Properties

Label 2448.2.c.j
Level $2448$
Weight $2$
Character orbit 2448.c
Analytic conductor $19.547$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $2$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 2448 = 2^{4} \cdot 3^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2448.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(19.5473784148\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-1}) \)
Defining polynomial: \(x^{2} + 1\)
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 51)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of \(i = \sqrt{-1}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 4 i q^{7} +O(q^{10})\) \( q + 4 i q^{7} + 4 i q^{11} + 2 q^{13} + ( -1 - 4 i ) q^{17} + 4 q^{19} -4 i q^{23} + 5 q^{25} + 4 i q^{31} + 8 i q^{37} + 8 i q^{41} + 4 q^{43} -8 q^{47} -9 q^{49} -6 q^{53} -12 q^{59} -8 i q^{61} -12 q^{67} + 12 i q^{71} -16 q^{77} + 4 i q^{79} + 12 q^{83} + 10 q^{89} + 8 i q^{91} + 16 i q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q + O(q^{10}) \) \( 2q + 4q^{13} - 2q^{17} + 8q^{19} + 10q^{25} + 8q^{43} - 16q^{47} - 18q^{49} - 12q^{53} - 24q^{59} - 24q^{67} - 32q^{77} + 24q^{83} + 20q^{89} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2448\mathbb{Z}\right)^\times\).

\(n\) \(613\) \(1361\) \(1873\) \(2143\)
\(\chi(n)\) \(1\) \(1\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
577.1
1.00000i
1.00000i
0 0 0 0 0 4.00000i 0 0 0
577.2 0 0 0 0 0 4.00000i 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
17.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2448.2.c.j 2
3.b odd 2 1 816.2.c.c 2
4.b odd 2 1 153.2.d.a 2
12.b even 2 1 51.2.d.b 2
17.b even 2 1 inner 2448.2.c.j 2
24.f even 2 1 3264.2.c.e 2
24.h odd 2 1 3264.2.c.d 2
51.c odd 2 1 816.2.c.c 2
60.h even 2 1 1275.2.g.a 2
60.l odd 4 1 1275.2.d.b 2
60.l odd 4 1 1275.2.d.d 2
68.d odd 2 1 153.2.d.a 2
68.f odd 4 1 2601.2.a.i 1
68.f odd 4 1 2601.2.a.j 1
204.h even 2 1 51.2.d.b 2
204.l even 4 1 867.2.a.a 1
204.l even 4 1 867.2.a.b 1
204.p even 8 4 867.2.e.d 4
204.t odd 16 8 867.2.h.d 8
408.b odd 2 1 3264.2.c.d 2
408.h even 2 1 3264.2.c.e 2
1020.b even 2 1 1275.2.g.a 2
1020.x odd 4 1 1275.2.d.b 2
1020.x odd 4 1 1275.2.d.d 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
51.2.d.b 2 12.b even 2 1
51.2.d.b 2 204.h even 2 1
153.2.d.a 2 4.b odd 2 1
153.2.d.a 2 68.d odd 2 1
816.2.c.c 2 3.b odd 2 1
816.2.c.c 2 51.c odd 2 1
867.2.a.a 1 204.l even 4 1
867.2.a.b 1 204.l even 4 1
867.2.e.d 4 204.p even 8 4
867.2.h.d 8 204.t odd 16 8
1275.2.d.b 2 60.l odd 4 1
1275.2.d.b 2 1020.x odd 4 1
1275.2.d.d 2 60.l odd 4 1
1275.2.d.d 2 1020.x odd 4 1
1275.2.g.a 2 60.h even 2 1
1275.2.g.a 2 1020.b even 2 1
2448.2.c.j 2 1.a even 1 1 trivial
2448.2.c.j 2 17.b even 2 1 inner
2601.2.a.i 1 68.f odd 4 1
2601.2.a.j 1 68.f odd 4 1
3264.2.c.d 2 24.h odd 2 1
3264.2.c.d 2 408.b odd 2 1
3264.2.c.e 2 24.f even 2 1
3264.2.c.e 2 408.h even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(2448, [\chi])\):

\( T_{5} \)
\( T_{7}^{2} + 16 \)
\( T_{47} + 8 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \)
$3$ \( T^{2} \)
$5$ \( T^{2} \)
$7$ \( 16 + T^{2} \)
$11$ \( 16 + T^{2} \)
$13$ \( ( -2 + T )^{2} \)
$17$ \( 17 + 2 T + T^{2} \)
$19$ \( ( -4 + T )^{2} \)
$23$ \( 16 + T^{2} \)
$29$ \( T^{2} \)
$31$ \( 16 + T^{2} \)
$37$ \( 64 + T^{2} \)
$41$ \( 64 + T^{2} \)
$43$ \( ( -4 + T )^{2} \)
$47$ \( ( 8 + T )^{2} \)
$53$ \( ( 6 + T )^{2} \)
$59$ \( ( 12 + T )^{2} \)
$61$ \( 64 + T^{2} \)
$67$ \( ( 12 + T )^{2} \)
$71$ \( 144 + T^{2} \)
$73$ \( T^{2} \)
$79$ \( 16 + T^{2} \)
$83$ \( ( -12 + T )^{2} \)
$89$ \( ( -10 + T )^{2} \)
$97$ \( 256 + T^{2} \)
show more
show less