Properties

Label 243.2.g.a.73.5
Level $243$
Weight $2$
Character 243.73
Analytic conductor $1.940$
Analytic rank $0$
Dimension $144$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [243,2,Mod(10,243)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("243.10"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(243, base_ring=CyclotomicField(54)) chi = DirichletCharacter(H, H._module([8])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 243 = 3^{5} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 243.g (of order \(27\), degree \(18\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.94036476912\)
Analytic rank: \(0\)
Dimension: \(144\)
Relative dimension: \(8\) over \(\Q(\zeta_{27})\)
Twist minimal: no (minimal twist has level 81)
Sato-Tate group: $\mathrm{SU}(2)[C_{27}]$

Embedding invariants

Embedding label 73.5
Character \(\chi\) \(=\) 243.73
Dual form 243.2.g.a.10.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.698417 - 0.350758i) q^{2} +(-0.829563 + 1.11430i) q^{4} +(-0.424677 + 1.41852i) q^{5} +(-1.50560 + 3.49038i) q^{7} +(-0.459961 + 2.60857i) q^{8} +(0.200956 + 1.13968i) q^{10} +(-4.91819 - 1.16563i) q^{11} +(3.75323 - 2.46854i) q^{13} +(0.172741 + 2.96584i) q^{14} +(-0.203113 - 0.678443i) q^{16} +(4.30582 + 1.56719i) q^{17} +(4.19524 - 1.52694i) q^{19} +(-1.22836 - 1.64997i) q^{20} +(-3.84380 + 0.910998i) q^{22} +(1.36843 + 3.17237i) q^{23} +(2.34559 + 1.54272i) q^{25} +(1.75546 - 3.04054i) q^{26} +(-2.64032 - 4.57318i) q^{28} +(0.0379650 - 0.651834i) q^{29} +(-0.653701 - 0.0764066i) q^{31} +(-4.01527 - 4.25594i) q^{32} +(3.55696 - 0.415749i) q^{34} +(-4.31178 - 3.61801i) q^{35} +(0.766165 - 0.642889i) q^{37} +(2.39444 - 2.53796i) q^{38} +(-3.50497 - 1.76026i) q^{40} +(0.610184 + 0.306446i) q^{41} +(-5.75968 + 6.10490i) q^{43} +(5.37881 - 4.51336i) q^{44} +(2.06847 + 1.73565i) q^{46} +(7.88112 - 0.921171i) q^{47} +(-5.11223 - 5.41864i) q^{49} +(2.17932 + 0.254726i) q^{50} +(-0.362857 + 6.23001i) q^{52} +(2.07469 + 3.59347i) q^{53} +(3.74212 - 6.48154i) q^{55} +(-8.41238 - 5.53291i) q^{56} +(-0.202121 - 0.468568i) q^{58} +(-5.12792 + 1.21534i) q^{59} +(-4.05529 - 5.44719i) q^{61} +(-0.483356 + 0.175927i) q^{62} +(-2.96617 - 1.07960i) q^{64} +(1.90776 + 6.37236i) q^{65} +(-0.308237 - 5.29223i) q^{67} +(-5.31826 + 3.49787i) q^{68} +(-4.28047 - 1.01449i) q^{70} +(1.06500 + 6.03991i) q^{71} +(-0.764322 + 4.33469i) q^{73} +(0.309604 - 0.717743i) q^{74} +(-1.77875 + 5.94144i) q^{76} +(11.4734 - 15.4114i) q^{77} +(10.0467 - 5.04564i) q^{79} +1.04864 q^{80} +0.533651 q^{82} +(-1.44915 + 0.727793i) q^{83} +(-4.05167 + 5.44234i) q^{85} +(-1.88131 + 6.28402i) q^{86} +(5.30281 - 12.2933i) q^{88} +(0.181087 - 1.02699i) q^{89} +(2.96526 + 16.8168i) q^{91} +(-4.67016 - 1.10685i) q^{92} +(5.18120 - 3.40773i) q^{94} +(0.384377 + 6.59950i) q^{95} +(-1.43062 - 4.77859i) q^{97} +(-5.47110 - 1.99132i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 144 q + 18 q^{2} - 18 q^{4} + 18 q^{5} - 18 q^{7} + 18 q^{8} - 18 q^{10} + 18 q^{11} - 18 q^{13} + 18 q^{14} - 18 q^{16} + 18 q^{17} - 18 q^{19} - 18 q^{20} - 18 q^{22} - 9 q^{23} - 18 q^{25} - 45 q^{26}+ \cdots - 81 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/243\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{23}{27}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.698417 0.350758i 0.493855 0.248023i −0.184398 0.982852i \(-0.559034\pi\)
0.678253 + 0.734828i \(0.262737\pi\)
\(3\) 0 0
\(4\) −0.829563 + 1.11430i −0.414781 + 0.557148i
\(5\) −0.424677 + 1.41852i −0.189921 + 0.634382i 0.808994 + 0.587817i \(0.200013\pi\)
−0.998915 + 0.0465645i \(0.985173\pi\)
\(6\) 0 0
\(7\) −1.50560 + 3.49038i −0.569065 + 1.31924i 0.354234 + 0.935157i \(0.384742\pi\)
−0.923299 + 0.384083i \(0.874518\pi\)
\(8\) −0.459961 + 2.60857i −0.162621 + 0.922268i
\(9\) 0 0
\(10\) 0.200956 + 1.13968i 0.0635478 + 0.360398i
\(11\) −4.91819 1.16563i −1.48289 0.351452i −0.592100 0.805865i \(-0.701701\pi\)
−0.890791 + 0.454413i \(0.849849\pi\)
\(12\) 0 0
\(13\) 3.75323 2.46854i 1.04096 0.684649i 0.0906250 0.995885i \(-0.471114\pi\)
0.950332 + 0.311237i \(0.100743\pi\)
\(14\) 0.172741 + 2.96584i 0.0461669 + 0.792655i
\(15\) 0 0
\(16\) −0.203113 0.678443i −0.0507782 0.169611i
\(17\) 4.30582 + 1.56719i 1.04431 + 0.380099i 0.806514 0.591215i \(-0.201352\pi\)
0.237800 + 0.971314i \(0.423574\pi\)
\(18\) 0 0
\(19\) 4.19524 1.52694i 0.962455 0.350305i 0.187460 0.982272i \(-0.439975\pi\)
0.774995 + 0.631967i \(0.217752\pi\)
\(20\) −1.22836 1.64997i −0.274669 0.368944i
\(21\) 0 0
\(22\) −3.84380 + 0.910998i −0.819502 + 0.194225i
\(23\) 1.36843 + 3.17237i 0.285337 + 0.661486i 0.999249 0.0387500i \(-0.0123376\pi\)
−0.713912 + 0.700235i \(0.753078\pi\)
\(24\) 0 0
\(25\) 2.34559 + 1.54272i 0.469118 + 0.308544i
\(26\) 1.75546 3.04054i 0.344273 0.596299i
\(27\) 0 0
\(28\) −2.64032 4.57318i −0.498974 0.864249i
\(29\) 0.0379650 0.651834i 0.00704993 0.121043i −0.992947 0.118559i \(-0.962172\pi\)
0.999997 0.00248341i \(-0.000790494\pi\)
\(30\) 0 0
\(31\) −0.653701 0.0764066i −0.117408 0.0137230i 0.0571859 0.998364i \(-0.481787\pi\)
−0.174594 + 0.984641i \(0.555861\pi\)
\(32\) −4.01527 4.25594i −0.709807 0.752351i
\(33\) 0 0
\(34\) 3.55696 0.415749i 0.610013 0.0713003i
\(35\) −4.31178 3.61801i −0.728824 0.611556i
\(36\) 0 0
\(37\) 0.766165 0.642889i 0.125957 0.105690i −0.577633 0.816296i \(-0.696024\pi\)
0.703590 + 0.710606i \(0.251579\pi\)
\(38\) 2.39444 2.53796i 0.388429 0.411711i
\(39\) 0 0
\(40\) −3.50497 1.76026i −0.554185 0.278322i
\(41\) 0.610184 + 0.306446i 0.0952947 + 0.0478588i 0.495808 0.868432i \(-0.334872\pi\)
−0.400513 + 0.916291i \(0.631168\pi\)
\(42\) 0 0
\(43\) −5.75968 + 6.10490i −0.878343 + 0.930989i −0.998088 0.0618156i \(-0.980311\pi\)
0.119745 + 0.992805i \(0.461792\pi\)
\(44\) 5.37881 4.51336i 0.810886 0.680414i
\(45\) 0 0
\(46\) 2.06847 + 1.73565i 0.304979 + 0.255908i
\(47\) 7.88112 0.921171i 1.14958 0.134367i 0.480111 0.877207i \(-0.340596\pi\)
0.669468 + 0.742841i \(0.266522\pi\)
\(48\) 0 0
\(49\) −5.11223 5.41864i −0.730318 0.774092i
\(50\) 2.17932 + 0.254726i 0.308202 + 0.0360237i
\(51\) 0 0
\(52\) −0.362857 + 6.23001i −0.0503192 + 0.863947i
\(53\) 2.07469 + 3.59347i 0.284981 + 0.493601i 0.972605 0.232466i \(-0.0746794\pi\)
−0.687624 + 0.726067i \(0.741346\pi\)
\(54\) 0 0
\(55\) 3.74212 6.48154i 0.504587 0.873971i
\(56\) −8.41238 5.53291i −1.12415 0.739366i
\(57\) 0 0
\(58\) −0.202121 0.468568i −0.0265397 0.0615261i
\(59\) −5.12792 + 1.21534i −0.667598 + 0.158224i −0.550421 0.834887i \(-0.685533\pi\)
−0.117177 + 0.993111i \(0.537385\pi\)
\(60\) 0 0
\(61\) −4.05529 5.44719i −0.519226 0.697442i 0.462741 0.886494i \(-0.346866\pi\)
−0.981967 + 0.189052i \(0.939459\pi\)
\(62\) −0.483356 + 0.175927i −0.0613862 + 0.0223428i
\(63\) 0 0
\(64\) −2.96617 1.07960i −0.370771 0.134950i
\(65\) 1.90776 + 6.37236i 0.236628 + 0.790394i
\(66\) 0 0
\(67\) −0.308237 5.29223i −0.0376572 0.646549i −0.963346 0.268263i \(-0.913551\pi\)
0.925689 0.378286i \(-0.123487\pi\)
\(68\) −5.31826 + 3.49787i −0.644933 + 0.424179i
\(69\) 0 0
\(70\) −4.28047 1.01449i −0.511614 0.121255i
\(71\) 1.06500 + 6.03991i 0.126392 + 0.716805i 0.980471 + 0.196662i \(0.0630103\pi\)
−0.854079 + 0.520143i \(0.825879\pi\)
\(72\) 0 0
\(73\) −0.764322 + 4.33469i −0.0894571 + 0.507337i 0.906848 + 0.421457i \(0.138481\pi\)
−0.996306 + 0.0858796i \(0.972630\pi\)
\(74\) 0.309604 0.717743i 0.0359907 0.0834359i
\(75\) 0 0
\(76\) −1.77875 + 5.94144i −0.204037 + 0.681530i
\(77\) 11.4734 15.4114i 1.30751 1.75629i
\(78\) 0 0
\(79\) 10.0467 5.04564i 1.13034 0.567679i 0.217528 0.976054i \(-0.430201\pi\)
0.912814 + 0.408375i \(0.133904\pi\)
\(80\) 1.04864 0.117242
\(81\) 0 0
\(82\) 0.533651 0.0589319
\(83\) −1.44915 + 0.727793i −0.159065 + 0.0798857i −0.526551 0.850144i \(-0.676515\pi\)
0.367486 + 0.930029i \(0.380219\pi\)
\(84\) 0 0
\(85\) −4.05167 + 5.44234i −0.439465 + 0.590305i
\(86\) −1.88131 + 6.28402i −0.202867 + 0.677623i
\(87\) 0 0
\(88\) 5.30281 12.2933i 0.565281 1.31047i
\(89\) 0.181087 1.02699i 0.0191952 0.108861i −0.973705 0.227813i \(-0.926842\pi\)
0.992900 + 0.118952i \(0.0379535\pi\)
\(90\) 0 0
\(91\) 2.96526 + 16.8168i 0.310844 + 1.76288i
\(92\) −4.67016 1.10685i −0.486898 0.115397i
\(93\) 0 0
\(94\) 5.18120 3.40773i 0.534400 0.351480i
\(95\) 0.384377 + 6.59950i 0.0394362 + 0.677094i
\(96\) 0 0
\(97\) −1.43062 4.77859i −0.145257 0.485192i 0.854135 0.520051i \(-0.174087\pi\)
−0.999392 + 0.0348588i \(0.988902\pi\)
\(98\) −5.47110 1.99132i −0.552664 0.201153i
\(99\) 0 0
\(100\) −3.66486 + 1.33390i −0.366486 + 0.133390i
\(101\) 5.71510 + 7.67671i 0.568673 + 0.763861i 0.989695 0.143190i \(-0.0457359\pi\)
−0.421022 + 0.907050i \(0.638328\pi\)
\(102\) 0 0
\(103\) 3.16740 0.750687i 0.312093 0.0739673i −0.0715847 0.997435i \(-0.522806\pi\)
0.383677 + 0.923467i \(0.374657\pi\)
\(104\) 4.71300 + 10.9260i 0.462148 + 1.07138i
\(105\) 0 0
\(106\) 2.70944 + 1.78203i 0.263164 + 0.173086i
\(107\) 8.40680 14.5610i 0.812716 1.40767i −0.0982402 0.995163i \(-0.531321\pi\)
0.910956 0.412503i \(-0.135345\pi\)
\(108\) 0 0
\(109\) −3.81772 6.61249i −0.365671 0.633361i 0.623212 0.782053i \(-0.285827\pi\)
−0.988884 + 0.148691i \(0.952494\pi\)
\(110\) 0.340106 5.83939i 0.0324278 0.556764i
\(111\) 0 0
\(112\) 2.67383 + 0.312526i 0.252653 + 0.0295310i
\(113\) −6.87571 7.28783i −0.646812 0.685581i 0.318129 0.948048i \(-0.396946\pi\)
−0.964941 + 0.262466i \(0.915464\pi\)
\(114\) 0 0
\(115\) −5.08122 + 0.593909i −0.473826 + 0.0553823i
\(116\) 0.694842 + 0.583042i 0.0645144 + 0.0541340i
\(117\) 0 0
\(118\) −3.15514 + 2.64747i −0.290454 + 0.243720i
\(119\) −11.9529 + 12.6694i −1.09572 + 1.16140i
\(120\) 0 0
\(121\) 13.0000 + 6.52883i 1.18182 + 0.593530i
\(122\) −4.74293 2.38199i −0.429404 0.215655i
\(123\) 0 0
\(124\) 0.627425 0.665032i 0.0563444 0.0597216i
\(125\) −8.85601 + 7.43107i −0.792105 + 0.664655i
\(126\) 0 0
\(127\) 2.97665 + 2.49770i 0.264135 + 0.221635i 0.765230 0.643757i \(-0.222625\pi\)
−0.501096 + 0.865392i \(0.667070\pi\)
\(128\) 9.17279 1.07215i 0.810768 0.0947651i
\(129\) 0 0
\(130\) 3.56757 + 3.78140i 0.312896 + 0.331651i
\(131\) −16.5366 1.93285i −1.44481 0.168874i −0.642732 0.766091i \(-0.722199\pi\)
−0.802080 + 0.597217i \(0.796273\pi\)
\(132\) 0 0
\(133\) −0.986757 + 16.9420i −0.0855627 + 1.46905i
\(134\) −2.07157 3.58807i −0.178956 0.309962i
\(135\) 0 0
\(136\) −6.06863 + 10.5112i −0.520380 + 0.901325i
\(137\) 7.74989 + 5.09718i 0.662118 + 0.435482i 0.835587 0.549358i \(-0.185127\pi\)
−0.173470 + 0.984839i \(0.555498\pi\)
\(138\) 0 0
\(139\) 6.30605 + 14.6191i 0.534872 + 1.23997i 0.944738 + 0.327827i \(0.106316\pi\)
−0.409866 + 0.912146i \(0.634424\pi\)
\(140\) 7.60843 1.80323i 0.643030 0.152401i
\(141\) 0 0
\(142\) 2.86236 + 3.84482i 0.240204 + 0.322650i
\(143\) −21.3365 + 7.76585i −1.78425 + 0.649413i
\(144\) 0 0
\(145\) 0.908517 + 0.330673i 0.0754483 + 0.0274609i
\(146\) 0.986611 + 3.29551i 0.0816525 + 0.272738i
\(147\) 0 0
\(148\) 0.0807865 + 1.38705i 0.00664061 + 0.114015i
\(149\) 19.5018 12.8265i 1.59765 1.05079i 0.637824 0.770182i \(-0.279835\pi\)
0.959823 0.280607i \(-0.0905356\pi\)
\(150\) 0 0
\(151\) −2.26923 0.537818i −0.184667 0.0437670i 0.137242 0.990538i \(-0.456176\pi\)
−0.321909 + 0.946771i \(0.604324\pi\)
\(152\) 2.05349 + 11.6459i 0.166560 + 0.944608i
\(153\) 0 0
\(154\) 2.60751 14.7879i 0.210119 1.19165i
\(155\) 0.385996 0.894840i 0.0310040 0.0718752i
\(156\) 0 0
\(157\) 5.64522 18.8563i 0.450538 1.50490i −0.367658 0.929961i \(-0.619840\pi\)
0.818196 0.574939i \(-0.194974\pi\)
\(158\) 5.24698 7.04792i 0.417428 0.560702i
\(159\) 0 0
\(160\) 7.74233 3.88835i 0.612085 0.307401i
\(161\) −13.1331 −1.03503
\(162\) 0 0
\(163\) −17.6622 −1.38341 −0.691707 0.722179i \(-0.743141\pi\)
−0.691707 + 0.722179i \(0.743141\pi\)
\(164\) −0.847657 + 0.425709i −0.0661909 + 0.0332423i
\(165\) 0 0
\(166\) −0.756835 + 1.01661i −0.0587418 + 0.0789039i
\(167\) 0.972303 3.24772i 0.0752391 0.251316i −0.912093 0.409983i \(-0.865535\pi\)
0.987332 + 0.158667i \(0.0507197\pi\)
\(168\) 0 0
\(169\) 2.84400 6.59313i 0.218769 0.507164i
\(170\) −0.920811 + 5.22218i −0.0706230 + 0.400523i
\(171\) 0 0
\(172\) −2.02465 11.4824i −0.154378 0.875524i
\(173\) 18.1755 + 4.30767i 1.38186 + 0.327506i 0.853313 0.521399i \(-0.174590\pi\)
0.528545 + 0.848906i \(0.322738\pi\)
\(174\) 0 0
\(175\) −8.91620 + 5.86428i −0.674002 + 0.443298i
\(176\) 0.208131 + 3.57347i 0.0156885 + 0.269360i
\(177\) 0 0
\(178\) −0.233753 0.780788i −0.0175205 0.0585225i
\(179\) 11.1678 + 4.06476i 0.834723 + 0.303814i 0.723796 0.690014i \(-0.242396\pi\)
0.110927 + 0.993829i \(0.464618\pi\)
\(180\) 0 0
\(181\) 14.8329 5.39873i 1.10252 0.401284i 0.274275 0.961651i \(-0.411562\pi\)
0.828244 + 0.560367i \(0.189340\pi\)
\(182\) 7.96962 + 10.7051i 0.590748 + 0.793512i
\(183\) 0 0
\(184\) −8.90477 + 2.11047i −0.656469 + 0.155586i
\(185\) 0.586578 + 1.35984i 0.0431261 + 0.0999775i
\(186\) 0 0
\(187\) −19.3501 12.7267i −1.41502 0.930672i
\(188\) −5.51142 + 9.54607i −0.401962 + 0.696219i
\(189\) 0 0
\(190\) 2.58328 + 4.47437i 0.187411 + 0.324605i
\(191\) 0.335299 5.75686i 0.0242614 0.416552i −0.964210 0.265141i \(-0.914581\pi\)
0.988471 0.151410i \(-0.0483815\pi\)
\(192\) 0 0
\(193\) −0.174569 0.0204042i −0.0125657 0.00146872i 0.109808 0.993953i \(-0.464976\pi\)
−0.122373 + 0.992484i \(0.539051\pi\)
\(194\) −2.67529 2.83565i −0.192075 0.203588i
\(195\) 0 0
\(196\) 10.2789 1.20143i 0.734206 0.0858164i
\(197\) −8.59155 7.20917i −0.612123 0.513632i 0.283194 0.959063i \(-0.408606\pi\)
−0.895316 + 0.445431i \(0.853050\pi\)
\(198\) 0 0
\(199\) −15.6873 + 13.1632i −1.11204 + 0.933114i −0.998175 0.0603824i \(-0.980768\pi\)
−0.113866 + 0.993496i \(0.536324\pi\)
\(200\) −5.10316 + 5.40904i −0.360848 + 0.382477i
\(201\) 0 0
\(202\) 6.68418 + 3.35692i 0.470298 + 0.236192i
\(203\) 2.21799 + 1.11392i 0.155672 + 0.0781816i
\(204\) 0 0
\(205\) −0.693831 + 0.735418i −0.0484593 + 0.0513638i
\(206\) 1.94885 1.63528i 0.135783 0.113935i
\(207\) 0 0
\(208\) −2.43709 2.04496i −0.168982 0.141792i
\(209\) −22.4129 + 2.61969i −1.55033 + 0.181208i
\(210\) 0 0
\(211\) −0.817579 0.866583i −0.0562844 0.0596580i 0.698620 0.715493i \(-0.253798\pi\)
−0.754904 + 0.655835i \(0.772317\pi\)
\(212\) −5.72528 0.669189i −0.393214 0.0459601i
\(213\) 0 0
\(214\) 0.764060 13.1184i 0.0522301 0.896756i
\(215\) −6.21393 10.7628i −0.423786 0.734019i
\(216\) 0 0
\(217\) 1.25090 2.16663i 0.0849168 0.147080i
\(218\) −4.98574 3.27918i −0.337677 0.222094i
\(219\) 0 0
\(220\) 4.11803 + 9.54667i 0.277638 + 0.643636i
\(221\) 20.0294 4.74705i 1.34732 0.319321i
\(222\) 0 0
\(223\) −8.89760 11.9515i −0.595827 0.800335i 0.397261 0.917706i \(-0.369961\pi\)
−0.993088 + 0.117371i \(0.962553\pi\)
\(224\) 20.9003 7.60707i 1.39646 0.508269i
\(225\) 0 0
\(226\) −7.35838 2.67823i −0.489472 0.178153i
\(227\) −7.05501 23.5654i −0.468258 1.56409i −0.787437 0.616395i \(-0.788592\pi\)
0.319179 0.947694i \(-0.396593\pi\)
\(228\) 0 0
\(229\) −0.0887860 1.52440i −0.00586714 0.100735i 0.994103 0.108438i \(-0.0345850\pi\)
−0.999970 + 0.00770332i \(0.997548\pi\)
\(230\) −3.34049 + 2.19707i −0.220265 + 0.144871i
\(231\) 0 0
\(232\) 1.68289 + 0.398853i 0.110487 + 0.0261860i
\(233\) −2.44148 13.8463i −0.159946 0.907101i −0.954123 0.299414i \(-0.903209\pi\)
0.794177 0.607687i \(-0.207902\pi\)
\(234\) 0 0
\(235\) −2.04023 + 11.5707i −0.133090 + 0.754791i
\(236\) 2.89968 6.72222i 0.188753 0.437579i
\(237\) 0 0
\(238\) −3.90425 + 13.0411i −0.253075 + 0.845329i
\(239\) 13.6853 18.3826i 0.885229 1.18907i −0.0958376 0.995397i \(-0.530553\pi\)
0.981066 0.193672i \(-0.0620396\pi\)
\(240\) 0 0
\(241\) −6.31686 + 3.17245i −0.406905 + 0.204355i −0.640465 0.767987i \(-0.721259\pi\)
0.233561 + 0.972342i \(0.424962\pi\)
\(242\) 11.3694 0.730855
\(243\) 0 0
\(244\) 9.43390 0.603943
\(245\) 9.85750 4.95062i 0.629773 0.316284i
\(246\) 0 0
\(247\) 11.9764 16.0871i 0.762039 1.02360i
\(248\) 0.499989 1.67008i 0.0317493 0.106050i
\(249\) 0 0
\(250\) −3.57867 + 8.29630i −0.226335 + 0.524704i
\(251\) −0.0115419 + 0.0654574i −0.000728518 + 0.00413163i −0.985170 0.171582i \(-0.945112\pi\)
0.984441 + 0.175714i \(0.0562233\pi\)
\(252\) 0 0
\(253\) −3.03237 17.1974i −0.190644 1.08119i
\(254\) 2.95503 + 0.700355i 0.185415 + 0.0439442i
\(255\) 0 0
\(256\) 11.3048 7.43532i 0.706553 0.464707i
\(257\) 1.12474 + 19.3110i 0.0701591 + 1.20459i 0.831235 + 0.555922i \(0.187635\pi\)
−0.761075 + 0.648663i \(0.775328\pi\)
\(258\) 0 0
\(259\) 1.09039 + 3.64214i 0.0677533 + 0.226312i
\(260\) −8.68330 3.16046i −0.538515 0.196003i
\(261\) 0 0
\(262\) −12.2274 + 4.45042i −0.755413 + 0.274948i
\(263\) −8.99328 12.0801i −0.554549 0.744889i 0.433139 0.901327i \(-0.357406\pi\)
−0.987688 + 0.156439i \(0.949999\pi\)
\(264\) 0 0
\(265\) −5.97849 + 1.41693i −0.367256 + 0.0870412i
\(266\) 5.25336 + 12.1787i 0.322104 + 0.746722i
\(267\) 0 0
\(268\) 6.15281 + 4.04677i 0.375843 + 0.247196i
\(269\) −5.86823 + 10.1641i −0.357792 + 0.619715i −0.987592 0.157043i \(-0.949804\pi\)
0.629799 + 0.776758i \(0.283137\pi\)
\(270\) 0 0
\(271\) 1.44013 + 2.49438i 0.0874817 + 0.151523i 0.906446 0.422322i \(-0.138785\pi\)
−0.818964 + 0.573844i \(0.805451\pi\)
\(272\) 0.188683 3.23957i 0.0114406 0.196428i
\(273\) 0 0
\(274\) 7.20053 + 0.841621i 0.435000 + 0.0508442i
\(275\) −9.73782 10.3215i −0.587213 0.622409i
\(276\) 0 0
\(277\) 2.28547 0.267133i 0.137320 0.0160504i −0.0471550 0.998888i \(-0.515015\pi\)
0.184475 + 0.982837i \(0.440941\pi\)
\(278\) 9.53200 + 7.99830i 0.571692 + 0.479706i
\(279\) 0 0
\(280\) 11.4211 9.58343i 0.682540 0.572719i
\(281\) 4.35455 4.61556i 0.259771 0.275341i −0.584341 0.811508i \(-0.698647\pi\)
0.844112 + 0.536167i \(0.180128\pi\)
\(282\) 0 0
\(283\) −13.1201 6.58917i −0.779910 0.391686i 0.0138596 0.999904i \(-0.495588\pi\)
−0.793770 + 0.608218i \(0.791885\pi\)
\(284\) −7.61373 3.82376i −0.451792 0.226898i
\(285\) 0 0
\(286\) −12.1778 + 12.9077i −0.720090 + 0.763251i
\(287\) −1.98831 + 1.66839i −0.117366 + 0.0984819i
\(288\) 0 0
\(289\) 3.06122 + 2.56867i 0.180072 + 0.151098i
\(290\) 0.750510 0.0877220i 0.0440715 0.00515121i
\(291\) 0 0
\(292\) −4.19607 4.44757i −0.245556 0.260275i
\(293\) −25.1838 2.94357i −1.47125 0.171965i −0.657623 0.753347i \(-0.728438\pi\)
−0.813631 + 0.581382i \(0.802512\pi\)
\(294\) 0 0
\(295\) 0.453727 7.79019i 0.0264170 0.453562i
\(296\) 1.32461 + 2.29430i 0.0769916 + 0.133353i
\(297\) 0 0
\(298\) 9.12136 15.7987i 0.528386 0.915191i
\(299\) 12.9671 + 8.52862i 0.749909 + 0.493223i
\(300\) 0 0
\(301\) −12.6366 29.2950i −0.728364 1.68854i
\(302\) −1.77351 + 0.420330i −0.102054 + 0.0241873i
\(303\) 0 0
\(304\) −1.88805 2.53609i −0.108287 0.145455i
\(305\) 9.44914 3.43921i 0.541056 0.196928i
\(306\) 0 0
\(307\) 11.4486 + 4.16694i 0.653405 + 0.237820i 0.647386 0.762162i \(-0.275862\pi\)
0.00601852 + 0.999982i \(0.498084\pi\)
\(308\) 7.65498 + 25.5694i 0.436183 + 1.45695i
\(309\) 0 0
\(310\) −0.0442860 0.760362i −0.00251528 0.0431857i
\(311\) −21.0005 + 13.8123i −1.19083 + 0.783221i −0.980903 0.194496i \(-0.937693\pi\)
−0.209927 + 0.977717i \(0.567323\pi\)
\(312\) 0 0
\(313\) 28.7660 + 6.81767i 1.62595 + 0.385358i 0.939698 0.342005i \(-0.111106\pi\)
0.686254 + 0.727362i \(0.259254\pi\)
\(314\) −2.67130 15.1497i −0.150750 0.854947i
\(315\) 0 0
\(316\) −2.71203 + 15.3807i −0.152563 + 0.865230i
\(317\) −1.69844 + 3.93743i −0.0953940 + 0.221148i −0.959231 0.282623i \(-0.908795\pi\)
0.863837 + 0.503771i \(0.168055\pi\)
\(318\) 0 0
\(319\) −0.946519 + 3.16159i −0.0529949 + 0.177015i
\(320\) 2.79109 3.74909i 0.156027 0.209580i
\(321\) 0 0
\(322\) −9.17238 + 4.60654i −0.511157 + 0.256712i
\(323\) 20.4570 1.13826
\(324\) 0 0
\(325\) 12.6118 0.699576
\(326\) −12.3356 + 6.19517i −0.683206 + 0.343119i
\(327\) 0 0
\(328\) −1.08005 + 1.45075i −0.0596355 + 0.0801044i
\(329\) −8.65060 + 28.8950i −0.476923 + 1.59303i
\(330\) 0 0
\(331\) −11.0234 + 25.5552i −0.605903 + 1.40464i 0.288545 + 0.957466i \(0.406829\pi\)
−0.894447 + 0.447174i \(0.852431\pi\)
\(332\) 0.391188 2.21854i 0.0214692 0.121758i
\(333\) 0 0
\(334\) −0.460091 2.60930i −0.0251750 0.142775i
\(335\) 7.63804 + 1.81025i 0.417311 + 0.0989044i
\(336\) 0 0
\(337\) −22.4760 + 14.7827i −1.22435 + 0.805267i −0.986135 0.165946i \(-0.946932\pi\)
−0.238214 + 0.971213i \(0.576562\pi\)
\(338\) −0.326297 5.60231i −0.0177482 0.304725i
\(339\) 0 0
\(340\) −2.70326 9.02952i −0.146605 0.489695i
\(341\) 3.12596 + 1.13776i 0.169280 + 0.0616130i
\(342\) 0 0
\(343\) 1.60598 0.584529i 0.0867148 0.0315616i
\(344\) −13.2758 17.8325i −0.715785 0.961466i
\(345\) 0 0
\(346\) 14.2050 3.36665i 0.763667 0.180992i
\(347\) 12.0799 + 28.0044i 0.648485 + 1.50336i 0.851594 + 0.524201i \(0.175636\pi\)
−0.203109 + 0.979156i \(0.565105\pi\)
\(348\) 0 0
\(349\) 6.66329 + 4.38252i 0.356678 + 0.234591i 0.715183 0.698937i \(-0.246343\pi\)
−0.358506 + 0.933528i \(0.616714\pi\)
\(350\) −4.17028 + 7.22314i −0.222911 + 0.386093i
\(351\) 0 0
\(352\) 14.7870 + 25.6119i 0.788151 + 1.36512i
\(353\) −1.26931 + 21.7932i −0.0675587 + 1.15994i 0.778782 + 0.627295i \(0.215838\pi\)
−0.846340 + 0.532643i \(0.821199\pi\)
\(354\) 0 0
\(355\) −9.02001 1.05429i −0.478733 0.0559558i
\(356\) 0.994153 + 1.05374i 0.0526900 + 0.0558481i
\(357\) 0 0
\(358\) 9.22555 1.07831i 0.487585 0.0569906i
\(359\) 13.2606 + 11.1269i 0.699866 + 0.587258i 0.921736 0.387819i \(-0.126771\pi\)
−0.221869 + 0.975076i \(0.571216\pi\)
\(360\) 0 0
\(361\) 0.713665 0.598836i 0.0375613 0.0315177i
\(362\) 8.46589 8.97332i 0.444957 0.471627i
\(363\) 0 0
\(364\) −21.1988 10.6464i −1.11112 0.558024i
\(365\) −5.82425 2.92505i −0.304855 0.153104i
\(366\) 0 0
\(367\) 16.4058 17.3891i 0.856376 0.907705i −0.140222 0.990120i \(-0.544782\pi\)
0.996598 + 0.0824149i \(0.0262633\pi\)
\(368\) 1.87433 1.57275i 0.0977062 0.0819853i
\(369\) 0 0
\(370\) 0.886651 + 0.743989i 0.0460948 + 0.0386781i
\(371\) −15.6663 + 1.83112i −0.813351 + 0.0950671i
\(372\) 0 0
\(373\) 7.91296 + 8.38725i 0.409718 + 0.434275i 0.899066 0.437813i \(-0.144247\pi\)
−0.489348 + 0.872088i \(0.662765\pi\)
\(374\) −17.9784 2.10138i −0.929642 0.108660i
\(375\) 0 0
\(376\) −1.22207 + 20.9821i −0.0630235 + 1.08207i
\(377\) −1.46658 2.54020i −0.0755329 0.130827i
\(378\) 0 0
\(379\) −10.3656 + 17.9537i −0.532443 + 0.922218i 0.466839 + 0.884342i \(0.345393\pi\)
−0.999282 + 0.0378763i \(0.987941\pi\)
\(380\) −7.67266 5.04638i −0.393599 0.258874i
\(381\) 0 0
\(382\) −1.78509 4.13829i −0.0913329 0.211734i
\(383\) 15.4278 3.65646i 0.788324 0.186836i 0.183314 0.983054i \(-0.441317\pi\)
0.605010 + 0.796218i \(0.293169\pi\)
\(384\) 0 0
\(385\) 16.9889 + 22.8200i 0.865834 + 1.16302i
\(386\) −0.129079 + 0.0469808i −0.00656994 + 0.00239126i
\(387\) 0 0
\(388\) 6.51155 + 2.37001i 0.330574 + 0.120319i
\(389\) −8.17648 27.3114i −0.414564 1.38474i −0.869375 0.494153i \(-0.835478\pi\)
0.454811 0.890588i \(-0.349707\pi\)
\(390\) 0 0
\(391\) 0.920492 + 15.8042i 0.0465513 + 0.799255i
\(392\) 16.4863 10.8432i 0.832685 0.547665i
\(393\) 0 0
\(394\) −8.52915 2.02145i −0.429693 0.101839i
\(395\) 2.89074 + 16.3942i 0.145449 + 0.824882i
\(396\) 0 0
\(397\) 5.49087 31.1403i 0.275579 1.56289i −0.461538 0.887120i \(-0.652702\pi\)
0.737117 0.675765i \(-0.236187\pi\)
\(398\) −6.33916 + 14.6958i −0.317753 + 0.736635i
\(399\) 0 0
\(400\) 0.570228 1.90470i 0.0285114 0.0952348i
\(401\) −10.1802 + 13.6744i −0.508376 + 0.682867i −0.980015 0.198924i \(-0.936255\pi\)
0.471639 + 0.881792i \(0.343663\pi\)
\(402\) 0 0
\(403\) −2.64210 + 1.32691i −0.131612 + 0.0660982i
\(404\) −13.2952 −0.661458
\(405\) 0 0
\(406\) 1.93980 0.0962705
\(407\) −4.51752 + 2.26878i −0.223925 + 0.112459i
\(408\) 0 0
\(409\) −14.2344 + 19.1202i −0.703848 + 0.945432i −0.999953 0.00972374i \(-0.996905\pi\)
0.296105 + 0.955155i \(0.404312\pi\)
\(410\) −0.226629 + 0.756995i −0.0111924 + 0.0373853i
\(411\) 0 0
\(412\) −1.79107 + 4.15216i −0.0882395 + 0.204562i
\(413\) 3.47862 19.7282i 0.171172 0.970762i
\(414\) 0 0
\(415\) −0.416966 2.36473i −0.0204681 0.116080i
\(416\) −25.5762 6.06166i −1.25397 0.297197i
\(417\) 0 0
\(418\) −14.7346 + 9.69113i −0.720695 + 0.474009i
\(419\) −0.914980 15.7096i −0.0446997 0.767464i −0.943962 0.330054i \(-0.892933\pi\)
0.899262 0.437410i \(-0.144104\pi\)
\(420\) 0 0
\(421\) 6.75647 + 22.5682i 0.329290 + 1.09991i 0.949053 + 0.315116i \(0.102044\pi\)
−0.619763 + 0.784789i \(0.712771\pi\)
\(422\) −0.874971 0.318464i −0.0425929 0.0155026i
\(423\) 0 0
\(424\) −10.3281 + 3.75912i −0.501577 + 0.182559i
\(425\) 7.68195 + 10.3186i 0.372629 + 0.500528i
\(426\) 0 0
\(427\) 25.1184 5.95318i 1.21557 0.288094i
\(428\) 9.25130 + 21.4469i 0.447179 + 1.03668i
\(429\) 0 0
\(430\) −8.11506 5.33736i −0.391343 0.257390i
\(431\) −0.705848 + 1.22256i −0.0339995 + 0.0588888i −0.882524 0.470267i \(-0.844158\pi\)
0.848525 + 0.529155i \(0.177491\pi\)
\(432\) 0 0
\(433\) −6.50524 11.2674i −0.312622 0.541477i 0.666307 0.745677i \(-0.267874\pi\)
−0.978929 + 0.204200i \(0.934541\pi\)
\(434\) 0.113689 1.95197i 0.00545727 0.0936977i
\(435\) 0 0
\(436\) 10.5353 + 1.23140i 0.504550 + 0.0589734i
\(437\) 10.5849 + 11.2194i 0.506346 + 0.536695i
\(438\) 0 0
\(439\) −20.5982 + 2.40758i −0.983097 + 0.114908i −0.592428 0.805624i \(-0.701830\pi\)
−0.390669 + 0.920531i \(0.627756\pi\)
\(440\) 15.1863 + 12.7428i 0.723979 + 0.607490i
\(441\) 0 0
\(442\) 12.3238 10.3409i 0.586182 0.491865i
\(443\) 23.3099 24.7070i 1.10749 1.17387i 0.124113 0.992268i \(-0.460391\pi\)
0.983373 0.181599i \(-0.0581272\pi\)
\(444\) 0 0
\(445\) 1.37991 + 0.693016i 0.0654140 + 0.0328521i
\(446\) −10.4063 5.22626i −0.492754 0.247470i
\(447\) 0 0
\(448\) 8.23407 8.72761i 0.389023 0.412341i
\(449\) −0.919709 + 0.771727i −0.0434038 + 0.0364201i −0.664231 0.747527i \(-0.731241\pi\)
0.620828 + 0.783947i \(0.286797\pi\)
\(450\) 0 0
\(451\) −2.64380 2.21841i −0.124492 0.104461i
\(452\) 13.8246 1.61587i 0.650256 0.0760040i
\(453\) 0 0
\(454\) −13.1931 13.9839i −0.619182 0.656295i
\(455\) −25.1143 2.93544i −1.17738 0.137615i
\(456\) 0 0
\(457\) 1.86373 31.9990i 0.0871815 1.49685i −0.617076 0.786904i \(-0.711683\pi\)
0.704257 0.709945i \(-0.251280\pi\)
\(458\) −0.596704 1.03352i −0.0278821 0.0482933i
\(459\) 0 0
\(460\) 3.55340 6.15466i 0.165678 0.286963i
\(461\) 0.281296 + 0.185011i 0.0131013 + 0.00861684i 0.556043 0.831154i \(-0.312319\pi\)
−0.542941 + 0.839771i \(0.682689\pi\)
\(462\) 0 0
\(463\) −1.16952 2.71124i −0.0543520 0.126002i 0.888876 0.458147i \(-0.151487\pi\)
−0.943228 + 0.332145i \(0.892228\pi\)
\(464\) −0.449944 + 0.106639i −0.0208881 + 0.00495057i
\(465\) 0 0
\(466\) −6.56187 8.81412i −0.303973 0.408306i
\(467\) 3.55605 1.29430i 0.164554 0.0598929i −0.258429 0.966030i \(-0.583205\pi\)
0.422984 + 0.906137i \(0.360983\pi\)
\(468\) 0 0
\(469\) 18.9360 + 6.89213i 0.874382 + 0.318249i
\(470\) 2.63359 + 8.79682i 0.121479 + 0.405767i
\(471\) 0 0
\(472\) −0.811652 13.9355i −0.0373593 0.641435i
\(473\) 35.4433 23.3114i 1.62968 1.07186i
\(474\) 0 0
\(475\) 12.1960 + 2.89050i 0.559589 + 0.132625i
\(476\) −4.20172 23.8292i −0.192586 1.09221i
\(477\) 0 0
\(478\) 3.11022 17.6389i 0.142258 0.806785i
\(479\) 1.25429 2.90777i 0.0573100 0.132859i −0.887155 0.461472i \(-0.847322\pi\)
0.944465 + 0.328612i \(0.106581\pi\)
\(480\) 0 0
\(481\) 1.28860 4.30421i 0.0587549 0.196255i
\(482\) −3.29904 + 4.43138i −0.150267 + 0.201844i
\(483\) 0 0
\(484\) −18.0593 + 9.06974i −0.820879 + 0.412261i
\(485\) 7.38607 0.335384
\(486\) 0 0
\(487\) 1.22501 0.0555106 0.0277553 0.999615i \(-0.491164\pi\)
0.0277553 + 0.999615i \(0.491164\pi\)
\(488\) 16.0746 8.07299i 0.727665 0.365447i
\(489\) 0 0
\(490\) 5.14817 6.91520i 0.232571 0.312397i
\(491\) −11.6292 + 38.8443i −0.524819 + 1.75302i 0.124213 + 0.992256i \(0.460359\pi\)
−0.649032 + 0.760761i \(0.724826\pi\)
\(492\) 0 0
\(493\) 1.18502 2.74718i 0.0533705 0.123727i
\(494\) 2.72183 15.4363i 0.122461 0.694512i
\(495\) 0 0
\(496\) 0.0809373 + 0.459018i 0.00363419 + 0.0206105i
\(497\) −22.6850 5.37646i −1.01756 0.241167i
\(498\) 0 0
\(499\) 34.3817 22.6132i 1.53914 1.01231i 0.555630 0.831429i \(-0.312477\pi\)
0.983506 0.180876i \(-0.0578934\pi\)
\(500\) −0.933801 16.0328i −0.0417609 0.717006i
\(501\) 0 0
\(502\) 0.0148986 + 0.0497649i 0.000664959 + 0.00222112i
\(503\) −9.54144 3.47280i −0.425432 0.154845i 0.120426 0.992722i \(-0.461574\pi\)
−0.545858 + 0.837878i \(0.683796\pi\)
\(504\) 0 0
\(505\) −13.3166 + 4.84686i −0.592582 + 0.215682i
\(506\) −8.15000 10.9473i −0.362311 0.486669i
\(507\) 0 0
\(508\) −5.25250 + 1.24486i −0.233042 + 0.0552319i
\(509\) −9.60383 22.2642i −0.425682 0.986842i −0.987216 0.159388i \(-0.949048\pi\)
0.561534 0.827454i \(-0.310211\pi\)
\(510\) 0 0
\(511\) −13.9789 9.19409i −0.618392 0.406723i
\(512\) −3.94773 + 6.83768i −0.174467 + 0.302186i
\(513\) 0 0
\(514\) 7.55901 + 13.0926i 0.333414 + 0.577490i
\(515\) −0.280256 + 4.81181i −0.0123496 + 0.212034i
\(516\) 0 0
\(517\) −39.8346 4.65600i −1.75192 0.204771i
\(518\) 2.03905 + 2.16127i 0.0895909 + 0.0949608i
\(519\) 0 0
\(520\) −17.5002 + 2.04548i −0.767435 + 0.0897003i
\(521\) 4.86477 + 4.08202i 0.213129 + 0.178837i 0.743102 0.669178i \(-0.233354\pi\)
−0.529973 + 0.848014i \(0.677798\pi\)
\(522\) 0 0
\(523\) 21.5335 18.0688i 0.941595 0.790092i −0.0362674 0.999342i \(-0.511547\pi\)
0.977862 + 0.209250i \(0.0671024\pi\)
\(524\) 15.8719 16.8233i 0.693369 0.734928i
\(525\) 0 0
\(526\) −10.5182 5.28246i −0.458617 0.230326i
\(527\) −2.69497 1.35347i −0.117395 0.0589579i
\(528\) 0 0
\(529\) 7.59220 8.04726i 0.330096 0.349881i
\(530\) −3.67848 + 3.08661i −0.159783 + 0.134074i
\(531\) 0 0
\(532\) −18.0598 15.1540i −0.782991 0.657008i
\(533\) 3.04663 0.356100i 0.131964 0.0154244i
\(534\) 0 0
\(535\) 17.0849 + 18.1089i 0.738645 + 0.782918i
\(536\) 13.9469 + 1.63016i 0.602415 + 0.0704122i
\(537\) 0 0
\(538\) −0.533340 + 9.15709i −0.0229939 + 0.394790i
\(539\) 18.8268 + 32.6089i 0.810926 + 1.40457i
\(540\) 0 0
\(541\) −1.34390 + 2.32771i −0.0577788 + 0.100076i −0.893468 0.449127i \(-0.851735\pi\)
0.835689 + 0.549203i \(0.185068\pi\)
\(542\) 1.88074 + 1.23698i 0.0807845 + 0.0531328i
\(543\) 0 0
\(544\) −10.6192 24.6180i −0.455293 1.05549i
\(545\) 11.0012 2.60734i 0.471242 0.111686i
\(546\) 0 0
\(547\) 19.5913 + 26.3156i 0.837662 + 1.12518i 0.990580 + 0.136937i \(0.0437257\pi\)
−0.152918 + 0.988239i \(0.548867\pi\)
\(548\) −12.1088 + 4.40724i −0.517262 + 0.188268i
\(549\) 0 0
\(550\) −10.4214 3.79308i −0.444370 0.161737i
\(551\) −0.836042 2.79257i −0.0356166 0.118968i
\(552\) 0 0
\(553\) 2.48487 + 42.6635i 0.105667 + 1.81424i
\(554\) 1.50251 0.988215i 0.0638355 0.0419852i
\(555\) 0 0
\(556\) −21.5212 5.10062i −0.912703 0.216315i
\(557\) −1.71906 9.74928i −0.0728390 0.413090i −0.999324 0.0367591i \(-0.988297\pi\)
0.926485 0.376331i \(-0.122815\pi\)
\(558\) 0 0
\(559\) −6.54721 + 37.1311i −0.276917 + 1.57048i
\(560\) −1.57884 + 3.66016i −0.0667182 + 0.154670i
\(561\) 0 0
\(562\) 1.42235 4.75098i 0.0599982 0.200408i
\(563\) 4.20131 5.64334i 0.177064 0.237838i −0.704727 0.709479i \(-0.748930\pi\)
0.881791 + 0.471640i \(0.156338\pi\)
\(564\) 0 0
\(565\) 13.2579 6.65836i 0.557764 0.280119i
\(566\) −11.4745 −0.482310
\(567\) 0 0
\(568\) −16.2454 −0.681640
\(569\) −3.51923 + 1.76742i −0.147534 + 0.0740943i −0.521034 0.853536i \(-0.674454\pi\)
0.373501 + 0.927630i \(0.378157\pi\)
\(570\) 0 0
\(571\) 15.2678 20.5083i 0.638939 0.858244i −0.358215 0.933639i \(-0.616615\pi\)
0.997154 + 0.0753955i \(0.0240219\pi\)
\(572\) 9.04650 30.2174i 0.378253 1.26345i
\(573\) 0 0
\(574\) −0.803467 + 1.86265i −0.0335361 + 0.0777453i
\(575\) −1.68431 + 9.55219i −0.0702405 + 0.398354i
\(576\) 0 0
\(577\) 0.816045 + 4.62802i 0.0339724 + 0.192667i 0.997071 0.0764818i \(-0.0243687\pi\)
−0.963099 + 0.269149i \(0.913258\pi\)
\(578\) 3.03899 + 0.720254i 0.126405 + 0.0299586i
\(579\) 0 0
\(580\) −1.12214 + 0.738043i −0.0465943 + 0.0306456i
\(581\) −0.358422 6.15387i −0.0148699 0.255306i
\(582\) 0 0
\(583\) −6.01507 20.0917i −0.249119 0.832114i
\(584\) −10.9558 3.98757i −0.453353 0.165007i
\(585\) 0 0
\(586\) −18.6213 + 6.77759i −0.769238 + 0.279980i
\(587\) −16.5849 22.2775i −0.684534 0.919489i 0.315028 0.949082i \(-0.397986\pi\)
−0.999562 + 0.0295936i \(0.990579\pi\)
\(588\) 0 0
\(589\) −2.85910 + 0.677620i −0.117807 + 0.0279208i
\(590\) −2.41558 5.59994i −0.0994479 0.230546i
\(591\) 0 0
\(592\) −0.591781 0.389221i −0.0243221 0.0159969i
\(593\) −7.16631 + 12.4124i −0.294285 + 0.509717i −0.974818 0.223000i \(-0.928415\pi\)
0.680533 + 0.732717i \(0.261748\pi\)
\(594\) 0 0
\(595\) −12.8956 22.3359i −0.528669 0.915682i
\(596\) −1.88540 + 32.3711i −0.0772291 + 1.32597i
\(597\) 0 0
\(598\) 12.0479 + 1.40820i 0.492677 + 0.0575857i
\(599\) 18.8738 + 20.0050i 0.771161 + 0.817383i 0.987281 0.158983i \(-0.0508217\pi\)
−0.216120 + 0.976367i \(0.569340\pi\)
\(600\) 0 0
\(601\) −18.6234 + 2.17676i −0.759665 + 0.0887921i −0.487101 0.873346i \(-0.661946\pi\)
−0.272564 + 0.962138i \(0.587872\pi\)
\(602\) −19.1011 16.0277i −0.778503 0.653242i
\(603\) 0 0
\(604\) 2.48176 2.08244i 0.100981 0.0847333i
\(605\) −14.7821 + 15.6681i −0.600976 + 0.636998i
\(606\) 0 0
\(607\) 23.5997 + 11.8522i 0.957881 + 0.481066i 0.857840 0.513918i \(-0.171806\pi\)
0.100041 + 0.994983i \(0.468103\pi\)
\(608\) −23.3436 11.7236i −0.946709 0.475455i
\(609\) 0 0
\(610\) 5.39311 5.71636i 0.218361 0.231449i
\(611\) 27.3057 22.9122i 1.10467 0.926928i
\(612\) 0 0
\(613\) −26.7821 22.4728i −1.08172 0.907670i −0.0856560 0.996325i \(-0.527299\pi\)
−0.996062 + 0.0886553i \(0.971743\pi\)
\(614\) 9.45747 1.10542i 0.381672 0.0446111i
\(615\) 0 0
\(616\) 34.9243 + 37.0176i 1.40714 + 1.49148i
\(617\) −7.10306 0.830228i −0.285958 0.0334237i −0.0280954 0.999605i \(-0.508944\pi\)
−0.257863 + 0.966182i \(0.583018\pi\)
\(618\) 0 0
\(619\) 1.09438 18.7898i 0.0439868 0.755224i −0.902143 0.431437i \(-0.858007\pi\)
0.946130 0.323787i \(-0.104956\pi\)
\(620\) 0.676908 + 1.17244i 0.0271853 + 0.0470863i
\(621\) 0 0
\(622\) −9.82235 + 17.0128i −0.393841 + 0.682152i
\(623\) 3.31196 + 2.17831i 0.132691 + 0.0872721i
\(624\) 0 0
\(625\) −1.22031 2.82901i −0.0488126 0.113160i
\(626\) 22.4820 5.32834i 0.898562 0.212963i
\(627\) 0 0
\(628\) 16.3285 + 21.9330i 0.651578 + 0.875221i
\(629\) 4.30649 1.56744i 0.171711 0.0624978i
\(630\) 0 0
\(631\) −22.0642 8.03070i −0.878361 0.319697i −0.136813 0.990597i \(-0.543686\pi\)
−0.741548 + 0.670900i \(0.765908\pi\)
\(632\) 8.54081 + 28.5283i 0.339735 + 1.13479i
\(633\) 0 0
\(634\) 0.194865 + 3.34571i 0.00773909 + 0.132875i
\(635\) −4.80716 + 3.16172i −0.190766 + 0.125469i
\(636\) 0 0
\(637\) −32.5634 7.71768i −1.29021 0.305786i
\(638\) 0.447890 + 2.54011i 0.0177321 + 0.100564i
\(639\) 0 0
\(640\) −2.37461 + 13.4671i −0.0938648 + 0.532334i
\(641\) 1.72652 4.00251i 0.0681933 0.158090i −0.880711 0.473654i \(-0.842935\pi\)
0.948904 + 0.315565i \(0.102194\pi\)
\(642\) 0 0
\(643\) −5.45270 + 18.2133i −0.215034 + 0.718262i 0.780610 + 0.625019i \(0.214909\pi\)
−0.995643 + 0.0932433i \(0.970277\pi\)
\(644\) 10.8947 14.6342i 0.429312 0.576667i
\(645\) 0 0
\(646\) 14.2875 7.17544i 0.562133 0.282314i
\(647\) 20.6268 0.810924 0.405462 0.914112i \(-0.367111\pi\)
0.405462 + 0.914112i \(0.367111\pi\)
\(648\) 0 0
\(649\) 26.6367 1.04558
\(650\) 8.80828 4.42368i 0.345489 0.173511i
\(651\) 0 0
\(652\) 14.6519 19.6810i 0.573814 0.770766i
\(653\) 1.71817 5.73909i 0.0672372 0.224588i −0.917767 0.397120i \(-0.870010\pi\)
0.985004 + 0.172532i \(0.0551949\pi\)
\(654\) 0 0
\(655\) 9.76452 22.6367i 0.381531 0.884489i
\(656\) 0.0839701 0.476218i 0.00327848 0.0185932i
\(657\) 0 0
\(658\) 4.09344 + 23.2150i 0.159579 + 0.905016i
\(659\) 37.7920 + 8.95688i 1.47217 + 0.348910i 0.886912 0.461938i \(-0.152846\pi\)
0.585256 + 0.810848i \(0.300994\pi\)
\(660\) 0 0
\(661\) −25.8965 + 17.0324i −1.00726 + 0.662483i −0.942079 0.335390i \(-0.891132\pi\)
−0.0651777 + 0.997874i \(0.520761\pi\)
\(662\) 1.26474 + 21.7147i 0.0491555 + 0.843967i
\(663\) 0 0
\(664\) −1.23194 4.11497i −0.0478086 0.159692i
\(665\) −23.6135 8.59460i −0.915691 0.333284i
\(666\) 0 0
\(667\) 2.11981 0.771549i 0.0820795 0.0298745i
\(668\) 2.81233 + 3.77762i 0.108812 + 0.146160i
\(669\) 0 0
\(670\) 5.96949 1.41480i 0.230622 0.0546583i
\(671\) 13.5952 + 31.5173i 0.524839 + 1.21671i
\(672\) 0 0
\(673\) 32.2411 + 21.2053i 1.24280 + 0.817405i 0.988720 0.149777i \(-0.0478554\pi\)
0.254085 + 0.967182i \(0.418226\pi\)
\(674\) −10.5125 + 18.2082i −0.404926 + 0.701352i
\(675\) 0 0
\(676\) 4.98742 + 8.63847i 0.191824 + 0.332249i
\(677\) 0.231922 3.98194i 0.00891348 0.153039i −0.990915 0.134493i \(-0.957059\pi\)
0.999828 0.0185455i \(-0.00590355\pi\)
\(678\) 0 0
\(679\) 18.8330 + 2.20127i 0.722745 + 0.0844768i
\(680\) −12.3331 13.0723i −0.472953 0.501301i
\(681\) 0 0
\(682\) 2.58230 0.301828i 0.0988815 0.0115576i
\(683\) −32.2624 27.0713i −1.23449 1.03586i −0.997935 0.0642370i \(-0.979539\pi\)
−0.236551 0.971619i \(-0.576017\pi\)
\(684\) 0 0
\(685\) −10.5217 + 8.82872i −0.402012 + 0.337328i
\(686\) 0.916615 0.971555i 0.0349965 0.0370941i
\(687\) 0 0
\(688\) 5.31170 + 2.66763i 0.202506 + 0.101703i
\(689\) 16.6574 + 8.36566i 0.634597 + 0.318706i
\(690\) 0 0
\(691\) 5.86779 6.21949i 0.223221 0.236601i −0.606078 0.795405i \(-0.707258\pi\)
0.829300 + 0.558804i \(0.188740\pi\)
\(692\) −19.8777 + 16.6794i −0.755638 + 0.634056i
\(693\) 0 0
\(694\) 18.2596 + 15.3216i 0.693125 + 0.581601i
\(695\) −23.4155 + 2.73688i −0.888200 + 0.103816i
\(696\) 0 0
\(697\) 2.14708 + 2.27577i 0.0813265 + 0.0862011i
\(698\) 6.19096 + 0.723619i 0.234331 + 0.0273894i
\(699\) 0 0
\(700\) 0.862006 14.8001i 0.0325808 0.559390i
\(701\) 0.440975 + 0.763791i 0.0166554 + 0.0288480i 0.874233 0.485507i \(-0.161365\pi\)
−0.857578 + 0.514355i \(0.828032\pi\)
\(702\) 0 0
\(703\) 2.23259 3.86697i 0.0842039 0.145845i
\(704\) 13.3298 + 8.76713i 0.502385 + 0.330424i
\(705\) 0 0
\(706\) 6.75765 + 15.6660i 0.254327 + 0.589597i
\(707\) −35.3993 + 8.38979i −1.33133 + 0.315530i
\(708\) 0 0
\(709\) −24.0259 32.2724i −0.902312 1.21202i −0.976662 0.214783i \(-0.931096\pi\)
0.0743501 0.997232i \(-0.476312\pi\)
\(710\) −6.66953 + 2.42751i −0.250303 + 0.0911028i
\(711\) 0 0
\(712\) 2.59569 + 0.944754i 0.0972777 + 0.0354062i
\(713\) −0.652152 2.17834i −0.0244233 0.0815795i
\(714\) 0 0
\(715\) −1.95489 33.5642i −0.0731089 1.25523i
\(716\) −13.7938 + 9.07230i −0.515497 + 0.339048i
\(717\) 0 0
\(718\) 13.1643 + 3.11999i 0.491286 + 0.116437i
\(719\) 2.39151 + 13.5629i 0.0891883 + 0.505812i 0.996374 + 0.0850815i \(0.0271151\pi\)
−0.907186 + 0.420730i \(0.861774\pi\)
\(720\) 0 0
\(721\) −2.14866 + 12.1857i −0.0800203 + 0.453817i
\(722\) 0.288389 0.668561i 0.0107327 0.0248813i
\(723\) 0 0
\(724\) −6.28902 + 21.0068i −0.233730 + 0.780712i
\(725\) 1.09465 1.47037i 0.0406542 0.0546080i
\(726\) 0 0
\(727\) −11.1569 + 5.60321i −0.413787 + 0.207812i −0.643499 0.765447i \(-0.722518\pi\)
0.229712 + 0.973259i \(0.426222\pi\)
\(728\) −45.2317 −1.67640
\(729\) 0 0
\(730\) −5.09374 −0.188528
\(731\) −34.3677 + 17.2601i −1.27113 + 0.638388i
\(732\) 0 0
\(733\) −16.0474 + 21.5554i −0.592725 + 0.796168i −0.992732 0.120344i \(-0.961600\pi\)
0.400007 + 0.916512i \(0.369008\pi\)
\(734\) 5.35871 17.8993i 0.197793 0.660676i
\(735\) 0 0
\(736\) 8.00682 18.5619i 0.295135 0.684200i
\(737\) −4.65283 + 26.3875i −0.171389 + 0.971996i
\(738\) 0 0
\(739\) −4.23374 24.0107i −0.155740 0.883248i −0.958106 0.286415i \(-0.907536\pi\)
0.802365 0.596833i \(-0.203575\pi\)
\(740\) −2.00187 0.474451i −0.0735901 0.0174412i
\(741\) 0 0
\(742\) −10.2993 + 6.77395i −0.378099 + 0.248680i
\(743\) −2.09728 36.0090i −0.0769418 1.32104i −0.787024 0.616922i \(-0.788379\pi\)
0.710082 0.704118i \(-0.248658\pi\)
\(744\) 0 0
\(745\) 9.91272 + 33.1108i 0.363174 + 1.21308i
\(746\) 8.46844 + 3.08226i 0.310052 + 0.112850i
\(747\) 0 0
\(748\) 30.2335 11.0041i 1.10544 0.402349i
\(749\) 38.1661 + 51.2660i 1.39456 + 1.87322i
\(750\) 0 0
\(751\) −2.27344 + 0.538814i −0.0829588 + 0.0196616i −0.271886 0.962330i \(-0.587647\pi\)
0.188927 + 0.981991i \(0.439499\pi\)
\(752\) −2.22572 5.15979i −0.0811635 0.188158i
\(753\) 0 0
\(754\) −1.91528 1.25970i −0.0697505 0.0458756i
\(755\) 1.72660 2.99055i 0.0628372 0.108837i
\(756\) 0 0
\(757\) 8.08646 + 14.0062i 0.293907 + 0.509063i 0.974730 0.223386i \(-0.0717109\pi\)
−0.680823 + 0.732448i \(0.738378\pi\)
\(758\) −0.942084 + 16.1750i −0.0342180 + 0.587501i
\(759\) 0 0
\(760\) −17.3920 2.03284i −0.630875 0.0737387i
\(761\) −31.1257 32.9914i −1.12831 1.19594i −0.978287 0.207253i \(-0.933548\pi\)
−0.150020 0.988683i \(-0.547934\pi\)
\(762\) 0 0
\(763\) 28.8281 3.36952i 1.04365 0.121985i
\(764\) 6.13669 + 5.14929i 0.222018 + 0.186295i
\(765\) 0 0
\(766\) 9.49250 7.96515i 0.342978 0.287793i
\(767\) −16.2461 + 17.2199i −0.586614 + 0.621774i
\(768\) 0 0
\(769\) 16.4123 + 8.24257i 0.591843 + 0.297235i 0.719399 0.694597i \(-0.244417\pi\)
−0.127557 + 0.991831i \(0.540713\pi\)
\(770\) 19.8696 + 9.97891i 0.716052 + 0.359615i
\(771\) 0 0
\(772\) 0.167552 0.177595i 0.00603033 0.00639178i
\(773\) −22.5821 + 18.9486i −0.812222 + 0.681536i −0.951137 0.308769i \(-0.900083\pi\)
0.138915 + 0.990304i \(0.455639\pi\)
\(774\) 0 0
\(775\) −1.41544 1.18769i −0.0508441 0.0426633i
\(776\) 13.1233 1.53389i 0.471099 0.0550636i
\(777\) 0 0
\(778\) −15.2903 16.2067i −0.548183 0.581040i
\(779\) 3.02780 + 0.353899i 0.108482 + 0.0126797i
\(780\) 0 0
\(781\) 1.80245 30.9468i 0.0644967 1.10736i
\(782\) 6.18635 + 10.7151i 0.221224 + 0.383170i
\(783\) 0 0
\(784\) −2.63788 + 4.56895i −0.0942102 + 0.163177i
\(785\) 24.3507 + 16.0157i 0.869114 + 0.571626i
\(786\) 0 0
\(787\) 12.6971 + 29.4351i 0.452601 + 1.04925i 0.979886 + 0.199559i \(0.0639510\pi\)
−0.527284 + 0.849689i \(0.676790\pi\)
\(788\) 15.1604 3.59307i 0.540066 0.127998i
\(789\) 0 0
\(790\) 7.76935 + 10.4360i 0.276421 + 0.371298i
\(791\) 35.7894 13.0263i 1.27252 0.463161i
\(792\) 0 0
\(793\) −28.6670 10.4339i −1.01799 0.370520i
\(794\) −7.08779 23.6749i −0.251536 0.840189i
\(795\) 0 0
\(796\) −1.65411 28.4000i −0.0586283 1.00661i
\(797\) 9.84741 6.47674i 0.348813 0.229418i −0.362996 0.931791i \(-0.618246\pi\)
0.711810 + 0.702373i \(0.247876\pi\)
\(798\) 0 0
\(799\) 35.3783 + 8.38481i 1.25159 + 0.296633i
\(800\) −2.85246 16.1771i −0.100850 0.571948i
\(801\) 0 0
\(802\) −2.31363 + 13.1212i −0.0816970 + 0.463327i
\(803\) 8.81174 20.4279i 0.310960 0.720885i
\(804\) 0 0
\(805\) 5.57733 18.6296i 0.196575 0.656606i
\(806\) −1.37986 + 1.85347i −0.0486035 + 0.0652859i
\(807\) 0 0
\(808\) −22.6539 + 11.3772i −0.796962 + 0.400249i
\(809\) −21.4155 −0.752929 −0.376464 0.926431i \(-0.622860\pi\)
−0.376464 + 0.926431i \(0.622860\pi\)
\(810\) 0 0
\(811\) 1.73790 0.0610258 0.0305129 0.999534i \(-0.490286\pi\)
0.0305129 + 0.999534i \(0.490286\pi\)
\(812\) −3.08119 + 1.54743i −0.108129 + 0.0543043i
\(813\) 0 0
\(814\) −2.35932 + 3.16911i −0.0826940 + 0.111077i
\(815\) 7.50075 25.0542i 0.262740 0.877612i
\(816\) 0 0
\(817\) −14.8414 + 34.4063i −0.519235 + 1.20372i
\(818\) −3.23502 + 18.3467i −0.113110 + 0.641477i
\(819\) 0 0
\(820\) −0.243897 1.38321i −0.00851725 0.0483037i
\(821\) 8.67839 + 2.05682i 0.302878 + 0.0717834i 0.379245 0.925296i \(-0.376184\pi\)
−0.0763667 + 0.997080i \(0.524332\pi\)
\(822\) 0 0
\(823\) −1.54747 + 1.01779i −0.0539414 + 0.0354778i −0.576193 0.817313i \(-0.695462\pi\)
0.522252 + 0.852791i \(0.325092\pi\)
\(824\) 0.501339 + 8.60765i 0.0174650 + 0.299862i
\(825\) 0 0
\(826\) −4.49031 14.9987i −0.156238 0.521870i
\(827\) 19.7686 + 7.19517i 0.687420 + 0.250200i 0.662030 0.749477i \(-0.269695\pi\)
0.0253900 + 0.999678i \(0.491917\pi\)
\(828\) 0 0
\(829\) −5.33030 + 1.94007i −0.185129 + 0.0673814i −0.432921 0.901432i \(-0.642517\pi\)
0.247792 + 0.968813i \(0.420295\pi\)
\(830\) −1.12067 1.50531i −0.0388989 0.0522502i
\(831\) 0 0
\(832\) −13.7977 + 3.27012i −0.478350 + 0.113371i
\(833\) −13.5203 31.3435i −0.468450 1.08599i
\(834\) 0 0
\(835\) 4.19404 + 2.75846i 0.145141 + 0.0954606i
\(836\) 15.6738 27.1478i 0.542089 0.938925i
\(837\) 0 0
\(838\) −6.14931 10.6509i −0.212424 0.367930i
\(839\) 1.39131 23.8879i 0.0480334 0.824701i −0.885151 0.465304i \(-0.845945\pi\)
0.933184 0.359398i \(-0.117018\pi\)
\(840\) 0 0
\(841\) 28.3805 + 3.31720i 0.978637 + 0.114386i
\(842\) 12.6348 + 13.3921i 0.435424 + 0.461522i
\(843\) 0 0
\(844\) 1.64386 0.192140i 0.0565841 0.00661373i
\(845\) 8.14471 + 6.83422i 0.280186 + 0.235104i
\(846\) 0 0
\(847\) −42.3609 + 35.5450i −1.45554 + 1.22134i
\(848\) 2.01657 2.13744i 0.0692494 0.0734000i
\(849\) 0 0
\(850\) 8.98455 + 4.51221i 0.308168 + 0.154768i
\(851\) 3.08792 + 1.55081i 0.105853 + 0.0531612i
\(852\) 0 0
\(853\) −4.63443 + 4.91221i −0.158680 + 0.168191i −0.801836 0.597544i \(-0.796143\pi\)
0.643156 + 0.765735i \(0.277625\pi\)
\(854\) 15.4550 12.9683i 0.528860 0.443766i
\(855\) 0 0
\(856\) 34.1166 + 28.6272i 1.16608 + 0.978457i
\(857\) −18.7289 + 2.18910i −0.639768 + 0.0747782i −0.429791 0.902928i \(-0.641413\pi\)
−0.209977 + 0.977706i \(0.567339\pi\)
\(858\) 0 0
\(859\) −22.2456 23.5790i −0.759010 0.804503i 0.226520 0.974007i \(-0.427265\pi\)
−0.985530 + 0.169503i \(0.945784\pi\)
\(860\) 17.1478 + 2.00429i 0.584736 + 0.0683458i
\(861\) 0 0
\(862\) −0.0641516 + 1.10144i −0.00218501 + 0.0375152i
\(863\) −23.6121 40.8973i −0.803765 1.39216i −0.917122 0.398607i \(-0.869494\pi\)
0.113357 0.993554i \(-0.463840\pi\)
\(864\) 0 0
\(865\) −13.8292 + 23.9529i −0.470208 + 0.814424i
\(866\) −8.49550 5.58758i −0.288689 0.189874i
\(867\) 0 0
\(868\) 1.37656 + 3.19123i 0.0467235 + 0.108317i
\(869\) −55.2930 + 13.1047i −1.87569 + 0.444546i
\(870\) 0 0
\(871\) −14.2209 19.1020i −0.481858 0.647248i
\(872\) 19.0051 6.91730i 0.643595 0.234249i
\(873\) 0 0
\(874\) 11.3280 + 4.12304i 0.383174 + 0.139464i
\(875\) −12.6036 42.0991i −0.426081 1.42321i
\(876\) 0 0
\(877\) −0.327452 5.62213i −0.0110573 0.189846i −0.999314 0.0370415i \(-0.988207\pi\)
0.988256 0.152804i \(-0.0488304\pi\)
\(878\) −13.5416 + 8.90647i −0.457008 + 0.300579i
\(879\) 0 0
\(880\) −5.15743 1.22233i −0.173857 0.0412048i
\(881\) 0.984686 + 5.58443i 0.0331749 + 0.188144i 0.996892 0.0787820i \(-0.0251031\pi\)
−0.963717 + 0.266926i \(0.913992\pi\)
\(882\) 0 0
\(883\) 5.95650 33.7810i 0.200452 1.13682i −0.703985 0.710215i \(-0.748598\pi\)
0.904437 0.426606i \(-0.140291\pi\)
\(884\) −11.3260 + 26.2566i −0.380934 + 0.883105i
\(885\) 0 0
\(886\) 7.61382 25.4319i 0.255791 0.854403i
\(887\) −16.0539 + 21.5641i −0.539037 + 0.724053i −0.985297 0.170851i \(-0.945348\pi\)
0.446260 + 0.894904i \(0.352756\pi\)
\(888\) 0 0
\(889\) −13.1996 + 6.62908i −0.442700 + 0.222332i
\(890\) 1.20683 0.0404531
\(891\) 0 0
\(892\) 20.6987 0.693043
\(893\) 31.6566 15.8986i 1.05935 0.532025i
\(894\) 0 0
\(895\) −10.5087 + 14.1156i −0.351266 + 0.471832i
\(896\) −10.0684 + 33.6307i −0.336361 + 1.12352i
\(897\) 0 0
\(898\) −0.371650 + 0.861583i −0.0124021 + 0.0287514i
\(899\) −0.0746222 + 0.423204i −0.00248879 + 0.0141146i
\(900\) 0 0
\(901\) 3.30159 + 18.7243i 0.109992 + 0.623796i
\(902\) −2.62460 0.622041i −0.0873896 0.0207117i
\(903\) 0 0
\(904\) 22.1733 14.5836i 0.737475 0.485045i
\(905\) 1.35902 + 23.3335i 0.0451753 + 0.775631i
\(906\) 0 0
\(907\) −8.72987 29.1598i −0.289871 0.968235i −0.971600 0.236631i \(-0.923957\pi\)
0.681729 0.731605i \(-0.261228\pi\)
\(908\) 32.1114 + 11.6876i 1.06565 + 0.387866i
\(909\) 0 0
\(910\) −18.5699 + 6.75888i −0.615585 + 0.224055i
\(911\) −8.39961 11.2826i −0.278291 0.373810i 0.640898 0.767626i \(-0.278562\pi\)
−0.919189 + 0.393816i \(0.871155\pi\)
\(912\) 0 0
\(913\) 7.97556 1.89024i 0.263953 0.0625579i
\(914\) −9.92224 23.0023i −0.328199 0.760850i
\(915\) 0 0
\(916\) 1.77228 + 1.16565i 0.0585578 + 0.0385141i
\(917\) 31.6440 54.8090i 1.04498 1.80995i
\(918\) 0 0
\(919\) −14.5007 25.1160i −0.478335 0.828501i 0.521356 0.853339i \(-0.325426\pi\)
−0.999691 + 0.0248384i \(0.992093\pi\)
\(920\) 0.787909 13.5279i 0.0259766 0.446001i
\(921\) 0 0
\(922\) 0.261356 + 0.0305482i 0.00860731 + 0.00100605i
\(923\) 18.9069 + 20.0402i 0.622329 + 0.659630i
\(924\) 0 0
\(925\) 2.78891 0.325976i 0.0916986 0.0107180i
\(926\) −1.76780 1.48336i −0.0580935 0.0487462i
\(927\) 0 0
\(928\) −2.92661 + 2.45572i −0.0960706 + 0.0806128i
\(929\) −30.5782 + 32.4109i −1.00324 + 1.06337i −0.00524738 + 0.999986i \(0.501670\pi\)
−0.997989 + 0.0633825i \(0.979811\pi\)
\(930\) 0 0
\(931\) −29.7210 14.9264i −0.974066 0.489194i
\(932\) 17.4542 + 8.76584i 0.571732 + 0.287135i
\(933\) 0 0
\(934\) 2.02962 2.15127i 0.0664112 0.0703918i
\(935\) 26.2707 22.0437i 0.859143 0.720907i
\(936\) 0 0
\(937\) −15.7744 13.2363i −0.515326 0.432409i 0.347673 0.937616i \(-0.386972\pi\)
−0.862999 + 0.505206i \(0.831416\pi\)
\(938\) 15.6427 1.82837i 0.510752 0.0596983i
\(939\) 0 0
\(940\) −11.2007 11.8721i −0.365327 0.387224i
\(941\) 56.3981 + 6.59199i 1.83852 + 0.214893i 0.963226 0.268691i \(-0.0865912\pi\)
0.875298 + 0.483584i \(0.160665\pi\)
\(942\) 0 0
\(943\) −0.137168 + 2.35508i −0.00446680 + 0.0766920i
\(944\) 1.86608 + 3.23215i 0.0607359 + 0.105198i
\(945\) 0 0
\(946\) 16.5775 28.7131i 0.538982 0.933544i
\(947\) −13.1803 8.66883i −0.428303 0.281699i 0.317000 0.948426i \(-0.397325\pi\)
−0.745302 + 0.666727i \(0.767695\pi\)
\(948\) 0 0
\(949\) 7.83165 + 18.1558i 0.254226 + 0.589363i
\(950\) 9.53173 2.25906i 0.309250 0.0732936i
\(951\) 0 0
\(952\) −27.5510 37.0075i −0.892934 1.19942i
\(953\) −47.3933 + 17.2497i −1.53522 + 0.558774i −0.964893 0.262645i \(-0.915405\pi\)
−0.570326 + 0.821418i \(0.693183\pi\)
\(954\) 0 0
\(955\) 8.02382 + 2.92043i 0.259645 + 0.0945030i
\(956\) 9.13079 + 30.4990i 0.295311 + 0.986407i
\(957\) 0 0
\(958\) −0.143907 2.47079i −0.00464942 0.0798275i
\(959\) −29.4594 + 19.3757i −0.951293 + 0.625675i
\(960\) 0 0
\(961\) −29.7429 7.04920i −0.959449 0.227393i
\(962\) −0.609760 3.45812i −0.0196594 0.111494i
\(963\) 0 0
\(964\) 1.70519 9.67059i 0.0549203 0.311469i
\(965\) 0.103079 0.238964i 0.00331824 0.00769253i
\(966\) 0 0
\(967\) −6.27933 + 20.9744i −0.201930 + 0.674492i 0.795701 + 0.605690i \(0.207103\pi\)
−0.997630 + 0.0688018i \(0.978082\pi\)
\(968\) −23.0104 + 30.9083i −0.739581 + 0.993430i
\(969\) 0 0
\(970\) 5.15856 2.59072i 0.165631 0.0831832i
\(971\) 21.3313 0.684555 0.342277 0.939599i \(-0.388802\pi\)
0.342277 + 0.939599i \(0.388802\pi\)
\(972\) 0 0
\(973\) −60.5205 −1.94020
\(974\) 0.855569 0.429683i 0.0274142 0.0137679i
\(975\) 0 0
\(976\) −2.87193 + 3.85768i −0.0919283 + 0.123481i
\(977\) 2.05675 6.87002i 0.0658012 0.219791i −0.918765 0.394806i \(-0.870812\pi\)
0.984566 + 0.175014i \(0.0559971\pi\)
\(978\) 0 0
\(979\) −2.08772 + 4.83988i −0.0667238 + 0.154683i
\(980\) −2.66095 + 15.0910i −0.0850011 + 0.482065i
\(981\) 0 0
\(982\) 5.50290 + 31.2085i 0.175605 + 0.995904i
\(983\) 40.2972 + 9.55061i 1.28528 + 0.304617i 0.815805 0.578328i \(-0.196295\pi\)
0.469477 + 0.882945i \(0.344443\pi\)
\(984\) 0 0
\(985\) 13.8750 9.12572i 0.442094 0.290770i
\(986\) −0.135959 2.33433i −0.00432983 0.0743403i
\(987\) 0 0
\(988\) 7.99060 + 26.6905i 0.254215 + 0.849137i
\(989\) −27.2487 9.91773i −0.866460 0.315365i
\(990\) 0 0
\(991\) 51.2878 18.6672i 1.62921 0.592984i 0.644105 0.764937i \(-0.277230\pi\)
0.985105 + 0.171953i \(0.0550079\pi\)
\(992\) 2.29960 + 3.08890i 0.0730125 + 0.0980728i
\(993\) 0 0
\(994\) −17.7295 + 4.20196i −0.562344 + 0.133278i
\(995\) −12.0102 27.8428i −0.380750 0.882677i
\(996\) 0 0
\(997\) 22.1506 + 14.5687i 0.701516 + 0.461395i 0.849495 0.527596i \(-0.176906\pi\)
−0.147979 + 0.988990i \(0.547277\pi\)
\(998\) 16.0810 27.8531i 0.509035 0.881674i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 243.2.g.a.73.5 144
3.2 odd 2 81.2.g.a.25.4 yes 144
9.2 odd 6 729.2.g.c.703.5 144
9.4 even 3 729.2.g.a.217.4 144
9.5 odd 6 729.2.g.d.217.5 144
9.7 even 3 729.2.g.b.703.4 144
81.13 even 27 inner 243.2.g.a.10.5 144
81.14 odd 54 729.2.g.d.514.5 144
81.16 even 27 6561.2.a.d.1.43 72
81.40 even 27 729.2.g.b.28.4 144
81.41 odd 54 729.2.g.c.28.5 144
81.65 odd 54 6561.2.a.c.1.30 72
81.67 even 27 729.2.g.a.514.4 144
81.68 odd 54 81.2.g.a.13.4 144
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
81.2.g.a.13.4 144 81.68 odd 54
81.2.g.a.25.4 yes 144 3.2 odd 2
243.2.g.a.10.5 144 81.13 even 27 inner
243.2.g.a.73.5 144 1.1 even 1 trivial
729.2.g.a.217.4 144 9.4 even 3
729.2.g.a.514.4 144 81.67 even 27
729.2.g.b.28.4 144 81.40 even 27
729.2.g.b.703.4 144 9.7 even 3
729.2.g.c.28.5 144 81.41 odd 54
729.2.g.c.703.5 144 9.2 odd 6
729.2.g.d.217.5 144 9.5 odd 6
729.2.g.d.514.5 144 81.14 odd 54
6561.2.a.c.1.30 72 81.65 odd 54
6561.2.a.d.1.43 72 81.16 even 27