Properties

Label 243.2.i.a
Level $243$
Weight $2$
Character orbit 243.i
Analytic conductor $1.940$
Analytic rank $0$
Dimension $1404$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [243,2,Mod(4,243)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(243, base_ring=CyclotomicField(162))
 
chi = DirichletCharacter(H, H._module([2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("243.4");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 243 = 3^{5} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 243.i (of order \(81\), degree \(54\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.94036476912\)
Analytic rank: \(0\)
Dimension: \(1404\)
Relative dimension: \(26\) over \(\Q(\zeta_{81})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{81}]$

$q$-expansion

The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \( 1404 q - 54 q^{2} - 54 q^{3} - 54 q^{4} - 54 q^{5} - 54 q^{6} - 54 q^{7} - 54 q^{8} - 54 q^{9}+O(q^{10}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q) = \) \( 1404 q - 54 q^{2} - 54 q^{3} - 54 q^{4} - 54 q^{5} - 54 q^{6} - 54 q^{7} - 54 q^{8} - 54 q^{9} - 54 q^{10} - 54 q^{11} - 54 q^{12} - 54 q^{13} - 54 q^{14} - 54 q^{15} - 54 q^{16} - 54 q^{17} - 54 q^{18} - 54 q^{19} - 54 q^{20} - 54 q^{21} - 54 q^{22} - 54 q^{23} - 54 q^{24} - 54 q^{25} - 54 q^{26} - 54 q^{27} - 54 q^{28} - 54 q^{29} - 54 q^{30} - 54 q^{31} - 54 q^{32} - 54 q^{33} - 54 q^{34} - 54 q^{35} - 54 q^{36} - 54 q^{37} - 54 q^{38} - 54 q^{39} - 54 q^{40} - 54 q^{41} - 54 q^{42} - 54 q^{43} - 54 q^{44} - 54 q^{45} - 54 q^{46} - 54 q^{47} - 54 q^{48} - 54 q^{49} - 54 q^{50} - 54 q^{51} - 54 q^{52} - 54 q^{53} - 54 q^{54} - 54 q^{55} - 54 q^{56} - 54 q^{57} - 54 q^{58} - 54 q^{59} - 54 q^{60} - 54 q^{61} - 54 q^{62} - 54 q^{63} - 54 q^{64} + 54 q^{66} - 54 q^{67} + 135 q^{68} + 54 q^{69} - 54 q^{70} + 54 q^{71} + 270 q^{72} - 54 q^{73} + 162 q^{74} + 81 q^{75} - 54 q^{76} + 162 q^{77} + 162 q^{78} - 54 q^{79} + 351 q^{80} + 54 q^{81} - 27 q^{82} + 54 q^{83} + 324 q^{84} - 54 q^{85} + 162 q^{86} + 162 q^{87} - 54 q^{88} + 81 q^{89} + 162 q^{90} - 54 q^{91} + 270 q^{92} + 54 q^{93} - 54 q^{94} + 54 q^{95} + 135 q^{96} - 54 q^{97} + 54 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
4.1 −2.78387 0.108027i −1.71620 + 0.233793i 5.74428 + 0.446480i 2.42193 + 3.00272i 4.80293 0.465452i 0.433636 0.197112i −10.4088 1.21662i 2.89068 0.802469i −6.41795 8.62081i
4.2 −2.42984 0.0942887i 1.64930 0.528965i 3.90123 + 0.303227i −0.723370 0.896838i −4.05741 + 1.12979i 1.78613 0.811895i −4.62031 0.540037i 2.44039 1.74485i 1.67311 + 2.24737i
4.3 −2.34586 0.0910299i −0.823564 1.52373i 3.50077 + 0.272102i −1.67953 2.08230i 1.79326 + 3.64941i −3.42025 + 1.55470i −3.52404 0.411902i −1.64349 + 2.50977i 3.75040 + 5.03765i
4.4 −2.16400 0.0839729i −1.61426 + 0.627826i 2.68184 + 0.208449i −2.41283 2.99144i 3.54597 1.22306i 2.23840 1.01748i −1.48402 0.173458i 2.21167 2.02695i 4.97016 + 6.67608i
4.5 −2.03967 0.0791483i −0.137599 1.72658i 2.15999 + 0.167888i 1.00485 + 1.24581i 0.144001 + 3.53253i 2.22760 1.01257i −0.337568 0.0394561i −2.96213 + 0.475151i −1.95095 2.62057i
4.6 −1.94351 0.0754171i 1.58908 + 0.689068i 1.77756 + 0.138163i 2.24632 + 2.78500i −3.03643 1.45905i −3.31801 + 1.50822i 0.419355 + 0.0490156i 2.05037 + 2.18997i −4.15571 5.58208i
4.7 −1.55794 0.0604553i −0.167548 + 1.72393i 0.429550 + 0.0333873i 1.31451 + 1.62974i 0.365251 2.67566i 3.10528 1.41152i 2.42995 + 0.284021i −2.94386 0.577680i −1.94941 2.61851i
4.8 −1.53351 0.0595072i −1.14640 + 1.29838i 0.354129 + 0.0275251i 0.161696 + 0.200471i 1.83527 1.92285i −4.41863 + 2.00851i 2.50715 + 0.293044i −0.371555 2.97690i −0.236033 0.317047i
4.9 −1.04754 0.0406495i 0.956457 + 1.44402i −0.898290 0.0698206i −2.13661 2.64898i −0.943232 1.55155i 1.55684 0.707671i 3.02065 + 0.353063i −1.17038 + 2.76228i 2.13051 + 2.86177i
4.10 −0.829136 0.0321742i 0.755643 1.55853i −1.30755 0.101631i −1.06671 1.32252i −0.676676 + 1.26792i −2.20706 + 1.00323i 2.72917 + 0.318994i −1.85801 2.35538i 0.841900 + 1.13087i
4.11 −0.815384 0.0316406i 1.60488 0.651417i −1.33014 0.103386i 0.303466 + 0.376239i −1.32921 + 0.480376i 0.274968 0.124988i 2.70226 + 0.315849i 2.15131 2.09090i −0.235537 0.316381i
4.12 −0.479029 0.0185885i −1.73158 0.0404413i −1.76486 0.137176i −0.169194 0.209768i 0.828725 + 0.0515600i 0.242417 0.110192i 1.79517 + 0.209825i 2.99673 + 0.140055i 0.0771496 + 0.103630i
4.13 0.0783119 + 0.00303886i −0.825726 1.52256i −1.98786 0.154509i 2.71771 + 3.36944i −0.0600373 0.121743i −3.85378 + 1.75176i −0.310885 0.0363373i −1.63635 + 2.51443i 0.202590 + 0.272126i
4.14 0.242273 + 0.00940130i 1.46469 + 0.924490i −1.93538 0.150429i 1.25182 + 1.55201i 0.346164 + 0.237749i 1.52000 0.690924i −0.949108 0.110935i 1.29064 + 2.70818i 0.288691 + 0.387780i
4.15 0.337931 + 0.0131133i 0.210129 + 1.71926i −1.87996 0.146122i −0.812985 1.00794i 0.0484641 + 0.583746i −2.68541 + 1.22067i −1.30518 0.152554i −2.91169 + 0.722532i −0.261516 0.351276i
4.16 0.498870 + 0.0193584i 0.114249 1.72828i −1.74549 0.135670i 0.793310 + 0.983550i 0.0904521 0.859974i 4.69382 2.13360i −1.85988 0.217389i −2.97389 0.394908i 0.376718 + 0.506021i
4.17 0.905616 + 0.0351420i −1.29585 + 1.14925i −1.17508 0.0913345i −1.68295 2.08654i −1.21393 + 0.995240i 0.467604 0.212552i −2.86130 0.334438i 0.358453 2.97851i −1.45079 1.94874i
4.18 1.08187 + 0.0419816i 1.65295 0.517453i −0.825297 0.0641472i −2.72770 3.38181i 1.81001 0.490425i 3.01742 1.37158i −3.04091 0.355431i 2.46448 1.71065i −2.80905 3.77321i
4.19 1.14737 + 0.0445232i −1.35679 1.07662i −0.679512 0.0528158i −1.27759 1.58397i −1.50880 1.29569i −1.57880 + 0.717652i −3.05824 0.357457i 0.681758 + 2.92151i −1.39535 1.87428i
4.20 1.55634 + 0.0603929i −0.263751 + 1.71185i 0.424549 + 0.0329986i 1.93917 + 2.40419i −0.513869 + 2.64829i −0.871256 + 0.396034i −2.43520 0.284635i −2.86087 0.903006i 2.87280 + 3.85885i
See next 80 embeddings (of 1404 total)
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 4.26
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
243.i even 81 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 243.2.i.a 1404
3.b odd 2 1 729.2.i.a 1404
243.i even 81 1 inner 243.2.i.a 1404
243.j odd 162 1 729.2.i.a 1404
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
243.2.i.a 1404 1.a even 1 1 trivial
243.2.i.a 1404 243.i even 81 1 inner
729.2.i.a 1404 3.b odd 2 1
729.2.i.a 1404 243.j odd 162 1

Hecke kernels

This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(243, [\chi])\).