# Properties

 Label 2448.2.a.v Level $2448$ Weight $2$ Character orbit 2448.a Self dual yes Analytic conductor $19.547$ Analytic rank $1$ Dimension $2$ CM no Inner twists $1$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$2448 = 2^{4} \cdot 3^{2} \cdot 17$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 2448.a (trivial)

## Newform invariants

 Self dual: yes Analytic conductor: $$19.5473784148$$ Analytic rank: $$1$$ Dimension: $$2$$ Coefficient field: $$\Q(\sqrt{17})$$ Defining polynomial: $$x^{2} - x - 4$$ Coefficient ring: $$\Z[a_1, \ldots, a_{5}]$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 51) Fricke sign: $$1$$ Sato-Tate group: $\mathrm{SU}(2)$

## $q$-expansion

Coefficients of the $$q$$-expansion are expressed in terms of $$\beta = \frac{1}{2}(1 + \sqrt{17})$$. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q + ( -1 - \beta ) q^{5} +O(q^{10})$$ $$q + ( -1 - \beta ) q^{5} + ( -1 + \beta ) q^{11} + ( 3 - \beta ) q^{13} - q^{17} + ( -3 + 3 \beta ) q^{19} + ( -5 + \beta ) q^{23} + 3 \beta q^{25} + ( -2 + 4 \beta ) q^{29} + ( 2 - 2 \beta ) q^{31} -2 \beta q^{37} + ( 1 + \beta ) q^{41} + ( 3 - 3 \beta ) q^{43} + ( -6 - 2 \beta ) q^{47} -7 q^{49} + ( -2 - 4 \beta ) q^{53} + ( -3 - \beta ) q^{55} + ( 2 + 2 \beta ) q^{59} + ( 4 + 2 \beta ) q^{61} + ( 1 - \beta ) q^{65} -4 q^{67} + ( 4 - 4 \beta ) q^{71} + ( -2 - 4 \beta ) q^{73} + ( -6 + 6 \beta ) q^{79} + ( -6 + 2 \beta ) q^{83} + ( 1 + \beta ) q^{85} + ( -4 + 2 \beta ) q^{89} + ( -9 - 3 \beta ) q^{95} + ( -8 + 2 \beta ) q^{97} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$2q - 3q^{5} + O(q^{10})$$ $$2q - 3q^{5} - q^{11} + 5q^{13} - 2q^{17} - 3q^{19} - 9q^{23} + 3q^{25} + 2q^{31} - 2q^{37} + 3q^{41} + 3q^{43} - 14q^{47} - 14q^{49} - 8q^{53} - 7q^{55} + 6q^{59} + 10q^{61} + q^{65} - 8q^{67} + 4q^{71} - 8q^{73} - 6q^{79} - 10q^{83} + 3q^{85} - 6q^{89} - 21q^{95} - 14q^{97} + O(q^{100})$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1.1
 2.56155 −1.56155
0 0 0 −3.56155 0 0 0 0 0
1.2 0 0 0 0.561553 0 0 0 0 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Atkin-Lehner signs

$$p$$ Sign
$$2$$ $$-1$$
$$3$$ $$-1$$
$$17$$ $$1$$

## Inner twists

This newform does not admit any (nontrivial) inner twists.

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2448.2.a.v 2
3.b odd 2 1 816.2.a.m 2
4.b odd 2 1 153.2.a.e 2
8.b even 2 1 9792.2.a.cz 2
8.d odd 2 1 9792.2.a.cy 2
12.b even 2 1 51.2.a.b 2
20.d odd 2 1 3825.2.a.s 2
24.f even 2 1 3264.2.a.bl 2
24.h odd 2 1 3264.2.a.bg 2
28.d even 2 1 7497.2.a.v 2
60.h even 2 1 1275.2.a.n 2
60.l odd 4 2 1275.2.b.d 4
68.d odd 2 1 2601.2.a.t 2
84.h odd 2 1 2499.2.a.o 2
132.d odd 2 1 6171.2.a.p 2
156.h even 2 1 8619.2.a.q 2
204.h even 2 1 867.2.a.f 2
204.l even 4 2 867.2.d.c 4
204.p even 8 4 867.2.e.f 8
204.t odd 16 8 867.2.h.j 16

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
51.2.a.b 2 12.b even 2 1
153.2.a.e 2 4.b odd 2 1
816.2.a.m 2 3.b odd 2 1
867.2.a.f 2 204.h even 2 1
867.2.d.c 4 204.l even 4 2
867.2.e.f 8 204.p even 8 4
867.2.h.j 16 204.t odd 16 8
1275.2.a.n 2 60.h even 2 1
1275.2.b.d 4 60.l odd 4 2
2448.2.a.v 2 1.a even 1 1 trivial
2499.2.a.o 2 84.h odd 2 1
2601.2.a.t 2 68.d odd 2 1
3264.2.a.bg 2 24.h odd 2 1
3264.2.a.bl 2 24.f even 2 1
3825.2.a.s 2 20.d odd 2 1
6171.2.a.p 2 132.d odd 2 1
7497.2.a.v 2 28.d even 2 1
8619.2.a.q 2 156.h even 2 1
9792.2.a.cy 2 8.d odd 2 1
9792.2.a.cz 2 8.b even 2 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(\Gamma_0(2448))$$:

 $$T_{5}^{2} + 3 T_{5} - 2$$ $$T_{7}$$ $$T_{11}^{2} + T_{11} - 4$$ $$T_{19}^{2} + 3 T_{19} - 36$$ $$T_{23}^{2} + 9 T_{23} + 16$$

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T^{2}$$
$3$ $$T^{2}$$
$5$ $$-2 + 3 T + T^{2}$$
$7$ $$T^{2}$$
$11$ $$-4 + T + T^{2}$$
$13$ $$2 - 5 T + T^{2}$$
$17$ $$( 1 + T )^{2}$$
$19$ $$-36 + 3 T + T^{2}$$
$23$ $$16 + 9 T + T^{2}$$
$29$ $$-68 + T^{2}$$
$31$ $$-16 - 2 T + T^{2}$$
$37$ $$-16 + 2 T + T^{2}$$
$41$ $$-2 - 3 T + T^{2}$$
$43$ $$-36 - 3 T + T^{2}$$
$47$ $$32 + 14 T + T^{2}$$
$53$ $$-52 + 8 T + T^{2}$$
$59$ $$-8 - 6 T + T^{2}$$
$61$ $$8 - 10 T + T^{2}$$
$67$ $$( 4 + T )^{2}$$
$71$ $$-64 - 4 T + T^{2}$$
$73$ $$-52 + 8 T + T^{2}$$
$79$ $$-144 + 6 T + T^{2}$$
$83$ $$8 + 10 T + T^{2}$$
$89$ $$-8 + 6 T + T^{2}$$
$97$ $$32 + 14 T + T^{2}$$