Properties

Label 244.1.u
Level $244$
Weight $1$
Character orbit 244.u
Rep. character $\chi_{244}(15,\cdot)$
Character field $\Q(\zeta_{30})$
Dimension $8$
Newform subspaces $1$
Sturm bound $31$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 244 = 2^{2} \cdot 61 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 244.u (of order \(30\) and degree \(8\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 244 \)
Character field: \(\Q(\zeta_{30})\)
Newform subspaces: \( 1 \)
Sturm bound: \(31\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{1}(244, [\chi])\).

Total New Old
Modular forms 24 24 0
Cusp forms 8 8 0
Eisenstein series 16 16 0

The following table gives the dimensions of subspaces with specified projective image type.

\(D_n\) \(A_4\) \(S_4\) \(A_5\)
Dimension 8 0 0 0

Trace form

\( 8 q + q^{2} + q^{4} - 6 q^{5} - 2 q^{8} - 2 q^{9} - 6 q^{10} + 2 q^{13} + q^{16} + 2 q^{17} + q^{18} + 2 q^{20} - 5 q^{25} + 2 q^{26} - q^{29} - 4 q^{32} - 4 q^{34} + q^{36} + 2 q^{37} - q^{40} + 2 q^{41}+ \cdots - 2 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{1}^{\mathrm{new}}(244, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field Image CM RM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
244.1.u.a 244.u 244.u $8$ $0.122$ \(\Q(\zeta_{15})\) $D_{15}$ \(\Q(\sqrt{-1}) \) None 244.1.u.a \(1\) \(0\) \(-6\) \(0\) \(q+\zeta_{30}^{14}q^{2}-\zeta_{30}^{13}q^{4}+(\zeta_{30}^{6}+\zeta_{30}^{10}+\cdots)q^{5}+\cdots\)