Defining parameters
| Level: | \( N \) | \(=\) | \( 244 = 2^{2} \cdot 61 \) |
| Weight: | \( k \) | \(=\) | \( 1 \) |
| Character orbit: | \([\chi]\) | \(=\) | 244.u (of order \(30\) and degree \(8\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 244 \) |
| Character field: | \(\Q(\zeta_{30})\) | ||
| Newform subspaces: | \( 1 \) | ||
| Sturm bound: | \(31\) | ||
| Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{1}(244, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 24 | 24 | 0 |
| Cusp forms | 8 | 8 | 0 |
| Eisenstein series | 16 | 16 | 0 |
The following table gives the dimensions of subspaces with specified projective image type.
| \(D_n\) | \(A_4\) | \(S_4\) | \(A_5\) | |
|---|---|---|---|---|
| Dimension | 8 | 0 | 0 | 0 |
Trace form
Decomposition of \(S_{1}^{\mathrm{new}}(244, [\chi])\) into newform subspaces
| Label | Dim | $A$ | Field | Image | CM | RM | Traces | $q$-expansion | |||
|---|---|---|---|---|---|---|---|---|---|---|---|
| $a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||||
| 244.1.u.a | $8$ | $0.122$ | \(\Q(\zeta_{15})\) | $D_{15}$ | \(\Q(\sqrt{-1}) \) | None | \(1\) | \(0\) | \(-6\) | \(0\) | \(q+\zeta_{30}^{14}q^{2}-\zeta_{30}^{13}q^{4}+(\zeta_{30}^{6}+\zeta_{30}^{10}+\cdots)q^{5}+\cdots\) |