Properties

Label 243.2.g.a.73.7
Level $243$
Weight $2$
Character 243.73
Analytic conductor $1.940$
Analytic rank $0$
Dimension $144$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [243,2,Mod(10,243)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("243.10"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(243, base_ring=CyclotomicField(54)) chi = DirichletCharacter(H, H._module([8])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 243 = 3^{5} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 243.g (of order \(27\), degree \(18\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.94036476912\)
Analytic rank: \(0\)
Dimension: \(144\)
Relative dimension: \(8\) over \(\Q(\zeta_{27})\)
Twist minimal: no (minimal twist has level 81)
Sato-Tate group: $\mathrm{SU}(2)[C_{27}]$

Embedding invariants

Embedding label 73.7
Character \(\chi\) \(=\) 243.73
Dual form 243.2.g.a.10.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.89071 - 0.949549i) q^{2} +(1.47882 - 1.98639i) q^{4} +(1.11651 - 3.72940i) q^{5} +(-1.32100 + 3.06243i) q^{7} +(0.175036 - 0.992677i) q^{8} +(-1.43025 - 8.11138i) q^{10} +(-0.736337 - 0.174515i) q^{11} +(-2.07722 + 1.36621i) q^{13} +(0.410296 + 7.04452i) q^{14} +(0.808837 + 2.70170i) q^{16} +(0.700932 + 0.255119i) q^{17} +(4.21736 - 1.53499i) q^{19} +(-5.75694 - 7.73291i) q^{20} +(-1.55791 + 0.369231i) q^{22} +(0.905723 + 2.09970i) q^{23} +(-8.48436 - 5.58025i) q^{25} +(-2.63013 + 4.55552i) q^{26} +(4.12967 + 7.15280i) q^{28} +(0.0269788 - 0.463208i) q^{29} +(3.91546 + 0.457651i) q^{31} +(5.47813 + 5.80647i) q^{32} +(1.56751 - 0.183215i) q^{34} +(9.94610 + 8.34577i) q^{35} +(-3.64375 + 3.05747i) q^{37} +(6.51625 - 6.90682i) q^{38} +(-3.50665 - 1.76111i) q^{40} +(-4.37210 - 2.19575i) q^{41} +(-4.07702 + 4.32138i) q^{43} +(-1.43556 + 1.20458i) q^{44} +(3.70623 + 3.10990i) q^{46} +(-10.6936 + 1.24990i) q^{47} +(-2.82973 - 2.99934i) q^{49} +(-21.3402 - 2.49431i) q^{50} +(-0.357995 + 6.14654i) q^{52} +(-5.75294 - 9.96438i) q^{53} +(-1.47296 + 2.55124i) q^{55} +(2.80878 + 1.84736i) q^{56} +(-0.388830 - 0.901409i) q^{58} +(4.03735 - 0.956869i) q^{59} +(0.159571 + 0.214341i) q^{61} +(7.83755 - 2.85264i) q^{62} +(10.5709 + 3.84748i) q^{64} +(2.77590 + 9.27214i) q^{65} +(0.111496 + 1.91430i) q^{67} +(1.54332 - 1.01506i) q^{68} +(26.7299 + 6.33510i) q^{70} +(-1.17278 - 6.65118i) q^{71} +(1.37723 - 7.81064i) q^{73} +(-3.98605 + 9.24071i) q^{74} +(3.18760 - 10.6473i) q^{76} +(1.50714 - 2.02444i) q^{77} +(3.85762 - 1.93737i) q^{79} +10.9788 q^{80} -10.3513 q^{82} +(2.27599 - 1.14304i) q^{83} +(1.73403 - 2.32921i) q^{85} +(-3.60508 + 12.0418i) q^{86} +(-0.302122 + 0.700398i) q^{88} +(0.935549 - 5.30576i) q^{89} +(-1.43990 - 8.16609i) q^{91} +(5.51024 + 1.30595i) q^{92} +(-19.0315 + 12.5172i) q^{94} +(-1.01588 - 17.4421i) q^{95} +(-2.72130 - 9.08977i) q^{97} +(-8.19821 - 2.98391i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 144 q + 18 q^{2} - 18 q^{4} + 18 q^{5} - 18 q^{7} + 18 q^{8} - 18 q^{10} + 18 q^{11} - 18 q^{13} + 18 q^{14} - 18 q^{16} + 18 q^{17} - 18 q^{19} - 18 q^{20} - 18 q^{22} - 9 q^{23} - 18 q^{25} - 45 q^{26}+ \cdots - 81 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/243\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{23}{27}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.89071 0.949549i 1.33693 0.671433i 0.370615 0.928786i \(-0.379147\pi\)
0.966317 + 0.257354i \(0.0828506\pi\)
\(3\) 0 0
\(4\) 1.47882 1.98639i 0.739408 0.993197i
\(5\) 1.11651 3.72940i 0.499317 1.66784i −0.221854 0.975080i \(-0.571211\pi\)
0.721172 0.692756i \(-0.243604\pi\)
\(6\) 0 0
\(7\) −1.32100 + 3.06243i −0.499292 + 1.15749i 0.463218 + 0.886244i \(0.346695\pi\)
−0.962510 + 0.271245i \(0.912565\pi\)
\(8\) 0.175036 0.992677i 0.0618845 0.350964i
\(9\) 0 0
\(10\) −1.43025 8.11138i −0.452286 2.56504i
\(11\) −0.736337 0.174515i −0.222014 0.0526183i 0.118103 0.993001i \(-0.462319\pi\)
−0.340117 + 0.940383i \(0.610467\pi\)
\(12\) 0 0
\(13\) −2.07722 + 1.36621i −0.576116 + 0.378918i −0.803873 0.594800i \(-0.797231\pi\)
0.227757 + 0.973718i \(0.426861\pi\)
\(14\) 0.410296 + 7.04452i 0.109656 + 1.88273i
\(15\) 0 0
\(16\) 0.808837 + 2.70170i 0.202209 + 0.675426i
\(17\) 0.700932 + 0.255119i 0.170001 + 0.0618753i 0.425619 0.904903i \(-0.360057\pi\)
−0.255617 + 0.966778i \(0.582279\pi\)
\(18\) 0 0
\(19\) 4.21736 1.53499i 0.967530 0.352152i 0.190550 0.981678i \(-0.438973\pi\)
0.776980 + 0.629526i \(0.216751\pi\)
\(20\) −5.75694 7.73291i −1.28729 1.72913i
\(21\) 0 0
\(22\) −1.55791 + 0.369231i −0.332147 + 0.0787203i
\(23\) 0.905723 + 2.09970i 0.188856 + 0.437818i 0.986168 0.165750i \(-0.0530044\pi\)
−0.797312 + 0.603568i \(0.793745\pi\)
\(24\) 0 0
\(25\) −8.48436 5.58025i −1.69687 1.11605i
\(26\) −2.63013 + 4.55552i −0.515811 + 0.893410i
\(27\) 0 0
\(28\) 4.12967 + 7.15280i 0.780435 + 1.35175i
\(29\) 0.0269788 0.463208i 0.00500984 0.0860156i −0.994876 0.101099i \(-0.967764\pi\)
0.999886 + 0.0150831i \(0.00480127\pi\)
\(30\) 0 0
\(31\) 3.91546 + 0.457651i 0.703237 + 0.0821966i 0.460193 0.887819i \(-0.347780\pi\)
0.243044 + 0.970015i \(0.421854\pi\)
\(32\) 5.47813 + 5.80647i 0.968405 + 1.02645i
\(33\) 0 0
\(34\) 1.56751 0.183215i 0.268825 0.0314212i
\(35\) 9.94610 + 8.34577i 1.68120 + 1.41069i
\(36\) 0 0
\(37\) −3.64375 + 3.05747i −0.599029 + 0.502645i −0.891134 0.453741i \(-0.850089\pi\)
0.292104 + 0.956387i \(0.405645\pi\)
\(38\) 6.51625 6.90682i 1.05708 1.12043i
\(39\) 0 0
\(40\) −3.50665 1.76111i −0.554451 0.278456i
\(41\) −4.37210 2.19575i −0.682807 0.342919i 0.0733521 0.997306i \(-0.476630\pi\)
−0.756160 + 0.654387i \(0.772927\pi\)
\(42\) 0 0
\(43\) −4.07702 + 4.32138i −0.621739 + 0.659005i −0.959330 0.282288i \(-0.908907\pi\)
0.337591 + 0.941293i \(0.390388\pi\)
\(44\) −1.43556 + 1.20458i −0.216419 + 0.181597i
\(45\) 0 0
\(46\) 3.70623 + 3.10990i 0.546454 + 0.458529i
\(47\) −10.6936 + 1.24990i −1.55981 + 0.182316i −0.851795 0.523876i \(-0.824485\pi\)
−0.708020 + 0.706192i \(0.750411\pi\)
\(48\) 0 0
\(49\) −2.82973 2.99934i −0.404247 0.428477i
\(50\) −21.3402 2.49431i −3.01796 0.352748i
\(51\) 0 0
\(52\) −0.357995 + 6.14654i −0.0496450 + 0.852372i
\(53\) −5.75294 9.96438i −0.790227 1.36871i −0.925826 0.377949i \(-0.876629\pi\)
0.135600 0.990764i \(-0.456704\pi\)
\(54\) 0 0
\(55\) −1.47296 + 2.55124i −0.198614 + 0.344010i
\(56\) 2.80878 + 1.84736i 0.375339 + 0.246864i
\(57\) 0 0
\(58\) −0.388830 0.901409i −0.0510559 0.118361i
\(59\) 4.03735 0.956869i 0.525618 0.124574i 0.0407637 0.999169i \(-0.487021\pi\)
0.484854 + 0.874595i \(0.338873\pi\)
\(60\) 0 0
\(61\) 0.159571 + 0.214341i 0.0204310 + 0.0274436i 0.812221 0.583349i \(-0.198258\pi\)
−0.791790 + 0.610793i \(0.790851\pi\)
\(62\) 7.83755 2.85264i 0.995370 0.362285i
\(63\) 0 0
\(64\) 10.5709 + 3.84748i 1.32136 + 0.480935i
\(65\) 2.77590 + 9.27214i 0.344308 + 1.15007i
\(66\) 0 0
\(67\) 0.111496 + 1.91430i 0.0136213 + 0.233870i 0.998247 + 0.0591902i \(0.0188518\pi\)
−0.984625 + 0.174679i \(0.944111\pi\)
\(68\) 1.54332 1.01506i 0.187155 0.123094i
\(69\) 0 0
\(70\) 26.7299 + 6.33510i 3.19483 + 0.757189i
\(71\) −1.17278 6.65118i −0.139184 0.789350i −0.971855 0.235582i \(-0.924300\pi\)
0.832671 0.553768i \(-0.186811\pi\)
\(72\) 0 0
\(73\) 1.37723 7.81064i 0.161192 0.914167i −0.791712 0.610895i \(-0.790810\pi\)
0.952904 0.303272i \(-0.0980791\pi\)
\(74\) −3.98605 + 9.24071i −0.463369 + 1.07421i
\(75\) 0 0
\(76\) 3.18760 10.6473i 0.365643 1.22133i
\(77\) 1.50714 2.02444i 0.171755 0.230707i
\(78\) 0 0
\(79\) 3.85762 1.93737i 0.434016 0.217971i −0.218357 0.975869i \(-0.570070\pi\)
0.652373 + 0.757898i \(0.273773\pi\)
\(80\) 10.9788 1.22747
\(81\) 0 0
\(82\) −10.3513 −1.14311
\(83\) 2.27599 1.14304i 0.249822 0.125465i −0.319482 0.947592i \(-0.603509\pi\)
0.569304 + 0.822127i \(0.307213\pi\)
\(84\) 0 0
\(85\) 1.73403 2.32921i 0.188082 0.252639i
\(86\) −3.60508 + 12.0418i −0.388746 + 1.29850i
\(87\) 0 0
\(88\) −0.302122 + 0.700398i −0.0322063 + 0.0746627i
\(89\) 0.935549 5.30576i 0.0991680 0.562410i −0.894222 0.447623i \(-0.852271\pi\)
0.993390 0.114786i \(-0.0366184\pi\)
\(90\) 0 0
\(91\) −1.43990 8.16609i −0.150943 0.856039i
\(92\) 5.51024 + 1.30595i 0.574482 + 0.136155i
\(93\) 0 0
\(94\) −19.0315 + 12.5172i −1.96295 + 1.29106i
\(95\) −1.01588 17.4421i −0.104227 1.78952i
\(96\) 0 0
\(97\) −2.72130 9.08977i −0.276306 0.922926i −0.977674 0.210127i \(-0.932612\pi\)
0.701368 0.712799i \(-0.252573\pi\)
\(98\) −8.19821 2.98391i −0.828145 0.301420i
\(99\) 0 0
\(100\) −23.6314 + 8.60112i −2.36314 + 0.860112i
\(101\) 7.34963 + 9.87227i 0.731315 + 0.982327i 0.999819 + 0.0190483i \(0.00606363\pi\)
−0.268503 + 0.963279i \(0.586529\pi\)
\(102\) 0 0
\(103\) 16.2209 3.84443i 1.59830 0.378803i 0.667578 0.744539i \(-0.267331\pi\)
0.930719 + 0.365736i \(0.119183\pi\)
\(104\) 0.992615 + 2.30114i 0.0973339 + 0.225645i
\(105\) 0 0
\(106\) −20.3388 13.3770i −1.97548 1.29929i
\(107\) −1.84694 + 3.19899i −0.178550 + 0.309258i −0.941384 0.337336i \(-0.890474\pi\)
0.762834 + 0.646595i \(0.223807\pi\)
\(108\) 0 0
\(109\) 8.66961 + 15.0162i 0.830398 + 1.43829i 0.897723 + 0.440561i \(0.145220\pi\)
−0.0673245 + 0.997731i \(0.521446\pi\)
\(110\) −0.362408 + 6.22231i −0.0345543 + 0.593274i
\(111\) 0 0
\(112\) −9.34225 1.09195i −0.882760 0.103180i
\(113\) −7.07449 7.49852i −0.665512 0.705401i 0.303385 0.952868i \(-0.401883\pi\)
−0.968896 + 0.247467i \(0.920402\pi\)
\(114\) 0 0
\(115\) 8.84187 1.03347i 0.824508 0.0963712i
\(116\) −0.880217 0.738590i −0.0817261 0.0685764i
\(117\) 0 0
\(118\) 6.72485 5.64282i 0.619072 0.519464i
\(119\) −1.70722 + 1.80954i −0.156500 + 0.165881i
\(120\) 0 0
\(121\) −9.31822 4.67979i −0.847111 0.425435i
\(122\) 0.505229 + 0.253736i 0.0457413 + 0.0229722i
\(123\) 0 0
\(124\) 6.69932 7.10086i 0.601617 0.637676i
\(125\) −15.3730 + 12.8995i −1.37500 + 1.15376i
\(126\) 0 0
\(127\) −10.1217 8.49315i −0.898159 0.753645i 0.0716705 0.997428i \(-0.477167\pi\)
−0.969830 + 0.243783i \(0.921611\pi\)
\(128\) 7.78215 0.909603i 0.687852 0.0803983i
\(129\) 0 0
\(130\) 14.0528 + 14.8951i 1.23251 + 1.30638i
\(131\) 9.99331 + 1.16805i 0.873120 + 0.102053i 0.540838 0.841127i \(-0.318107\pi\)
0.332282 + 0.943180i \(0.392181\pi\)
\(132\) 0 0
\(133\) −0.870337 + 14.9431i −0.0754678 + 1.29573i
\(134\) 2.02853 + 3.51352i 0.175238 + 0.303522i
\(135\) 0 0
\(136\) 0.375938 0.651145i 0.0322365 0.0558352i
\(137\) −7.91093 5.20310i −0.675876 0.444531i 0.164614 0.986358i \(-0.447362\pi\)
−0.840490 + 0.541827i \(0.817733\pi\)
\(138\) 0 0
\(139\) −4.15897 9.64158i −0.352760 0.817788i −0.998527 0.0542545i \(-0.982722\pi\)
0.645768 0.763534i \(-0.276537\pi\)
\(140\) 31.2864 7.41502i 2.64419 0.626684i
\(141\) 0 0
\(142\) −8.53302 11.4618i −0.716075 0.961855i
\(143\) 1.76795 0.643483i 0.147844 0.0538107i
\(144\) 0 0
\(145\) −1.69736 0.617790i −0.140958 0.0513047i
\(146\) −4.81266 16.0754i −0.398298 1.33041i
\(147\) 0 0
\(148\) 0.684905 + 11.7594i 0.0562989 + 0.966614i
\(149\) 10.3846 6.83006i 0.850740 0.559541i −0.0475872 0.998867i \(-0.515153\pi\)
0.898328 + 0.439326i \(0.144783\pi\)
\(150\) 0 0
\(151\) −17.7357 4.20344i −1.44331 0.342071i −0.566960 0.823745i \(-0.691881\pi\)
−0.876350 + 0.481674i \(0.840029\pi\)
\(152\) −0.785565 4.45516i −0.0637177 0.361361i
\(153\) 0 0
\(154\) 0.927258 5.25874i 0.0747206 0.423761i
\(155\) 6.07840 14.0913i 0.488229 1.13184i
\(156\) 0 0
\(157\) −6.70313 + 22.3900i −0.534968 + 1.78692i 0.0781675 + 0.996940i \(0.475093\pi\)
−0.613136 + 0.789978i \(0.710092\pi\)
\(158\) 5.45401 7.32601i 0.433898 0.582826i
\(159\) 0 0
\(160\) 27.7710 13.9471i 2.19549 1.10262i
\(161\) −7.62665 −0.601064
\(162\) 0 0
\(163\) 11.7238 0.918278 0.459139 0.888364i \(-0.348158\pi\)
0.459139 + 0.888364i \(0.348158\pi\)
\(164\) −10.8272 + 5.43761i −0.845459 + 0.424606i
\(165\) 0 0
\(166\) 3.21785 4.32232i 0.249754 0.335477i
\(167\) −6.94439 + 23.1959i −0.537373 + 1.79495i 0.0663994 + 0.997793i \(0.478849\pi\)
−0.603772 + 0.797157i \(0.706336\pi\)
\(168\) 0 0
\(169\) −2.70073 + 6.26100i −0.207748 + 0.481615i
\(170\) 1.06685 6.05041i 0.0818237 0.464045i
\(171\) 0 0
\(172\) 2.55482 + 14.4891i 0.194803 + 1.10478i
\(173\) 15.0943 + 3.57742i 1.14760 + 0.271986i 0.760051 0.649863i \(-0.225174\pi\)
0.387548 + 0.921849i \(0.373322\pi\)
\(174\) 0 0
\(175\) 28.2970 18.6112i 2.13905 1.40688i
\(176\) −0.124089 2.13052i −0.00935353 0.160594i
\(177\) 0 0
\(178\) −3.26923 10.9200i −0.245039 0.818489i
\(179\) −6.75474 2.45852i −0.504873 0.183759i 0.0770114 0.997030i \(-0.475462\pi\)
−0.581884 + 0.813271i \(0.697684\pi\)
\(180\) 0 0
\(181\) 7.27112 2.64647i 0.540458 0.196711i −0.0573439 0.998354i \(-0.518263\pi\)
0.597802 + 0.801644i \(0.296041\pi\)
\(182\) −10.4765 14.0724i −0.776573 1.04312i
\(183\) 0 0
\(184\) 2.24286 0.531567i 0.165346 0.0391877i
\(185\) 7.33424 + 17.0027i 0.539224 + 1.25006i
\(186\) 0 0
\(187\) −0.471600 0.310176i −0.0344868 0.0226824i
\(188\) −13.3310 + 23.0900i −0.972264 + 1.68401i
\(189\) 0 0
\(190\) −18.4828 32.0132i −1.34089 2.32248i
\(191\) −0.585993 + 10.0611i −0.0424010 + 0.727996i 0.908382 + 0.418140i \(0.137318\pi\)
−0.950783 + 0.309856i \(0.899719\pi\)
\(192\) 0 0
\(193\) 15.8841 + 1.85659i 1.14337 + 0.133640i 0.666618 0.745400i \(-0.267741\pi\)
0.476748 + 0.879040i \(0.341815\pi\)
\(194\) −13.7764 14.6021i −0.989086 1.04837i
\(195\) 0 0
\(196\) −10.1425 + 1.18549i −0.724466 + 0.0846779i
\(197\) −8.40349 7.05136i −0.598724 0.502389i 0.292311 0.956323i \(-0.405576\pi\)
−0.891035 + 0.453934i \(0.850020\pi\)
\(198\) 0 0
\(199\) 2.68937 2.25665i 0.190644 0.159970i −0.542470 0.840075i \(-0.682511\pi\)
0.733114 + 0.680106i \(0.238066\pi\)
\(200\) −7.02445 + 7.44548i −0.496704 + 0.526475i
\(201\) 0 0
\(202\) 23.2702 + 11.6867i 1.63729 + 0.822276i
\(203\) 1.38290 + 0.694520i 0.0970607 + 0.0487457i
\(204\) 0 0
\(205\) −13.0703 + 13.8537i −0.912870 + 0.967586i
\(206\) 27.0186 22.6713i 1.88247 1.57958i
\(207\) 0 0
\(208\) −5.37122 4.50698i −0.372427 0.312503i
\(209\) −3.37328 + 0.394280i −0.233335 + 0.0272729i
\(210\) 0 0
\(211\) 5.27290 + 5.58895i 0.363002 + 0.384759i 0.882972 0.469425i \(-0.155539\pi\)
−0.519971 + 0.854184i \(0.674057\pi\)
\(212\) −28.3007 3.30788i −1.94370 0.227186i
\(213\) 0 0
\(214\) −0.454422 + 7.80212i −0.0310636 + 0.533342i
\(215\) 11.5641 + 20.0297i 0.788667 + 1.36601i
\(216\) 0 0
\(217\) −6.57386 + 11.3863i −0.446262 + 0.772949i
\(218\) 30.6503 + 20.1590i 2.07590 + 1.36534i
\(219\) 0 0
\(220\) 2.88954 + 6.69870i 0.194813 + 0.451626i
\(221\) −1.80453 + 0.427682i −0.121386 + 0.0287690i
\(222\) 0 0
\(223\) 6.47575 + 8.69845i 0.433649 + 0.582491i 0.964205 0.265159i \(-0.0854243\pi\)
−0.530556 + 0.847650i \(0.678017\pi\)
\(224\) −25.0185 + 9.10600i −1.67162 + 0.608420i
\(225\) 0 0
\(226\) −20.4960 7.45993i −1.36337 0.496227i
\(227\) −3.11507 10.4051i −0.206754 0.690608i −0.996971 0.0777796i \(-0.975217\pi\)
0.790216 0.612828i \(-0.209968\pi\)
\(228\) 0 0
\(229\) −0.133120 2.28559i −0.00879685 0.151036i −0.999846 0.0175398i \(-0.994417\pi\)
0.991049 0.133496i \(-0.0426204\pi\)
\(230\) 15.7361 10.3498i 1.03761 0.682444i
\(231\) 0 0
\(232\) −0.455094 0.107859i −0.0298784 0.00708130i
\(233\) −3.09286 17.5405i −0.202620 1.14912i −0.901141 0.433526i \(-0.857269\pi\)
0.698521 0.715590i \(-0.253842\pi\)
\(234\) 0 0
\(235\) −7.27807 + 41.2760i −0.474769 + 2.69255i
\(236\) 4.06977 9.43480i 0.264920 0.614153i
\(237\) 0 0
\(238\) −1.50960 + 5.04240i −0.0978526 + 0.326851i
\(239\) 7.32490 9.83905i 0.473808 0.636435i −0.499397 0.866373i \(-0.666445\pi\)
0.973205 + 0.229938i \(0.0738524\pi\)
\(240\) 0 0
\(241\) 15.6381 7.85375i 1.00734 0.505904i 0.132946 0.991123i \(-0.457556\pi\)
0.874393 + 0.485219i \(0.161260\pi\)
\(242\) −22.0617 −1.41818
\(243\) 0 0
\(244\) 0.661742 0.0423637
\(245\) −14.3451 + 7.20440i −0.916477 + 0.460272i
\(246\) 0 0
\(247\) −6.66326 + 8.95031i −0.423973 + 0.569494i
\(248\) 1.13964 3.80668i 0.0723675 0.241724i
\(249\) 0 0
\(250\) −16.8172 + 38.9865i −1.06361 + 2.46573i
\(251\) −3.26810 + 18.5343i −0.206281 + 1.16988i 0.689131 + 0.724637i \(0.257992\pi\)
−0.895412 + 0.445239i \(0.853119\pi\)
\(252\) 0 0
\(253\) −0.300488 1.70415i −0.0188915 0.107139i
\(254\) −27.2019 6.44697i −1.70680 0.404519i
\(255\) 0 0
\(256\) −4.94720 + 3.25382i −0.309200 + 0.203364i
\(257\) 1.00260 + 17.2139i 0.0625403 + 1.07378i 0.872918 + 0.487867i \(0.162225\pi\)
−0.810378 + 0.585908i \(0.800738\pi\)
\(258\) 0 0
\(259\) −4.54988 15.1977i −0.282716 0.944337i
\(260\) 22.5232 + 8.19776i 1.39683 + 0.508404i
\(261\) 0 0
\(262\) 20.0036 7.28070i 1.23582 0.449803i
\(263\) 14.6970 + 19.7415i 0.906255 + 1.21731i 0.975564 + 0.219716i \(0.0705131\pi\)
−0.0693091 + 0.997595i \(0.522079\pi\)
\(264\) 0 0
\(265\) −43.5843 + 10.3297i −2.67736 + 0.634547i
\(266\) 12.5437 + 29.0795i 0.769101 + 1.78298i
\(267\) 0 0
\(268\) 3.96745 + 2.60943i 0.242350 + 0.159396i
\(269\) 5.32448 9.22227i 0.324639 0.562292i −0.656800 0.754065i \(-0.728090\pi\)
0.981439 + 0.191773i \(0.0614238\pi\)
\(270\) 0 0
\(271\) 2.35817 + 4.08447i 0.143249 + 0.248114i 0.928718 0.370786i \(-0.120912\pi\)
−0.785469 + 0.618900i \(0.787578\pi\)
\(272\) −0.122315 + 2.10006i −0.00741641 + 0.127335i
\(273\) 0 0
\(274\) −19.8979 2.32573i −1.20207 0.140502i
\(275\) 5.27351 + 5.58959i 0.318005 + 0.337065i
\(276\) 0 0
\(277\) 6.56691 0.767562i 0.394567 0.0461183i 0.0835039 0.996507i \(-0.473389\pi\)
0.311063 + 0.950389i \(0.399315\pi\)
\(278\) −17.0186 14.2803i −1.02071 0.856474i
\(279\) 0 0
\(280\) 10.0256 8.41245i 0.599142 0.502740i
\(281\) −1.69927 + 1.80112i −0.101370 + 0.107446i −0.776072 0.630644i \(-0.782791\pi\)
0.674702 + 0.738090i \(0.264272\pi\)
\(282\) 0 0
\(283\) 0.828536 + 0.416107i 0.0492514 + 0.0247350i 0.473254 0.880926i \(-0.343079\pi\)
−0.424003 + 0.905661i \(0.639375\pi\)
\(284\) −14.9462 7.50627i −0.886894 0.445415i
\(285\) 0 0
\(286\) 2.73167 2.89540i 0.161527 0.171208i
\(287\) 12.4999 10.4887i 0.737845 0.619126i
\(288\) 0 0
\(289\) −12.5965 10.5697i −0.740973 0.621750i
\(290\) −3.79584 + 0.443670i −0.222900 + 0.0260532i
\(291\) 0 0
\(292\) −13.4784 14.2862i −0.788761 0.836038i
\(293\) 2.32920 + 0.272245i 0.136073 + 0.0159047i 0.183857 0.982953i \(-0.441142\pi\)
−0.0477835 + 0.998858i \(0.515216\pi\)
\(294\) 0 0
\(295\) 0.939186 16.1252i 0.0546815 0.938846i
\(296\) 2.39729 + 4.15224i 0.139340 + 0.241344i
\(297\) 0 0
\(298\) 13.1488 22.7744i 0.761688 1.31928i
\(299\) −4.75001 3.12413i −0.274700 0.180673i
\(300\) 0 0
\(301\) −7.84818 18.1941i −0.452362 1.04869i
\(302\) −37.5244 + 8.89345i −2.15929 + 0.511760i
\(303\) 0 0
\(304\) 7.55826 + 10.1525i 0.433496 + 0.582286i
\(305\) 0.977524 0.355790i 0.0559729 0.0203725i
\(306\) 0 0
\(307\) 14.3376 + 5.21846i 0.818289 + 0.297833i 0.717043 0.697028i \(-0.245495\pi\)
0.101246 + 0.994861i \(0.467717\pi\)
\(308\) −1.79256 5.98756i −0.102140 0.341173i
\(309\) 0 0
\(310\) −1.88792 32.4143i −0.107227 1.84101i
\(311\) −13.9891 + 9.20078i −0.793249 + 0.521728i −0.880267 0.474478i \(-0.842637\pi\)
0.0870178 + 0.996207i \(0.472266\pi\)
\(312\) 0 0
\(313\) 31.6953 + 7.51193i 1.79153 + 0.424599i 0.985832 0.167734i \(-0.0536451\pi\)
0.805693 + 0.592334i \(0.201793\pi\)
\(314\) 8.58676 + 48.6979i 0.484579 + 2.74818i
\(315\) 0 0
\(316\) 1.85633 10.5278i 0.104427 0.592234i
\(317\) −8.58338 + 19.8985i −0.482091 + 1.11761i 0.487554 + 0.873093i \(0.337889\pi\)
−0.969645 + 0.244519i \(0.921370\pi\)
\(318\) 0 0
\(319\) −0.100702 + 0.336369i −0.00563824 + 0.0188330i
\(320\) 26.1512 35.1272i 1.46190 1.96367i
\(321\) 0 0
\(322\) −14.4198 + 7.24188i −0.803582 + 0.403574i
\(323\) 3.34769 0.186271
\(324\) 0 0
\(325\) 25.2476 1.40049
\(326\) 22.1663 11.1323i 1.22768 0.616562i
\(327\) 0 0
\(328\) −2.94495 + 3.95575i −0.162607 + 0.218420i
\(329\) 10.2985 34.3994i 0.567774 1.89650i
\(330\) 0 0
\(331\) 9.43153 21.8648i 0.518404 1.20180i −0.435091 0.900386i \(-0.643284\pi\)
0.953495 0.301409i \(-0.0974569\pi\)
\(332\) 1.09523 6.21136i 0.0601086 0.340893i
\(333\) 0 0
\(334\) 8.89581 + 50.4507i 0.486757 + 2.76054i
\(335\) 7.26368 + 1.72152i 0.396857 + 0.0940569i
\(336\) 0 0
\(337\) 15.3690 10.1084i 0.837204 0.550638i −0.0569604 0.998376i \(-0.518141\pi\)
0.894164 + 0.447739i \(0.147770\pi\)
\(338\) 0.838832 + 14.4022i 0.0456265 + 0.783376i
\(339\) 0 0
\(340\) −2.06242 6.88895i −0.111850 0.373606i
\(341\) −2.80323 1.02029i −0.151803 0.0552519i
\(342\) 0 0
\(343\) −9.01506 + 3.28121i −0.486767 + 0.177169i
\(344\) 3.57611 + 4.80356i 0.192811 + 0.258990i
\(345\) 0 0
\(346\) 31.9359 7.56894i 1.71688 0.406909i
\(347\) 6.69815 + 15.5281i 0.359576 + 0.833590i 0.997958 + 0.0638707i \(0.0203445\pi\)
−0.638383 + 0.769719i \(0.720396\pi\)
\(348\) 0 0
\(349\) −6.82361 4.48796i −0.365259 0.240235i 0.353590 0.935400i \(-0.384961\pi\)
−0.718850 + 0.695166i \(0.755331\pi\)
\(350\) 35.8291 62.0578i 1.91514 3.31713i
\(351\) 0 0
\(352\) −3.02043 5.23154i −0.160989 0.278842i
\(353\) 1.43120 24.5728i 0.0761752 1.30788i −0.716222 0.697872i \(-0.754130\pi\)
0.792397 0.610005i \(-0.208833\pi\)
\(354\) 0 0
\(355\) −26.1143 3.05233i −1.38600 0.162001i
\(356\) −9.15584 9.70462i −0.485258 0.514344i
\(357\) 0 0
\(358\) −15.1057 + 1.76561i −0.798363 + 0.0933152i
\(359\) 9.68682 + 8.12821i 0.511251 + 0.428990i 0.861569 0.507640i \(-0.169482\pi\)
−0.350318 + 0.936631i \(0.613927\pi\)
\(360\) 0 0
\(361\) 0.875105 0.734300i 0.0460582 0.0386474i
\(362\) 11.2346 11.9080i 0.590478 0.625870i
\(363\) 0 0
\(364\) −18.3504 9.21593i −0.961824 0.483046i
\(365\) −27.5913 13.8569i −1.44419 0.725302i
\(366\) 0 0
\(367\) 7.20152 7.63317i 0.375917 0.398448i −0.511600 0.859224i \(-0.670947\pi\)
0.887517 + 0.460775i \(0.152429\pi\)
\(368\) −4.94019 + 4.14531i −0.257525 + 0.216089i
\(369\) 0 0
\(370\) 30.0118 + 25.1829i 1.56024 + 1.30920i
\(371\) 38.1148 4.45499i 1.97882 0.231291i
\(372\) 0 0
\(373\) −8.09518 8.58039i −0.419152 0.444276i 0.483047 0.875594i \(-0.339530\pi\)
−0.902200 + 0.431319i \(0.858048\pi\)
\(374\) −1.18619 0.138645i −0.0613362 0.00716918i
\(375\) 0 0
\(376\) −0.631010 + 10.8340i −0.0325418 + 0.558722i
\(377\) 0.576797 + 0.999042i 0.0297066 + 0.0514533i
\(378\) 0 0
\(379\) −9.06853 + 15.7072i −0.465819 + 0.806823i −0.999238 0.0390286i \(-0.987574\pi\)
0.533419 + 0.845851i \(0.320907\pi\)
\(380\) −36.1491 23.7756i −1.85441 1.21966i
\(381\) 0 0
\(382\) 8.44558 + 19.5791i 0.432113 + 1.00175i
\(383\) −15.0994 + 3.57861i −0.771541 + 0.182859i −0.597488 0.801878i \(-0.703834\pi\)
−0.174053 + 0.984736i \(0.555686\pi\)
\(384\) 0 0
\(385\) −5.86722 7.88104i −0.299021 0.401655i
\(386\) 31.7952 11.5725i 1.61833 0.589025i
\(387\) 0 0
\(388\) −22.0802 8.03653i −1.12095 0.407993i
\(389\) −4.42661 14.7859i −0.224438 0.749675i −0.993832 0.110900i \(-0.964627\pi\)
0.769393 0.638775i \(-0.220559\pi\)
\(390\) 0 0
\(391\) 0.0991778 + 1.70282i 0.00501563 + 0.0861151i
\(392\) −3.47268 + 2.28402i −0.175397 + 0.115360i
\(393\) 0 0
\(394\) −22.5842 5.35254i −1.13777 0.269657i
\(395\) −2.91816 16.5497i −0.146828 0.832705i
\(396\) 0 0
\(397\) 0.354695 2.01157i 0.0178016 0.100958i −0.974612 0.223899i \(-0.928121\pi\)
0.992414 + 0.122941i \(0.0392326\pi\)
\(398\) 2.94201 6.82036i 0.147470 0.341874i
\(399\) 0 0
\(400\) 8.21372 27.4357i 0.410686 1.37179i
\(401\) −8.93000 + 11.9951i −0.445943 + 0.599005i −0.967081 0.254467i \(-0.918100\pi\)
0.521139 + 0.853472i \(0.325507\pi\)
\(402\) 0 0
\(403\) −8.75850 + 4.39868i −0.436292 + 0.219114i
\(404\) 30.4790 1.51639
\(405\) 0 0
\(406\) 3.27415 0.162493
\(407\) 3.21660 1.61544i 0.159441 0.0800744i
\(408\) 0 0
\(409\) 6.20362 8.33291i 0.306749 0.412036i −0.621840 0.783144i \(-0.713615\pi\)
0.928590 + 0.371108i \(0.121022\pi\)
\(410\) −11.5574 + 38.6042i −0.570777 + 1.90653i
\(411\) 0 0
\(412\) 16.3512 37.9064i 0.805567 1.86751i
\(413\) −2.40300 + 13.6281i −0.118244 + 0.670595i
\(414\) 0 0
\(415\) −1.72170 9.76427i −0.0845151 0.479309i
\(416\) −19.3121 4.57705i −0.946853 0.224408i
\(417\) 0 0
\(418\) −6.00350 + 3.94856i −0.293641 + 0.193131i
\(419\) 0.0308229 + 0.529208i 0.00150580 + 0.0258535i 0.998977 0.0452132i \(-0.0143967\pi\)
−0.997472 + 0.0710667i \(0.977360\pi\)
\(420\) 0 0
\(421\) 9.19654 + 30.7186i 0.448212 + 1.49713i 0.821929 + 0.569590i \(0.192898\pi\)
−0.373717 + 0.927543i \(0.621917\pi\)
\(422\) 15.2765 + 5.56019i 0.743649 + 0.270666i
\(423\) 0 0
\(424\) −10.8984 + 3.96668i −0.529272 + 0.192639i
\(425\) −4.52334 6.07590i −0.219414 0.294724i
\(426\) 0 0
\(427\) −0.867198 + 0.205530i −0.0419666 + 0.00994628i
\(428\) 3.62318 + 8.39947i 0.175133 + 0.406004i
\(429\) 0 0
\(430\) 40.8835 + 26.8895i 1.97158 + 1.29673i
\(431\) 2.69146 4.66175i 0.129643 0.224549i −0.793895 0.608055i \(-0.791950\pi\)
0.923538 + 0.383506i \(0.125283\pi\)
\(432\) 0 0
\(433\) −16.6465 28.8325i −0.799978 1.38560i −0.919630 0.392787i \(-0.871511\pi\)
0.119652 0.992816i \(-0.461822\pi\)
\(434\) −1.61743 + 27.7703i −0.0776394 + 1.33302i
\(435\) 0 0
\(436\) 42.6489 + 4.98494i 2.04251 + 0.238735i
\(437\) 7.04280 + 7.46493i 0.336903 + 0.357096i
\(438\) 0 0
\(439\) 18.5556 2.16884i 0.885612 0.103513i 0.338889 0.940827i \(-0.389949\pi\)
0.546723 + 0.837313i \(0.315875\pi\)
\(440\) 2.27474 + 1.90873i 0.108444 + 0.0909953i
\(441\) 0 0
\(442\) −3.00574 + 2.52212i −0.142968 + 0.119965i
\(443\) −12.9497 + 13.7259i −0.615260 + 0.652138i −0.957824 0.287357i \(-0.907223\pi\)
0.342563 + 0.939495i \(0.388705\pi\)
\(444\) 0 0
\(445\) −18.7427 9.41296i −0.888491 0.446217i
\(446\) 20.5034 + 10.2972i 0.970862 + 0.487585i
\(447\) 0 0
\(448\) −25.7468 + 27.2900i −1.21642 + 1.28933i
\(449\) 5.33643 4.47780i 0.251842 0.211320i −0.508123 0.861284i \(-0.669661\pi\)
0.759965 + 0.649964i \(0.225216\pi\)
\(450\) 0 0
\(451\) 2.83615 + 2.37981i 0.133549 + 0.112061i
\(452\) −25.3569 + 2.96379i −1.19269 + 0.139405i
\(453\) 0 0
\(454\) −15.7698 16.7150i −0.740113 0.784474i
\(455\) −32.0622 3.74754i −1.50310 0.175687i
\(456\) 0 0
\(457\) −2.18611 + 37.5341i −0.102262 + 1.75577i 0.424197 + 0.905570i \(0.360556\pi\)
−0.526459 + 0.850201i \(0.676481\pi\)
\(458\) −2.42197 4.19498i −0.113171 0.196018i
\(459\) 0 0
\(460\) 11.0226 19.0917i 0.513932 0.890157i
\(461\) −23.0904 15.1868i −1.07543 0.707320i −0.117137 0.993116i \(-0.537372\pi\)
−0.958291 + 0.285796i \(0.907742\pi\)
\(462\) 0 0
\(463\) 9.73063 + 22.5581i 0.452220 + 1.04836i 0.980003 + 0.198985i \(0.0637645\pi\)
−0.527782 + 0.849380i \(0.676976\pi\)
\(464\) 1.27327 0.301771i 0.0591102 0.0140094i
\(465\) 0 0
\(466\) −22.5033 30.2271i −1.04244 1.40025i
\(467\) 7.38677 2.68856i 0.341819 0.124412i −0.165406 0.986226i \(-0.552893\pi\)
0.507225 + 0.861814i \(0.330671\pi\)
\(468\) 0 0
\(469\) −6.00971 2.18735i −0.277503 0.101003i
\(470\) 25.4329 + 84.9517i 1.17313 + 3.91853i
\(471\) 0 0
\(472\) −0.243182 4.17527i −0.0111933 0.192182i
\(473\) 3.75620 2.47049i 0.172710 0.113593i
\(474\) 0 0
\(475\) −44.3473 10.5105i −2.03479 0.482255i
\(476\) 1.06981 + 6.06719i 0.0490346 + 0.278089i
\(477\) 0 0
\(478\) 4.50659 25.5581i 0.206127 1.16900i
\(479\) 7.01520 16.2631i 0.320533 0.743079i −0.679424 0.733746i \(-0.737770\pi\)
0.999956 0.00933231i \(-0.00297061\pi\)
\(480\) 0 0
\(481\) 3.39173 11.3292i 0.154649 0.516565i
\(482\) 22.1096 29.6983i 1.00706 1.35272i
\(483\) 0 0
\(484\) −23.0758 + 11.5891i −1.04890 + 0.526778i
\(485\) −36.9377 −1.67725
\(486\) 0 0
\(487\) −42.1146 −1.90840 −0.954198 0.299175i \(-0.903289\pi\)
−0.954198 + 0.299175i \(0.903289\pi\)
\(488\) 0.240702 0.120885i 0.0108961 0.00547221i
\(489\) 0 0
\(490\) −20.2815 + 27.2428i −0.916226 + 1.23071i
\(491\) −2.08723 + 6.97182i −0.0941952 + 0.314634i −0.992082 0.125593i \(-0.959917\pi\)
0.897887 + 0.440227i \(0.145102\pi\)
\(492\) 0 0
\(493\) 0.137083 0.317795i 0.00617392 0.0143128i
\(494\) −4.09952 + 23.2495i −0.184446 + 1.04604i
\(495\) 0 0
\(496\) 1.93053 + 10.9486i 0.0866833 + 0.491606i
\(497\) 21.9180 + 5.19467i 0.983158 + 0.233013i
\(498\) 0 0
\(499\) −13.4764 + 8.86359i −0.603288 + 0.396789i −0.814089 0.580740i \(-0.802763\pi\)
0.210801 + 0.977529i \(0.432393\pi\)
\(500\) 2.88961 + 49.6128i 0.129228 + 2.21875i
\(501\) 0 0
\(502\) 11.4202 + 38.1462i 0.509710 + 1.70255i
\(503\) −34.7114 12.6339i −1.54771 0.563319i −0.579827 0.814739i \(-0.696880\pi\)
−0.967878 + 0.251421i \(0.919102\pi\)
\(504\) 0 0
\(505\) 45.0235 16.3872i 2.00352 0.729221i
\(506\) −2.18631 2.93672i −0.0971933 0.130553i
\(507\) 0 0
\(508\) −31.8389 + 7.54597i −1.41262 + 0.334798i
\(509\) −4.62698 10.7265i −0.205087 0.475445i 0.784366 0.620298i \(-0.212988\pi\)
−0.989453 + 0.144853i \(0.953729\pi\)
\(510\) 0 0
\(511\) 22.1002 + 14.5355i 0.977656 + 0.643015i
\(512\) −14.0992 + 24.4205i −0.623101 + 1.07924i
\(513\) 0 0
\(514\) 18.2411 + 31.5945i 0.804580 + 1.39357i
\(515\) 3.77339 64.7866i 0.166276 2.85484i
\(516\) 0 0
\(517\) 8.09218 + 0.945840i 0.355894 + 0.0415980i
\(518\) −23.0334 24.4140i −1.01203 1.07269i
\(519\) 0 0
\(520\) 9.69012 1.13261i 0.424940 0.0496683i
\(521\) 0.659940 + 0.553755i 0.0289125 + 0.0242605i 0.657129 0.753778i \(-0.271771\pi\)
−0.628217 + 0.778038i \(0.716215\pi\)
\(522\) 0 0
\(523\) −6.06895 + 5.09246i −0.265377 + 0.222678i −0.765760 0.643126i \(-0.777637\pi\)
0.500383 + 0.865804i \(0.333192\pi\)
\(524\) 17.0985 18.1233i 0.746951 0.791721i
\(525\) 0 0
\(526\) 46.5332 + 23.3699i 2.02894 + 1.01897i
\(527\) 2.62772 + 1.31969i 0.114465 + 0.0574866i
\(528\) 0 0
\(529\) 12.1951 12.9261i 0.530224 0.562004i
\(530\) −72.5967 + 60.9158i −3.15340 + 2.64601i
\(531\) 0 0
\(532\) 28.3958 + 23.8269i 1.23112 + 1.03303i
\(533\) 12.0817 1.41214i 0.523314 0.0611667i
\(534\) 0 0
\(535\) 9.86818 + 10.4597i 0.426639 + 0.452211i
\(536\) 1.91980 + 0.224393i 0.0829228 + 0.00969228i
\(537\) 0 0
\(538\) 1.31004 22.4925i 0.0564797 0.969720i
\(539\) 1.56020 + 2.70235i 0.0672028 + 0.116399i
\(540\) 0 0
\(541\) 6.01461 10.4176i 0.258588 0.447888i −0.707276 0.706938i \(-0.750076\pi\)
0.965864 + 0.259050i \(0.0834094\pi\)
\(542\) 8.33703 + 5.48335i 0.358106 + 0.235530i
\(543\) 0 0
\(544\) 2.35846 + 5.46752i 0.101118 + 0.234418i
\(545\) 65.6811 15.5667i 2.81347 0.666804i
\(546\) 0 0
\(547\) −3.81051 5.11840i −0.162926 0.218847i 0.713162 0.701000i \(-0.247263\pi\)
−0.876087 + 0.482152i \(0.839855\pi\)
\(548\) −22.0342 + 8.01980i −0.941255 + 0.342589i
\(549\) 0 0
\(550\) 15.2783 + 5.56083i 0.651467 + 0.237115i
\(551\) −0.597243 1.99493i −0.0254434 0.0849868i
\(552\) 0 0
\(553\) 0.837130 + 14.3730i 0.0355984 + 0.611201i
\(554\) 11.6873 7.68684i 0.496545 0.326583i
\(555\) 0 0
\(556\) −25.3023 5.99677i −1.07306 0.254320i
\(557\) 6.99671 + 39.6803i 0.296460 + 1.68131i 0.661207 + 0.750203i \(0.270044\pi\)
−0.364747 + 0.931107i \(0.618844\pi\)
\(558\) 0 0
\(559\) 2.56494 14.5465i 0.108485 0.615251i
\(560\) −14.5030 + 33.6218i −0.612864 + 1.42078i
\(561\) 0 0
\(562\) −1.50257 + 5.01892i −0.0633820 + 0.211711i
\(563\) 0.946894 1.27190i 0.0399068 0.0536042i −0.781722 0.623627i \(-0.785658\pi\)
0.821629 + 0.570023i \(0.193066\pi\)
\(564\) 0 0
\(565\) −35.8637 + 18.0114i −1.50880 + 0.757745i
\(566\) 1.96163 0.0824536
\(567\) 0 0
\(568\) −6.80775 −0.285647
\(569\) −9.86944 + 4.95662i −0.413748 + 0.207792i −0.643482 0.765461i \(-0.722511\pi\)
0.229733 + 0.973254i \(0.426215\pi\)
\(570\) 0 0
\(571\) 4.72230 6.34315i 0.197622 0.265452i −0.692255 0.721653i \(-0.743383\pi\)
0.889877 + 0.456201i \(0.150790\pi\)
\(572\) 1.33627 4.46345i 0.0558722 0.186626i
\(573\) 0 0
\(574\) 13.6742 31.7002i 0.570748 1.32314i
\(575\) 4.03238 22.8688i 0.168162 0.953695i
\(576\) 0 0
\(577\) −8.01656 45.4642i −0.333734 1.89270i −0.439392 0.898295i \(-0.644806\pi\)
0.105658 0.994402i \(-0.466305\pi\)
\(578\) −33.8529 8.02328i −1.40809 0.333724i
\(579\) 0 0
\(580\) −3.73726 + 2.45804i −0.155181 + 0.102064i
\(581\) 0.493904 + 8.48001i 0.0204906 + 0.351810i
\(582\) 0 0
\(583\) 2.49717 + 8.34111i 0.103422 + 0.345454i
\(584\) −7.51238 2.73428i −0.310865 0.113145i
\(585\) 0 0
\(586\) 4.66235 1.69696i 0.192600 0.0701007i
\(587\) −21.9518 29.4864i −0.906049 1.21703i −0.975622 0.219458i \(-0.929571\pi\)
0.0695732 0.997577i \(-0.477836\pi\)
\(588\) 0 0
\(589\) 17.2154 4.08013i 0.709348 0.168119i
\(590\) −13.5360 31.3799i −0.557266 1.29189i
\(591\) 0 0
\(592\) −11.2076 7.37135i −0.460629 0.302960i
\(593\) 7.17407 12.4258i 0.294604 0.510268i −0.680289 0.732944i \(-0.738146\pi\)
0.974893 + 0.222676i \(0.0714791\pi\)
\(594\) 0 0
\(595\) 4.84238 + 8.38725i 0.198518 + 0.343844i
\(596\) 1.78972 30.7283i 0.0733099 1.25868i
\(597\) 0 0
\(598\) −11.9474 1.39645i −0.488565 0.0571051i
\(599\) −8.93203 9.46739i −0.364953 0.386827i 0.518711 0.854950i \(-0.326412\pi\)
−0.883664 + 0.468122i \(0.844931\pi\)
\(600\) 0 0
\(601\) 6.25526 0.731135i 0.255157 0.0298236i 0.0124474 0.999923i \(-0.496038\pi\)
0.242710 + 0.970099i \(0.421964\pi\)
\(602\) −32.1148 26.9476i −1.30890 1.09830i
\(603\) 0 0
\(604\) −34.5775 + 29.0140i −1.40694 + 1.18056i
\(605\) −27.8566 + 29.5263i −1.13253 + 1.20042i
\(606\) 0 0
\(607\) 11.7509 + 5.90153i 0.476955 + 0.239536i 0.671001 0.741457i \(-0.265865\pi\)
−0.194046 + 0.980992i \(0.562161\pi\)
\(608\) 32.0162 + 16.0791i 1.29843 + 0.652094i
\(609\) 0 0
\(610\) 1.51037 1.60090i 0.0611532 0.0648186i
\(611\) 20.5052 17.2059i 0.829552 0.696076i
\(612\) 0 0
\(613\) −28.3321 23.7734i −1.14432 0.960200i −0.144750 0.989468i \(-0.546238\pi\)
−0.999572 + 0.0292684i \(0.990682\pi\)
\(614\) 32.0634 3.74767i 1.29397 0.151244i
\(615\) 0 0
\(616\) −1.74581 1.85046i −0.0703409 0.0745570i
\(617\) 32.2582 + 3.77044i 1.29867 + 0.151792i 0.737181 0.675695i \(-0.236156\pi\)
0.561484 + 0.827487i \(0.310231\pi\)
\(618\) 0 0
\(619\) 2.49564 42.8485i 0.100308 1.72223i −0.454924 0.890530i \(-0.650333\pi\)
0.555232 0.831696i \(-0.312629\pi\)
\(620\) −19.0021 32.9126i −0.763142 1.32180i
\(621\) 0 0
\(622\) −17.7127 + 30.6793i −0.710215 + 1.23013i
\(623\) 15.0127 + 9.87398i 0.601470 + 0.395593i
\(624\) 0 0
\(625\) 10.8323 + 25.1120i 0.433290 + 1.00448i
\(626\) 67.0595 15.8934i 2.68024 0.635228i
\(627\) 0 0
\(628\) 34.5627 + 46.4258i 1.37920 + 1.85259i
\(629\) −3.33404 + 1.21349i −0.132937 + 0.0483851i
\(630\) 0 0
\(631\) 13.0635 + 4.75472i 0.520049 + 0.189282i 0.588690 0.808359i \(-0.299644\pi\)
−0.0686408 + 0.997641i \(0.521866\pi\)
\(632\) −1.24796 4.16848i −0.0496412 0.165813i
\(633\) 0 0
\(634\) 2.66595 + 45.7726i 0.105878 + 1.81786i
\(635\) −42.9753 + 28.2653i −1.70542 + 1.12167i
\(636\) 0 0
\(637\) 9.97568 + 2.36428i 0.395251 + 0.0936761i
\(638\) 0.129000 + 0.731597i 0.00510717 + 0.0289642i
\(639\) 0 0
\(640\) 5.29656 30.0383i 0.209365 1.18737i
\(641\) 1.03758 2.40538i 0.0409819 0.0950068i −0.896496 0.443053i \(-0.853895\pi\)
0.937477 + 0.348046i \(0.113155\pi\)
\(642\) 0 0
\(643\) 0.0293991 0.0981997i 0.00115939 0.00387262i −0.957408 0.288739i \(-0.906764\pi\)
0.958567 + 0.284866i \(0.0919492\pi\)
\(644\) −11.2784 + 15.1495i −0.444432 + 0.596975i
\(645\) 0 0
\(646\) 6.32951 3.17880i 0.249031 0.125068i
\(647\) 25.1564 0.988998 0.494499 0.869178i \(-0.335351\pi\)
0.494499 + 0.869178i \(0.335351\pi\)
\(648\) 0 0
\(649\) −3.13983 −0.123249
\(650\) 47.7359 23.9739i 1.87236 0.940332i
\(651\) 0 0
\(652\) 17.3373 23.2881i 0.678982 0.912031i
\(653\) −2.13941 + 7.14613i −0.0837217 + 0.279650i −0.989591 0.143907i \(-0.954033\pi\)
0.905870 + 0.423557i \(0.139219\pi\)
\(654\) 0 0
\(655\) 15.5137 35.9649i 0.606172 1.40526i
\(656\) 2.39595 13.5881i 0.0935463 0.530527i
\(657\) 0 0
\(658\) −13.1924 74.8181i −0.514295 2.91671i
\(659\) −15.8217 3.74981i −0.616325 0.146072i −0.0894175 0.995994i \(-0.528501\pi\)
−0.526908 + 0.849922i \(0.676649\pi\)
\(660\) 0 0
\(661\) −15.7657 + 10.3693i −0.613214 + 0.403318i −0.817776 0.575536i \(-0.804793\pi\)
0.204562 + 0.978854i \(0.434423\pi\)
\(662\) −2.92938 50.2956i −0.113854 1.95479i
\(663\) 0 0
\(664\) −0.736294 2.45939i −0.0285737 0.0954429i
\(665\) 54.7570 + 19.9299i 2.12339 + 0.772849i
\(666\) 0 0
\(667\) 0.997034 0.362891i 0.0386053 0.0140512i
\(668\) 35.8067 + 48.0967i 1.38540 + 1.86092i
\(669\) 0 0
\(670\) 15.3682 3.64233i 0.593725 0.140715i
\(671\) −0.0800923 0.185675i −0.00309193 0.00716789i
\(672\) 0 0
\(673\) 6.83522 + 4.49560i 0.263478 + 0.173293i 0.674374 0.738390i \(-0.264414\pi\)
−0.410896 + 0.911682i \(0.634784\pi\)
\(674\) 19.4599 33.7056i 0.749569 1.29829i
\(675\) 0 0
\(676\) 8.44293 + 14.6236i 0.324728 + 0.562445i
\(677\) −1.34268 + 23.0529i −0.0516033 + 0.885995i 0.868834 + 0.495104i \(0.164870\pi\)
−0.920437 + 0.390891i \(0.872167\pi\)
\(678\) 0 0
\(679\) 31.4316 + 3.67383i 1.20623 + 0.140989i
\(680\) −2.00864 2.12903i −0.0770277 0.0816446i
\(681\) 0 0
\(682\) −6.26891 + 0.732730i −0.240049 + 0.0280577i
\(683\) 14.3566 + 12.0466i 0.549340 + 0.460951i 0.874717 0.484633i \(-0.161047\pi\)
−0.325378 + 0.945584i \(0.605491\pi\)
\(684\) 0 0
\(685\) −28.2370 + 23.6937i −1.07888 + 0.905289i
\(686\) −13.9292 + 14.7641i −0.531818 + 0.563694i
\(687\) 0 0
\(688\) −14.9727 7.51959i −0.570830 0.286682i
\(689\) 25.5635 + 12.8385i 0.973892 + 0.489107i
\(690\) 0 0
\(691\) 4.56302 4.83652i 0.173586 0.183990i −0.634740 0.772726i \(-0.718893\pi\)
0.808325 + 0.588736i \(0.200374\pi\)
\(692\) 29.4279 24.6929i 1.11868 0.938684i
\(693\) 0 0
\(694\) 27.4089 + 22.9988i 1.04043 + 0.873023i
\(695\) −40.6008 + 4.74555i −1.54008 + 0.180009i
\(696\) 0 0
\(697\) −2.50437 2.65448i −0.0948598 0.100546i
\(698\) −17.1630 2.00607i −0.649629 0.0759307i
\(699\) 0 0
\(700\) 4.87681 83.7316i 0.184326 3.16476i
\(701\) −12.1477 21.0405i −0.458813 0.794687i 0.540086 0.841610i \(-0.318392\pi\)
−0.998899 + 0.0469230i \(0.985058\pi\)
\(702\) 0 0
\(703\) −10.6738 + 18.4876i −0.402571 + 0.697274i
\(704\) −7.11227 4.67782i −0.268054 0.176302i
\(705\) 0 0
\(706\) −20.6271 47.8190i −0.776311 1.79969i
\(707\) −39.9420 + 9.46643i −1.50217 + 0.356022i
\(708\) 0 0
\(709\) 17.8682 + 24.0012i 0.671054 + 0.901382i 0.999062 0.0432925i \(-0.0137847\pi\)
−0.328008 + 0.944675i \(0.606377\pi\)
\(710\) −52.2729 + 19.0258i −1.96177 + 0.714024i
\(711\) 0 0
\(712\) −5.10315 1.85740i −0.191249 0.0696089i
\(713\) 2.58539 + 8.63580i 0.0968236 + 0.323413i
\(714\) 0 0
\(715\) −0.425867 7.31185i −0.0159265 0.273448i
\(716\) −14.8726 + 9.78188i −0.555816 + 0.365566i
\(717\) 0 0
\(718\) 26.0331 + 6.16995i 0.971546 + 0.230261i
\(719\) 2.12889 + 12.0735i 0.0793943 + 0.450267i 0.998426 + 0.0560838i \(0.0178614\pi\)
−0.919032 + 0.394183i \(0.871027\pi\)
\(720\) 0 0
\(721\) −9.65461 + 54.7540i −0.359556 + 2.03915i
\(722\) 0.957314 2.21930i 0.0356275 0.0825939i
\(723\) 0 0
\(724\) 5.49571 18.3570i 0.204247 0.682231i
\(725\) −2.81372 + 3.77948i −0.104499 + 0.140366i
\(726\) 0 0
\(727\) −43.8058 + 22.0001i −1.62467 + 0.815938i −0.625298 + 0.780386i \(0.715023\pi\)
−0.999368 + 0.0355521i \(0.988681\pi\)
\(728\) −8.35832 −0.309780
\(729\) 0 0
\(730\) −65.3249 −2.41778
\(731\) −3.96018 + 1.98888i −0.146472 + 0.0735612i
\(732\) 0 0
\(733\) −12.0622 + 16.2024i −0.445528 + 0.598448i −0.966986 0.254829i \(-0.917981\pi\)
0.521458 + 0.853277i \(0.325388\pi\)
\(734\) 6.36791 21.2703i 0.235044 0.785101i
\(735\) 0 0
\(736\) −7.23020 + 16.7615i −0.266509 + 0.617837i
\(737\) 0.251977 1.42903i 0.00928168 0.0526390i
\(738\) 0 0
\(739\) 0.349401 + 1.98155i 0.0128529 + 0.0728925i 0.990560 0.137083i \(-0.0437727\pi\)
−0.977707 + 0.209975i \(0.932662\pi\)
\(740\) 44.6200 + 10.5751i 1.64027 + 0.388750i
\(741\) 0 0
\(742\) 67.8338 44.6150i 2.49026 1.63787i
\(743\) 1.25430 + 21.5356i 0.0460160 + 0.790064i 0.939834 + 0.341633i \(0.110980\pi\)
−0.893818 + 0.448431i \(0.851983\pi\)
\(744\) 0 0
\(745\) −13.8775 46.3541i −0.508433 1.69828i
\(746\) −23.4531 8.53624i −0.858680 0.312534i
\(747\) 0 0
\(748\) −1.31354 + 0.478091i −0.0480279 + 0.0174807i
\(749\) −7.35687 9.88200i −0.268814 0.361080i
\(750\) 0 0
\(751\) −14.0873 + 3.33875i −0.514053 + 0.121833i −0.479451 0.877568i \(-0.659164\pi\)
−0.0346015 + 0.999401i \(0.511016\pi\)
\(752\) −12.0262 27.8798i −0.438550 1.01667i
\(753\) 0 0
\(754\) 2.03919 + 1.34120i 0.0742631 + 0.0488436i
\(755\) −35.4783 + 61.4503i −1.29119 + 2.23640i
\(756\) 0 0
\(757\) −5.26451 9.11840i −0.191342 0.331414i 0.754353 0.656469i \(-0.227951\pi\)
−0.945695 + 0.325055i \(0.894617\pi\)
\(758\) −2.23123 + 38.3087i −0.0810418 + 1.39143i
\(759\) 0 0
\(760\) −17.4921 2.04454i −0.634506 0.0741632i
\(761\) −29.0111 30.7500i −1.05165 1.11469i −0.993203 0.116395i \(-0.962866\pi\)
−0.0584483 0.998290i \(-0.518615\pi\)
\(762\) 0 0
\(763\) −57.4387 + 6.71362i −2.07942 + 0.243049i
\(764\) 19.1188 + 16.0425i 0.691693 + 0.580399i
\(765\) 0 0
\(766\) −25.1504 + 21.1037i −0.908721 + 0.762507i
\(767\) −7.07916 + 7.50347i −0.255614 + 0.270935i
\(768\) 0 0
\(769\) −8.05989 4.04783i −0.290647 0.145968i 0.297501 0.954721i \(-0.403847\pi\)
−0.588149 + 0.808753i \(0.700143\pi\)
\(770\) −18.5766 9.32953i −0.669455 0.336213i
\(771\) 0 0
\(772\) 27.1777 28.8066i 0.978145 1.03677i
\(773\) −0.551231 + 0.462537i −0.0198264 + 0.0166363i −0.652647 0.757662i \(-0.726342\pi\)
0.632821 + 0.774298i \(0.281897\pi\)
\(774\) 0 0
\(775\) −30.6663 25.7321i −1.10157 0.924325i
\(776\) −9.49953 + 1.11034i −0.341013 + 0.0398587i
\(777\) 0 0
\(778\) −22.4094 23.7526i −0.803415 0.851570i
\(779\) −21.8092 2.54913i −0.781396 0.0913321i
\(780\) 0 0
\(781\) −0.297168 + 5.10218i −0.0106335 + 0.182570i
\(782\) 1.80442 + 3.12535i 0.0645261 + 0.111762i
\(783\) 0 0
\(784\) 5.81453 10.0711i 0.207662 0.359681i
\(785\) 76.0171 + 49.9972i 2.71317 + 1.78448i
\(786\) 0 0
\(787\) 6.11050 + 14.1657i 0.217816 + 0.504953i 0.991731 0.128336i \(-0.0409636\pi\)
−0.773915 + 0.633289i \(0.781704\pi\)
\(788\) −26.4340 + 6.26497i −0.941672 + 0.223180i
\(789\) 0 0
\(790\) −21.2321 28.5197i −0.755405 1.01469i
\(791\) 32.3091 11.7595i 1.14878 0.418121i
\(792\) 0 0
\(793\) −0.624297 0.227226i −0.0221695 0.00806902i
\(794\) −1.23946 4.14010i −0.0439869 0.146927i
\(795\) 0 0
\(796\) −0.505513 8.67932i −0.0179174 0.307630i
\(797\) 11.6388 7.65494i 0.412266 0.271152i −0.326389 0.945236i \(-0.605832\pi\)
0.738655 + 0.674084i \(0.235461\pi\)
\(798\) 0 0
\(799\) −7.81433 1.85203i −0.276451 0.0655201i
\(800\) −14.0768 79.8335i −0.497690 2.82254i
\(801\) 0 0
\(802\) −5.49411 + 31.1586i −0.194004 + 1.10025i
\(803\) −2.37718 + 5.51092i −0.0838888 + 0.194476i
\(804\) 0 0
\(805\) −8.51521 + 28.4428i −0.300122 + 1.00248i
\(806\) −12.3830 + 16.6333i −0.436173 + 0.585881i
\(807\) 0 0
\(808\) 11.0864 5.56781i 0.390019 0.195875i
\(809\) 40.8781 1.43720 0.718599 0.695424i \(-0.244784\pi\)
0.718599 + 0.695424i \(0.244784\pi\)
\(810\) 0 0
\(811\) 51.1039 1.79450 0.897250 0.441524i \(-0.145562\pi\)
0.897250 + 0.441524i \(0.145562\pi\)
\(812\) 3.42465 1.71992i 0.120182 0.0603575i
\(813\) 0 0
\(814\) 4.54772 6.10865i 0.159398 0.214108i
\(815\) 13.0897 43.7226i 0.458512 1.53154i
\(816\) 0 0
\(817\) −10.5610 + 24.4830i −0.369481 + 0.856553i
\(818\) 3.81673 21.6457i 0.133449 0.756825i
\(819\) 0 0
\(820\) 8.19037 + 46.4499i 0.286020 + 1.62210i
\(821\) 47.2620 + 11.2013i 1.64946 + 0.390928i 0.947110 0.320908i \(-0.103988\pi\)
0.702345 + 0.711836i \(0.252136\pi\)
\(822\) 0 0
\(823\) −22.5809 + 14.8517i −0.787119 + 0.517696i −0.878284 0.478139i \(-0.841311\pi\)
0.0911649 + 0.995836i \(0.470941\pi\)
\(824\) −0.977036 16.7751i −0.0340367 0.584387i
\(825\) 0 0
\(826\) 8.39718 + 28.0485i 0.292175 + 0.975934i
\(827\) 14.9793 + 5.45201i 0.520880 + 0.189585i 0.589062 0.808088i \(-0.299497\pi\)
−0.0681816 + 0.997673i \(0.521720\pi\)
\(828\) 0 0
\(829\) 1.59698 0.581253i 0.0554654 0.0201877i −0.314138 0.949377i \(-0.601716\pi\)
0.369604 + 0.929189i \(0.379493\pi\)
\(830\) −12.5269 16.8265i −0.434815 0.584058i
\(831\) 0 0
\(832\) −27.2144 + 6.44994i −0.943490 + 0.223611i
\(833\) −1.21826 2.82425i −0.0422103 0.0978545i
\(834\) 0 0
\(835\) 78.7531 + 51.7967i 2.72536 + 1.79250i
\(836\) −4.20527 + 7.28373i −0.145442 + 0.251913i
\(837\) 0 0
\(838\) 0.560786 + 0.971310i 0.0193720 + 0.0335534i
\(839\) −2.69510 + 46.2731i −0.0930453 + 1.59753i 0.552307 + 0.833641i \(0.313747\pi\)
−0.645353 + 0.763885i \(0.723290\pi\)
\(840\) 0 0
\(841\) 28.5901 + 3.34170i 0.985865 + 0.115231i
\(842\) 46.5568 + 49.3473i 1.60445 + 1.70062i
\(843\) 0 0
\(844\) 18.8995 2.20904i 0.650548 0.0760382i
\(845\) 20.3343 + 17.0625i 0.699523 + 0.586969i
\(846\) 0 0
\(847\) 26.6409 22.3544i 0.915393 0.768106i
\(848\) 22.2676 23.6023i 0.764673 0.810506i
\(849\) 0 0
\(850\) −14.3217 7.19262i −0.491229 0.246705i
\(851\) −9.72001 4.88157i −0.333198 0.167338i
\(852\) 0 0
\(853\) 16.6035 17.5986i 0.568492 0.602566i −0.377797 0.925888i \(-0.623318\pi\)
0.946289 + 0.323322i \(0.104800\pi\)
\(854\) −1.44446 + 1.21204i −0.0494283 + 0.0414753i
\(855\) 0 0
\(856\) 2.85228 + 2.39335i 0.0974891 + 0.0818031i
\(857\) −12.7419 + 1.48931i −0.435254 + 0.0508739i −0.330899 0.943666i \(-0.607352\pi\)
−0.104355 + 0.994540i \(0.533278\pi\)
\(858\) 0 0
\(859\) −14.0817 14.9257i −0.480461 0.509259i 0.441118 0.897449i \(-0.354582\pi\)
−0.921579 + 0.388190i \(0.873100\pi\)
\(860\) 56.8880 + 6.64926i 1.93987 + 0.226738i
\(861\) 0 0
\(862\) 0.662209 11.3697i 0.0225549 0.387253i
\(863\) −18.5110 32.0620i −0.630121 1.09140i −0.987527 0.157453i \(-0.949672\pi\)
0.357405 0.933949i \(-0.383662\pi\)
\(864\) 0 0
\(865\) 30.1945 52.2984i 1.02664 1.77820i
\(866\) −58.8515 38.7072i −1.99986 1.31533i
\(867\) 0 0
\(868\) 12.8961 + 29.8965i 0.437721 + 1.01475i
\(869\) −3.17861 + 0.753344i −0.107827 + 0.0255555i
\(870\) 0 0
\(871\) −2.84694 3.82410i −0.0964648 0.129575i
\(872\) 16.4237 5.97775i 0.556178 0.202432i
\(873\) 0 0
\(874\) 20.4042 + 7.42652i 0.690182 + 0.251206i
\(875\) −19.1959 64.1189i −0.648941 2.16762i
\(876\) 0 0
\(877\) −2.52161 43.2944i −0.0851488 1.46195i −0.722498 0.691373i \(-0.757006\pi\)
0.637349 0.770575i \(-0.280031\pi\)
\(878\) 33.0239 21.7201i 1.11450 0.733019i
\(879\) 0 0
\(880\) −8.08409 1.91596i −0.272515 0.0645872i
\(881\) −1.78531 10.1250i −0.0601486 0.341120i 0.939851 0.341584i \(-0.110963\pi\)
−1.00000 0.000464198i \(0.999852\pi\)
\(882\) 0 0
\(883\) 1.36337 7.73205i 0.0458810 0.260204i −0.953236 0.302228i \(-0.902269\pi\)
0.999117 + 0.0420240i \(0.0133806\pi\)
\(884\) −1.81903 + 4.21698i −0.0611805 + 0.141832i
\(885\) 0 0
\(886\) −11.4507 + 38.2481i −0.384695 + 1.28497i
\(887\) 20.8967 28.0692i 0.701643 0.942471i −0.298284 0.954477i \(-0.596414\pi\)
0.999928 + 0.0120063i \(0.00382182\pi\)
\(888\) 0 0
\(889\) 39.3805 19.7776i 1.32078 0.663321i
\(890\) −44.3751 −1.48746
\(891\) 0 0
\(892\) 26.8550 0.899172
\(893\) −43.1800 + 21.6858i −1.44496 + 0.725688i
\(894\) 0 0
\(895\) −16.7105 + 22.4461i −0.558571 + 0.750292i
\(896\) −7.49465 + 25.0339i −0.250379 + 0.836323i
\(897\) 0 0
\(898\) 5.83774 13.5334i 0.194808 0.451616i
\(899\) 0.317622 1.80133i 0.0105933 0.0600776i
\(900\) 0 0
\(901\) −1.49032 8.45204i −0.0496498 0.281578i
\(902\) 7.62207 + 1.80646i 0.253787 + 0.0601487i
\(903\) 0 0
\(904\) −8.68189 + 5.71017i −0.288755 + 0.189917i
\(905\) −1.75148 30.0717i −0.0582210 0.999616i
\(906\) 0 0
\(907\) 14.4087 + 48.1283i 0.478432 + 1.59807i 0.767689 + 0.640822i \(0.221407\pi\)
−0.289257 + 0.957251i \(0.593408\pi\)
\(908\) −25.2752 9.19941i −0.838786 0.305293i
\(909\) 0 0
\(910\) −64.1788 + 23.3592i −2.12751 + 0.774349i
\(911\) 14.7268 + 19.7816i 0.487922 + 0.655393i 0.976093 0.217355i \(-0.0697429\pi\)
−0.488170 + 0.872748i \(0.662336\pi\)
\(912\) 0 0
\(913\) −1.87537 + 0.444471i −0.0620657 + 0.0147098i
\(914\) 31.5072 + 73.0418i 1.04216 + 2.41601i
\(915\) 0 0
\(916\) −4.73694 3.11554i −0.156513 0.102940i
\(917\) −16.7783 + 29.0608i −0.554067 + 0.959672i
\(918\) 0 0
\(919\) −4.12738 7.14883i −0.136150 0.235818i 0.789886 0.613253i \(-0.210139\pi\)
−0.926036 + 0.377435i \(0.876806\pi\)
\(920\) 0.521745 8.95801i 0.0172014 0.295337i
\(921\) 0 0
\(922\) −58.0779 6.78833i −1.91269 0.223562i
\(923\) 11.5230 + 12.2137i 0.379285 + 0.402018i
\(924\) 0 0
\(925\) 47.9764 5.60763i 1.57745 0.184378i
\(926\) 39.8178 + 33.4111i 1.30849 + 1.09796i
\(927\) 0 0
\(928\) 2.83740 2.38086i 0.0931422 0.0781556i
\(929\) −6.73053 + 7.13394i −0.220821 + 0.234057i −0.828308 0.560273i \(-0.810696\pi\)
0.607487 + 0.794330i \(0.292178\pi\)
\(930\) 0 0
\(931\) −16.5380 8.30568i −0.542010 0.272208i
\(932\) −39.4161 19.7955i −1.29112 0.648424i
\(933\) 0 0
\(934\) 11.4133 12.0974i 0.373455 0.395839i
\(935\) −1.68332 + 1.41247i −0.0550503 + 0.0461927i
\(936\) 0 0
\(937\) 33.8490 + 28.4027i 1.10580 + 0.927875i 0.997801 0.0662763i \(-0.0211119\pi\)
0.107997 + 0.994151i \(0.465556\pi\)
\(938\) −13.4396 + 1.57086i −0.438819 + 0.0512905i
\(939\) 0 0
\(940\) 71.2275 + 75.4967i 2.32318 + 2.46243i
\(941\) −10.5684 1.23526i −0.344519 0.0402684i −0.0579256 0.998321i \(-0.518449\pi\)
−0.286593 + 0.958052i \(0.592523\pi\)
\(942\) 0 0
\(943\) 0.650512 11.1689i 0.0211836 0.363708i
\(944\) 5.85073 + 10.1338i 0.190425 + 0.329826i
\(945\) 0 0
\(946\) 4.75603 8.23768i 0.154632 0.267830i
\(947\) −9.18551 6.04140i −0.298489 0.196319i 0.391426 0.920209i \(-0.371982\pi\)
−0.689915 + 0.723890i \(0.742352\pi\)
\(948\) 0 0
\(949\) 7.81015 + 18.1060i 0.253528 + 0.587745i
\(950\) −93.8280 + 22.2376i −3.04418 + 0.721485i
\(951\) 0 0
\(952\) 1.49747 + 2.01145i 0.0485332 + 0.0651914i
\(953\) −39.7723 + 14.4759i −1.28835 + 0.468921i −0.893185 0.449689i \(-0.851535\pi\)
−0.395165 + 0.918610i \(0.629313\pi\)
\(954\) 0 0
\(955\) 36.8676 + 13.4187i 1.19301 + 0.434219i
\(956\) −8.71206 29.1003i −0.281768 0.941171i
\(957\) 0 0
\(958\) −2.17888 37.4100i −0.0703965 1.20866i
\(959\) 26.3845 17.3533i 0.851999 0.560369i
\(960\) 0 0
\(961\) −15.0430 3.56526i −0.485259 0.115008i
\(962\) −4.34483 24.6407i −0.140083 0.794449i
\(963\) 0 0
\(964\) 7.52523 42.6777i 0.242371 1.37456i
\(965\) 24.6587 57.1654i 0.793793 1.84022i
\(966\) 0 0
\(967\) 2.38375 7.96226i 0.0766561 0.256049i −0.911068 0.412255i \(-0.864741\pi\)
0.987724 + 0.156206i \(0.0499264\pi\)
\(968\) −6.27654 + 8.43085i −0.201736 + 0.270978i
\(969\) 0 0
\(970\) −69.8384 + 35.0742i −2.24238 + 1.12616i
\(971\) 17.9539 0.576169 0.288084 0.957605i \(-0.406982\pi\)
0.288084 + 0.957605i \(0.406982\pi\)
\(972\) 0 0
\(973\) 35.0207 1.12271
\(974\) −79.6265 + 39.9899i −2.55140 + 1.28136i
\(975\) 0 0
\(976\) −0.450019 + 0.604480i −0.0144048 + 0.0193489i
\(977\) −7.00093 + 23.3847i −0.223979 + 0.748144i 0.769948 + 0.638107i \(0.220282\pi\)
−0.993927 + 0.110037i \(0.964903\pi\)
\(978\) 0 0
\(979\) −1.61482 + 3.74356i −0.0516097 + 0.119645i
\(980\) −6.90304 + 39.1491i −0.220509 + 1.25057i
\(981\) 0 0
\(982\) 2.67375 + 15.1636i 0.0853228 + 0.483890i
\(983\) −45.3567 10.7497i −1.44665 0.342863i −0.569071 0.822288i \(-0.692697\pi\)
−0.877583 + 0.479425i \(0.840845\pi\)
\(984\) 0 0
\(985\) −35.6799 + 23.4670i −1.13686 + 0.747722i
\(986\) −0.0425773 0.731025i −0.00135594 0.0232806i
\(987\) 0 0
\(988\) 7.92511 + 26.4717i 0.252131 + 0.842177i
\(989\) −12.7663 4.64654i −0.405944 0.147751i
\(990\) 0 0
\(991\) −55.3339 + 20.1399i −1.75774 + 0.639765i −0.999919 0.0126995i \(-0.995958\pi\)
−0.757820 + 0.652464i \(0.773735\pi\)
\(992\) 18.7920 + 25.2421i 0.596648 + 0.801437i
\(993\) 0 0
\(994\) 46.3732 10.9906i 1.47087 0.348602i
\(995\) −5.41324 12.5493i −0.171611 0.397839i
\(996\) 0 0
\(997\) −50.3721 33.1302i −1.59530 1.04925i −0.961147 0.276038i \(-0.910978\pi\)
−0.634154 0.773207i \(-0.718651\pi\)
\(998\) −17.0636 + 29.5550i −0.540138 + 0.935547i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 243.2.g.a.73.7 144
3.2 odd 2 81.2.g.a.25.2 yes 144
9.2 odd 6 729.2.g.c.703.7 144
9.4 even 3 729.2.g.a.217.2 144
9.5 odd 6 729.2.g.d.217.7 144
9.7 even 3 729.2.g.b.703.2 144
81.13 even 27 inner 243.2.g.a.10.7 144
81.14 odd 54 729.2.g.d.514.7 144
81.16 even 27 6561.2.a.d.1.61 72
81.40 even 27 729.2.g.b.28.2 144
81.41 odd 54 729.2.g.c.28.7 144
81.65 odd 54 6561.2.a.c.1.12 72
81.67 even 27 729.2.g.a.514.2 144
81.68 odd 54 81.2.g.a.13.2 144
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
81.2.g.a.13.2 144 81.68 odd 54
81.2.g.a.25.2 yes 144 3.2 odd 2
243.2.g.a.10.7 144 81.13 even 27 inner
243.2.g.a.73.7 144 1.1 even 1 trivial
729.2.g.a.217.2 144 9.4 even 3
729.2.g.a.514.2 144 81.67 even 27
729.2.g.b.28.2 144 81.40 even 27
729.2.g.b.703.2 144 9.7 even 3
729.2.g.c.28.7 144 81.41 odd 54
729.2.g.c.703.7 144 9.2 odd 6
729.2.g.d.217.7 144 9.5 odd 6
729.2.g.d.514.7 144 81.14 odd 54
6561.2.a.c.1.12 72 81.65 odd 54
6561.2.a.d.1.61 72 81.16 even 27