Properties

Label 2448.2.a.o
Level $2448$
Weight $2$
Character orbit 2448.a
Self dual yes
Analytic conductor $19.547$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 2448 = 2^{4} \cdot 3^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2448.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(19.5473784148\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 17)
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

\(f(q)\) \(=\) \( q + 2 q^{5} - 4 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( q + 2 q^{5} - 4 q^{7} - 2 q^{13} - q^{17} + 4 q^{19} + 4 q^{23} - q^{25} - 6 q^{29} - 4 q^{31} - 8 q^{35} - 2 q^{37} + 6 q^{41} - 4 q^{43} + 9 q^{49} - 6 q^{53} - 12 q^{59} - 10 q^{61} - 4 q^{65} - 4 q^{67} - 4 q^{71} - 6 q^{73} - 12 q^{79} - 4 q^{83} - 2 q^{85} - 10 q^{89} + 8 q^{91} + 8 q^{95} + 2 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
0 0 0 2.00000 0 −4.00000 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \(-1\)
\(3\) \(-1\)
\(17\) \(1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2448.2.a.o 1
3.b odd 2 1 272.2.a.b 1
4.b odd 2 1 153.2.a.c 1
8.b even 2 1 9792.2.a.i 1
8.d odd 2 1 9792.2.a.n 1
12.b even 2 1 17.2.a.a 1
15.d odd 2 1 6800.2.a.n 1
20.d odd 2 1 3825.2.a.d 1
24.f even 2 1 1088.2.a.i 1
24.h odd 2 1 1088.2.a.h 1
28.d even 2 1 7497.2.a.l 1
51.c odd 2 1 4624.2.a.d 1
60.h even 2 1 425.2.a.d 1
60.l odd 4 2 425.2.b.b 2
68.d odd 2 1 2601.2.a.g 1
84.h odd 2 1 833.2.a.a 1
84.j odd 6 2 833.2.e.a 2
84.n even 6 2 833.2.e.b 2
132.d odd 2 1 2057.2.a.e 1
156.h even 2 1 2873.2.a.c 1
204.h even 2 1 289.2.a.a 1
204.l even 4 2 289.2.b.a 2
204.p even 8 4 289.2.c.a 4
204.t odd 16 8 289.2.d.d 8
228.b odd 2 1 6137.2.a.b 1
276.h odd 2 1 8993.2.a.a 1
1020.b even 2 1 7225.2.a.g 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
17.2.a.a 1 12.b even 2 1
153.2.a.c 1 4.b odd 2 1
272.2.a.b 1 3.b odd 2 1
289.2.a.a 1 204.h even 2 1
289.2.b.a 2 204.l even 4 2
289.2.c.a 4 204.p even 8 4
289.2.d.d 8 204.t odd 16 8
425.2.a.d 1 60.h even 2 1
425.2.b.b 2 60.l odd 4 2
833.2.a.a 1 84.h odd 2 1
833.2.e.a 2 84.j odd 6 2
833.2.e.b 2 84.n even 6 2
1088.2.a.h 1 24.h odd 2 1
1088.2.a.i 1 24.f even 2 1
2057.2.a.e 1 132.d odd 2 1
2448.2.a.o 1 1.a even 1 1 trivial
2601.2.a.g 1 68.d odd 2 1
2873.2.a.c 1 156.h even 2 1
3825.2.a.d 1 20.d odd 2 1
4624.2.a.d 1 51.c odd 2 1
6137.2.a.b 1 228.b odd 2 1
6800.2.a.n 1 15.d odd 2 1
7225.2.a.g 1 1020.b even 2 1
7497.2.a.l 1 28.d even 2 1
8993.2.a.a 1 276.h odd 2 1
9792.2.a.i 1 8.b even 2 1
9792.2.a.n 1 8.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(2448))\):

\( T_{5} - 2 \) Copy content Toggle raw display
\( T_{7} + 4 \) Copy content Toggle raw display
\( T_{11} \) Copy content Toggle raw display
\( T_{19} - 4 \) Copy content Toggle raw display
\( T_{23} - 4 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T \) Copy content Toggle raw display
$3$ \( T \) Copy content Toggle raw display
$5$ \( T - 2 \) Copy content Toggle raw display
$7$ \( T + 4 \) Copy content Toggle raw display
$11$ \( T \) Copy content Toggle raw display
$13$ \( T + 2 \) Copy content Toggle raw display
$17$ \( T + 1 \) Copy content Toggle raw display
$19$ \( T - 4 \) Copy content Toggle raw display
$23$ \( T - 4 \) Copy content Toggle raw display
$29$ \( T + 6 \) Copy content Toggle raw display
$31$ \( T + 4 \) Copy content Toggle raw display
$37$ \( T + 2 \) Copy content Toggle raw display
$41$ \( T - 6 \) Copy content Toggle raw display
$43$ \( T + 4 \) Copy content Toggle raw display
$47$ \( T \) Copy content Toggle raw display
$53$ \( T + 6 \) Copy content Toggle raw display
$59$ \( T + 12 \) Copy content Toggle raw display
$61$ \( T + 10 \) Copy content Toggle raw display
$67$ \( T + 4 \) Copy content Toggle raw display
$71$ \( T + 4 \) Copy content Toggle raw display
$73$ \( T + 6 \) Copy content Toggle raw display
$79$ \( T + 12 \) Copy content Toggle raw display
$83$ \( T + 4 \) Copy content Toggle raw display
$89$ \( T + 10 \) Copy content Toggle raw display
$97$ \( T - 2 \) Copy content Toggle raw display
show more
show less