Properties

Label 2448.2.a.v
Level $2448$
Weight $2$
Character orbit 2448.a
Self dual yes
Analytic conductor $19.547$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 2448 = 2^{4} \cdot 3^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2448.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(19.5473784148\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{17}) \)
Defining polynomial: \(x^{2} - x - 4\)
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 51)
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \frac{1}{2}(1 + \sqrt{17})\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( -1 - \beta ) q^{5} +O(q^{10})\) \( q + ( -1 - \beta ) q^{5} + ( -1 + \beta ) q^{11} + ( 3 - \beta ) q^{13} - q^{17} + ( -3 + 3 \beta ) q^{19} + ( -5 + \beta ) q^{23} + 3 \beta q^{25} + ( -2 + 4 \beta ) q^{29} + ( 2 - 2 \beta ) q^{31} -2 \beta q^{37} + ( 1 + \beta ) q^{41} + ( 3 - 3 \beta ) q^{43} + ( -6 - 2 \beta ) q^{47} -7 q^{49} + ( -2 - 4 \beta ) q^{53} + ( -3 - \beta ) q^{55} + ( 2 + 2 \beta ) q^{59} + ( 4 + 2 \beta ) q^{61} + ( 1 - \beta ) q^{65} -4 q^{67} + ( 4 - 4 \beta ) q^{71} + ( -2 - 4 \beta ) q^{73} + ( -6 + 6 \beta ) q^{79} + ( -6 + 2 \beta ) q^{83} + ( 1 + \beta ) q^{85} + ( -4 + 2 \beta ) q^{89} + ( -9 - 3 \beta ) q^{95} + ( -8 + 2 \beta ) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q - 3q^{5} + O(q^{10}) \) \( 2q - 3q^{5} - q^{11} + 5q^{13} - 2q^{17} - 3q^{19} - 9q^{23} + 3q^{25} + 2q^{31} - 2q^{37} + 3q^{41} + 3q^{43} - 14q^{47} - 14q^{49} - 8q^{53} - 7q^{55} + 6q^{59} + 10q^{61} + q^{65} - 8q^{67} + 4q^{71} - 8q^{73} - 6q^{79} - 10q^{83} + 3q^{85} - 6q^{89} - 21q^{95} - 14q^{97} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
2.56155
−1.56155
0 0 0 −3.56155 0 0 0 0 0
1.2 0 0 0 0.561553 0 0 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \(-1\)
\(3\) \(-1\)
\(17\) \(1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2448.2.a.v 2
3.b odd 2 1 816.2.a.m 2
4.b odd 2 1 153.2.a.e 2
8.b even 2 1 9792.2.a.cz 2
8.d odd 2 1 9792.2.a.cy 2
12.b even 2 1 51.2.a.b 2
20.d odd 2 1 3825.2.a.s 2
24.f even 2 1 3264.2.a.bl 2
24.h odd 2 1 3264.2.a.bg 2
28.d even 2 1 7497.2.a.v 2
60.h even 2 1 1275.2.a.n 2
60.l odd 4 2 1275.2.b.d 4
68.d odd 2 1 2601.2.a.t 2
84.h odd 2 1 2499.2.a.o 2
132.d odd 2 1 6171.2.a.p 2
156.h even 2 1 8619.2.a.q 2
204.h even 2 1 867.2.a.f 2
204.l even 4 2 867.2.d.c 4
204.p even 8 4 867.2.e.f 8
204.t odd 16 8 867.2.h.j 16
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
51.2.a.b 2 12.b even 2 1
153.2.a.e 2 4.b odd 2 1
816.2.a.m 2 3.b odd 2 1
867.2.a.f 2 204.h even 2 1
867.2.d.c 4 204.l even 4 2
867.2.e.f 8 204.p even 8 4
867.2.h.j 16 204.t odd 16 8
1275.2.a.n 2 60.h even 2 1
1275.2.b.d 4 60.l odd 4 2
2448.2.a.v 2 1.a even 1 1 trivial
2499.2.a.o 2 84.h odd 2 1
2601.2.a.t 2 68.d odd 2 1
3264.2.a.bg 2 24.h odd 2 1
3264.2.a.bl 2 24.f even 2 1
3825.2.a.s 2 20.d odd 2 1
6171.2.a.p 2 132.d odd 2 1
7497.2.a.v 2 28.d even 2 1
8619.2.a.q 2 156.h even 2 1
9792.2.a.cy 2 8.d odd 2 1
9792.2.a.cz 2 8.b even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(2448))\):

\( T_{5}^{2} + 3 T_{5} - 2 \)
\( T_{7} \)
\( T_{11}^{2} + T_{11} - 4 \)
\( T_{19}^{2} + 3 T_{19} - 36 \)
\( T_{23}^{2} + 9 T_{23} + 16 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \)
$3$ \( T^{2} \)
$5$ \( -2 + 3 T + T^{2} \)
$7$ \( T^{2} \)
$11$ \( -4 + T + T^{2} \)
$13$ \( 2 - 5 T + T^{2} \)
$17$ \( ( 1 + T )^{2} \)
$19$ \( -36 + 3 T + T^{2} \)
$23$ \( 16 + 9 T + T^{2} \)
$29$ \( -68 + T^{2} \)
$31$ \( -16 - 2 T + T^{2} \)
$37$ \( -16 + 2 T + T^{2} \)
$41$ \( -2 - 3 T + T^{2} \)
$43$ \( -36 - 3 T + T^{2} \)
$47$ \( 32 + 14 T + T^{2} \)
$53$ \( -52 + 8 T + T^{2} \)
$59$ \( -8 - 6 T + T^{2} \)
$61$ \( 8 - 10 T + T^{2} \)
$67$ \( ( 4 + T )^{2} \)
$71$ \( -64 - 4 T + T^{2} \)
$73$ \( -52 + 8 T + T^{2} \)
$79$ \( -144 + 6 T + T^{2} \)
$83$ \( 8 + 10 T + T^{2} \)
$89$ \( -8 + 6 T + T^{2} \)
$97$ \( 32 + 14 T + T^{2} \)
show more
show less