: \(864\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2448, [\chi])\).

Total New Old
Modular forms 1776 440 1336
Cusp forms 1680 424 1256
Eisenstein series 96 16 80

Trace form

\( 424 q + 4 q^{3} - 2 q^{5} + 2 q^{7} + 2 q^{11} - 4 q^{13} - 8 q^{17} - 8 q^{21} + 2 q^{23} + 4 q^{27} - 2 q^{29} + 2 q^{31} - 80 q^{35} - 8 q^{37} + 46 q^{39} + 2 q^{41} - 14 q^{45} + 44 q^{47} - 40 q^{51}+ \cdots + 118 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(2448, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(2448, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2448, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(153, [\chi])\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(306, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(612, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1224, [\chi])\)\(^{\oplus 2}\)