Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [243,2,Mod(4,243)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(243, base_ring=CyclotomicField(162))
chi = DirichletCharacter(H, H._module([2]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("243.4");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 243 = 3^{5} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 243.i (of order \(81\), degree \(54\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(1.94036476912\) |
Analytic rank: | \(0\) |
Dimension: | \(1404\) |
Relative dimension: | \(26\) over \(\Q(\zeta_{81})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{81}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
4.1 | −2.78387 | − | 0.108027i | −1.71620 | + | 0.233793i | 5.74428 | + | 0.446480i | 2.42193 | + | 3.00272i | 4.80293 | − | 0.465452i | 0.433636 | − | 0.197112i | −10.4088 | − | 1.21662i | 2.89068 | − | 0.802469i | −6.41795 | − | 8.62081i |
4.2 | −2.42984 | − | 0.0942887i | 1.64930 | − | 0.528965i | 3.90123 | + | 0.303227i | −0.723370 | − | 0.896838i | −4.05741 | + | 1.12979i | 1.78613 | − | 0.811895i | −4.62031 | − | 0.540037i | 2.44039 | − | 1.74485i | 1.67311 | + | 2.24737i |
4.3 | −2.34586 | − | 0.0910299i | −0.823564 | − | 1.52373i | 3.50077 | + | 0.272102i | −1.67953 | − | 2.08230i | 1.79326 | + | 3.64941i | −3.42025 | + | 1.55470i | −3.52404 | − | 0.411902i | −1.64349 | + | 2.50977i | 3.75040 | + | 5.03765i |
4.4 | −2.16400 | − | 0.0839729i | −1.61426 | + | 0.627826i | 2.68184 | + | 0.208449i | −2.41283 | − | 2.99144i | 3.54597 | − | 1.22306i | 2.23840 | − | 1.01748i | −1.48402 | − | 0.173458i | 2.21167 | − | 2.02695i | 4.97016 | + | 6.67608i |
4.5 | −2.03967 | − | 0.0791483i | −0.137599 | − | 1.72658i | 2.15999 | + | 0.167888i | 1.00485 | + | 1.24581i | 0.144001 | + | 3.53253i | 2.22760 | − | 1.01257i | −0.337568 | − | 0.0394561i | −2.96213 | + | 0.475151i | −1.95095 | − | 2.62057i |
4.6 | −1.94351 | − | 0.0754171i | 1.58908 | + | 0.689068i | 1.77756 | + | 0.138163i | 2.24632 | + | 2.78500i | −3.03643 | − | 1.45905i | −3.31801 | + | 1.50822i | 0.419355 | + | 0.0490156i | 2.05037 | + | 2.18997i | −4.15571 | − | 5.58208i |
4.7 | −1.55794 | − | 0.0604553i | −0.167548 | + | 1.72393i | 0.429550 | + | 0.0333873i | 1.31451 | + | 1.62974i | 0.365251 | − | 2.67566i | 3.10528 | − | 1.41152i | 2.42995 | + | 0.284021i | −2.94386 | − | 0.577680i | −1.94941 | − | 2.61851i |
4.8 | −1.53351 | − | 0.0595072i | −1.14640 | + | 1.29838i | 0.354129 | + | 0.0275251i | 0.161696 | + | 0.200471i | 1.83527 | − | 1.92285i | −4.41863 | + | 2.00851i | 2.50715 | + | 0.293044i | −0.371555 | − | 2.97690i | −0.236033 | − | 0.317047i |
4.9 | −1.04754 | − | 0.0406495i | 0.956457 | + | 1.44402i | −0.898290 | − | 0.0698206i | −2.13661 | − | 2.64898i | −0.943232 | − | 1.55155i | 1.55684 | − | 0.707671i | 3.02065 | + | 0.353063i | −1.17038 | + | 2.76228i | 2.13051 | + | 2.86177i |
4.10 | −0.829136 | − | 0.0321742i | 0.755643 | − | 1.55853i | −1.30755 | − | 0.101631i | −1.06671 | − | 1.32252i | −0.676676 | + | 1.26792i | −2.20706 | + | 1.00323i | 2.72917 | + | 0.318994i | −1.85801 | − | 2.35538i | 0.841900 | + | 1.13087i |
4.11 | −0.815384 | − | 0.0316406i | 1.60488 | − | 0.651417i | −1.33014 | − | 0.103386i | 0.303466 | + | 0.376239i | −1.32921 | + | 0.480376i | 0.274968 | − | 0.124988i | 2.70226 | + | 0.315849i | 2.15131 | − | 2.09090i | −0.235537 | − | 0.316381i |
4.12 | −0.479029 | − | 0.0185885i | −1.73158 | − | 0.0404413i | −1.76486 | − | 0.137176i | −0.169194 | − | 0.209768i | 0.828725 | + | 0.0515600i | 0.242417 | − | 0.110192i | 1.79517 | + | 0.209825i | 2.99673 | + | 0.140055i | 0.0771496 | + | 0.103630i |
4.13 | 0.0783119 | + | 0.00303886i | −0.825726 | − | 1.52256i | −1.98786 | − | 0.154509i | 2.71771 | + | 3.36944i | −0.0600373 | − | 0.121743i | −3.85378 | + | 1.75176i | −0.310885 | − | 0.0363373i | −1.63635 | + | 2.51443i | 0.202590 | + | 0.272126i |
4.14 | 0.242273 | + | 0.00940130i | 1.46469 | + | 0.924490i | −1.93538 | − | 0.150429i | 1.25182 | + | 1.55201i | 0.346164 | + | 0.237749i | 1.52000 | − | 0.690924i | −0.949108 | − | 0.110935i | 1.29064 | + | 2.70818i | 0.288691 | + | 0.387780i |
4.15 | 0.337931 | + | 0.0131133i | 0.210129 | + | 1.71926i | −1.87996 | − | 0.146122i | −0.812985 | − | 1.00794i | 0.0484641 | + | 0.583746i | −2.68541 | + | 1.22067i | −1.30518 | − | 0.152554i | −2.91169 | + | 0.722532i | −0.261516 | − | 0.351276i |
4.16 | 0.498870 | + | 0.0193584i | 0.114249 | − | 1.72828i | −1.74549 | − | 0.135670i | 0.793310 | + | 0.983550i | 0.0904521 | − | 0.859974i | 4.69382 | − | 2.13360i | −1.85988 | − | 0.217389i | −2.97389 | − | 0.394908i | 0.376718 | + | 0.506021i |
4.17 | 0.905616 | + | 0.0351420i | −1.29585 | + | 1.14925i | −1.17508 | − | 0.0913345i | −1.68295 | − | 2.08654i | −1.21393 | + | 0.995240i | 0.467604 | − | 0.212552i | −2.86130 | − | 0.334438i | 0.358453 | − | 2.97851i | −1.45079 | − | 1.94874i |
4.18 | 1.08187 | + | 0.0419816i | 1.65295 | − | 0.517453i | −0.825297 | − | 0.0641472i | −2.72770 | − | 3.38181i | 1.81001 | − | 0.490425i | 3.01742 | − | 1.37158i | −3.04091 | − | 0.355431i | 2.46448 | − | 1.71065i | −2.80905 | − | 3.77321i |
4.19 | 1.14737 | + | 0.0445232i | −1.35679 | − | 1.07662i | −0.679512 | − | 0.0528158i | −1.27759 | − | 1.58397i | −1.50880 | − | 1.29569i | −1.57880 | + | 0.717652i | −3.05824 | − | 0.357457i | 0.681758 | + | 2.92151i | −1.39535 | − | 1.87428i |
4.20 | 1.55634 | + | 0.0603929i | −0.263751 | + | 1.71185i | 0.424549 | + | 0.0329986i | 1.93917 | + | 2.40419i | −0.513869 | + | 2.64829i | −0.871256 | + | 0.396034i | −2.43520 | − | 0.284635i | −2.86087 | − | 0.903006i | 2.87280 | + | 3.85885i |
See next 80 embeddings (of 1404 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
243.i | even | 81 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 243.2.i.a | ✓ | 1404 |
3.b | odd | 2 | 1 | 729.2.i.a | 1404 | ||
243.i | even | 81 | 1 | inner | 243.2.i.a | ✓ | 1404 |
243.j | odd | 162 | 1 | 729.2.i.a | 1404 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
243.2.i.a | ✓ | 1404 | 1.a | even | 1 | 1 | trivial |
243.2.i.a | ✓ | 1404 | 243.i | even | 81 | 1 | inner |
729.2.i.a | 1404 | 3.b | odd | 2 | 1 | ||
729.2.i.a | 1404 | 243.j | odd | 162 | 1 |
Hecke kernels
This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(243, [\chi])\).