Properties

Label 244.1
Level 244
Weight 1
Dimension 16
Nonzero newspaces 4
Newform subspaces 5
Sturm bound 3720
Trace bound 2

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 244 = 2^{2} \cdot 61 \)
Weight: \( k \) = \( 1 \)
Nonzero newspaces: \( 4 \)
Newform subspaces: \( 5 \)
Sturm bound: \(3720\)
Trace bound: \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{1}(\Gamma_1(244))\).

Total New Old
Modular forms 166 74 92
Cusp forms 16 16 0
Eisenstein series 150 58 92

The following table gives the dimensions of subspaces with specified projective image type.

\(D_n\) \(A_4\) \(S_4\) \(A_5\)
Dimension 16 0 0 0

Trace form

\( 16 q - q^{2} + q^{4} - 4 q^{5} - q^{8} + q^{9} - 2 q^{10} - 4 q^{13} - 2 q^{14} + q^{16} - 2 q^{17} - q^{18} - 4 q^{20} - 2 q^{22} - 3 q^{25} - 2 q^{26} - 2 q^{29} - q^{32} - 2 q^{34} + q^{36} - 2 q^{37}+ \cdots - q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{1}^{\mathrm{new}}(\Gamma_1(244))\)

We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
244.1.b \(\chi_{244}(123, \cdot)\) None 0 1
244.1.c \(\chi_{244}(243, \cdot)\) 244.1.c.a 1 1
244.1.c.b 1
244.1.f \(\chi_{244}(133, \cdot)\) None 0 2
244.1.i \(\chi_{244}(75, \cdot)\) None 0 2
244.1.j \(\chi_{244}(47, \cdot)\) 244.1.j.a 2 2
244.1.m \(\chi_{244}(3, \cdot)\) None 0 4
244.1.n \(\chi_{244}(95, \cdot)\) 244.1.n.a 4 4
244.1.o \(\chi_{244}(21, \cdot)\) None 0 4
244.1.s \(\chi_{244}(33, \cdot)\) None 0 8
244.1.u \(\chi_{244}(15, \cdot)\) 244.1.u.a 8 8
244.1.v \(\chi_{244}(19, \cdot)\) None 0 8
244.1.x \(\chi_{244}(17, \cdot)\) None 0 16